JP3757800B2 - Anvil for free forging and hot forging method using this anvil - Google Patents

Anvil for free forging and hot forging method using this anvil Download PDF

Info

Publication number
JP3757800B2
JP3757800B2 JP2001011568A JP2001011568A JP3757800B2 JP 3757800 B2 JP3757800 B2 JP 3757800B2 JP 2001011568 A JP2001011568 A JP 2001011568A JP 2001011568 A JP2001011568 A JP 2001011568A JP 3757800 B2 JP3757800 B2 JP 3757800B2
Authority
JP
Japan
Prior art keywords
anvil
forging
workpiece
present
steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001011568A
Other languages
Japanese (ja)
Other versions
JP2002219547A (en
Inventor
淳平 田嶋
勝 西口
満博 天本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001011568A priority Critical patent/JP3757800B2/en
Publication of JP2002219547A publication Critical patent/JP2002219547A/en
Application granted granted Critical
Publication of JP3757800B2 publication Critical patent/JP3757800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自由鍛造用金敷、より詳しくは、炭素鋼、合金鋼、ステンレス鋼や高合金等の被加工材を熱間で複数回圧下して自由鍛造する際に使用する金敷、及び、この金敷を用いた熱間自由鍛造方法に関するものである。
【0002】
【従来の技術】
熱間の自由鍛造によって鋼塊、鋳片或いは鋳塊を鍛伸する場合、一般的には被加工材を送りながら、対向する位置に配置された一対の平金敷によって、被加工材の対向する2面を順次圧下する。そして、全長を圧下すると被加工材を搬送方向を軸として、その軸まわりに例えば90°回転させ、再び被加工材を送りながら対向する一対の平金敷によって前記と異なる2面を順次圧下する工程を複数回繰り返す。
【0003】
ここで、上記自由鍛造に供される平金敷は被加工材の幅よりも大きい幅を有し、被加工材を主に圧下する面は平坦となされ、この平坦となされた面の被加工材搬送方向前後端には所定角度の傾斜を持つテーパ面或いは円弧面が形成されている。
【0004】
このような平坦面を有する平金敷を用いて鍛造する場合には、平金敷の平坦面に接触する被加工材の表層は、鍛造時、平金敷との摩擦によって塑性流動が拘束されるため、平金敷との接触範囲の中央部には、ほとんど塑性歪みの加わらないデッドメタル域が生じる。
【0005】
一般に鋼塊、鋳片或いは鋳塊に熱間加工を施した場合、塑性歪みが加わることによって組織が微細化し、機械的性質が向上する。しかしながら、被加工材の組織が自由鍛造の初期工程で微細化せずに鋼塊、鋳片或いは鋳塊の粗い組織が残留している場合には、自由鍛造の後段工程において大きな歪みと応力が負荷されると、延性の低い粗大結晶粒に沿って亀裂が大きく進展し、鍛造割れ等の欠陥を生じることになる。
【0006】
従って、上記の従来の平金敷を用いて自由鍛造を行った場合、初期工程の塑性歪みがほとんど起こらない領域では組織が微細化しないので、被加工材の表層には微細化した組織と機械的性質の劣る粗い組織が混在する可能性が存在する。この結果、粗い組織が残留している領域で欠陥が発生することを防止するため、自由鍛造の後段工程では被加工材の圧下量や送り量を低減させたり、鍛造の途中で被加工材を再加熱するなど、生産能率を落とさざるを得なかった。
【0007】
かかる平金敷を用いた熱間の自由鍛造加工に際し、例えば特開平7−116766号では、平坦面の両端から材料の搬送方向前後に所定角度傾斜したコーナ面を、複数段に傾斜したテーパ面或いはテーパ面と円弧面とで形成し、傾斜を緩くすることによって、難加工材料でも割れにくくするというものが提案されている。
【0008】
【発明が解決しようとする課題】
しかしながら、熱間の自由鍛造時に、特開平7−116766号で提案された平金敷を用いたとしても、当該平金敷には未だ平坦面が存在するため、デッドメタル域による機械的性質の劣る粗い組織が混在する虞があることは言うまでもない。
【0009】
本発明は、上記した問題点に鑑みてなされたものであり、熱間の自由鍛造加工、特に、矩形に代表される多角形断面形状を有する素材の平坦面を圧下する鍛造において、被加工材の表層に均一な歪みを与えることができ、デッドメタル域を生じさせないことによって割れ等の欠陥発生を防止することができる金敷形状と、この金敷を用いた鍛造方法を提供することを目的としている。
【0010】
【課題を解決するための手段】
上記した目的を達成するために、本発明の自由鍛造用金敷は、鍛造加工前における被加工材の幅をbとした場合、加工表面に、下記の数式2に規定する条件を満足する高さhの山部を、下記の数式1に規定する条件を満足するピッチwで複数条、同一方向に延びるように形成させることとしている。そして、このようにすることで、自由鍛造において、被加工材の表層に均一な歪みを与えることができるようになる。
【0011】
【数1】
(1/35)b≦w≦(1/5)b
【0012】
【数2】
(1/8)w≦h≦(1/2)w
【0013】
また、本発明に係る熱間自由鍛造方法は、複数回の工程でn角形断面形状を有する被加工材を鍛造するに際し、最初のn回以上の工程は、上記した本発明の自由鍛造用金敷を用いて被加工材の同一表面に対し山部の稜線の交差角度が40〜140°となるようにして鍛造を行い、最後のn/2回以上の工程は、平金敷を用いて鍛造することとしている。そして、このようにすることで、被加工材と金敷が同時に接触する面積を確実に小さくできるようになる。
【0014】
【発明の実施の形態】
発明者らは、基礎検討として数値解析を用い、金敷に接触する被加工材の表層にデッドメタル域が生じない金敷の形状を検討した結果、被加工材が金敷と接触を開始する時間をずらし、被加工材と金敷が同時に接触する面積を小さくする、すなわち、金敷の加工表面を凹凸にすればデッドメタル域の発生を抑制できるという知見を得た。
【0015】
そして、この知見を基に本発明者らは、さらに被加工材表層の塑性歪みを均一に分布させるための金敷の加工表面に形成する凹凸形状と、その金敷を用いた鍛造方法についてステンレス鋼の自由鍛造により検討した。
【0016】
その結果、金敷の加工表面に、中心線に対して所定の角度θを有する稜線で構成される山部を形成するのが効果的であり、一度圧下した被加工材を搬送方向を軸として、その軸まわりに所定角度回転して次工程以降の圧下を行う中で、対向して配置された他方の金敷の加工表面の稜線と、対向して配置された一方の金敷により前工程で被加工材に形成された稜線との交差角度が40〜140°の場合に、双方の稜線の重なりが防止でき、同時に接触する面積を確実に小さくできること、及び、後段の工程で被れ疵が発生し難いことが判明した。
【0017】
本発明は上記した本発明者らの検討・解析の結果得られた知見に基づいてなされたものであり、鍛造加工前における被加工材の幅をbとした場合、加工表面に、上記の数式2に規定する条件を満足する高さhの山部を、上記の数式1に規定する条件を満足するピッチwで複数条、同一方向に延びるように形成させたことを要旨とする自由鍛造用金敷である。
【0018】
本発明に係る自由鍛造用金敷において、山部のピッチwを、鍛造加工前における被加工材の幅bの1/35〜1/5の範囲としたのは、鍛造加工前における被加工材の幅bの1/5より大きいと、ほぼ同時に接触する面積が大きくなって表層にデッドメタル域が生じるからである。また、鍛造加工前における被加工材の幅bの1/35より小さいと、谷部に材料が充満せず平坦面で圧下した場合と同様にデッドメタル域が生じるからである。
【0019】
すなわち、山部のピッチwが、鍛造加工前における被加工材の幅bの1/35〜1/5の範囲以外の場合には、何れも被加工材に粗い組織が残留し、鍛造割れ等の欠陥が生じるおそれがあるからである。
【0020】
また、本発明に係る自由鍛造用金敷において、山部の高さhを前記ピッチwの1/8以上としたのは、1/8未満では、塑性歪みが加わって微細化する範囲が極表層のみとなって表層直下に粗い組織が残留し、鍛造割れ等の欠陥が生じる虞があり、また、経時変化による摩耗や塑性変形により早期に金敷が平滑化してしまい、表層細粒化の効果が全く消失してしまうからである。
【0021】
山部の高さhの上限は、本発明者らの各種の実験によれば、ピッチwの1/2より大きくなると、鍛造によって形成される窪みが深すぎて、後段の平金敷による鍛造時に被加工材に被れ疵を発生させる虞があるので、山部の高さhはピッチwの1/2以下とする。山部のrについては、0であっても差し支えないが、圧下時に被れ疵を発生し難くするためには、ピッチwの1/10以上とすることが好ましい。
【0022】
また、本発明に係る熱間自由鍛造方法は、複数回の工程でn角形断面形状を有する被加工材を鍛造するに際し、最初のn回以上の工程は、上記した本発明の自由鍛造用金敷を用いて被加工材の同一表面に対し山部の稜線の交差角度が40〜140°となるようにして鍛造を行い、最後のn/2回以上の工程は、平金敷を用いて鍛造するものである。
【0023】
本発明に係る熱間自由鍛造方法において、本発明の自由鍛造用金敷を用いて被加工材の同一表面に対し山部の稜線の交差角度が40〜140°となるようにして鍛造を行うのは、40°より小さくても、また、140°より大きくても交差の端が鋭角になって後段の平金敷による鍛造において被加工材に被れ疵を発生させるからである。
【0024】
【実施例】
以下、本発明を図1〜図3に示す実施例に基づいて説明する。
図1は本発明に係る金敷の一例を示す模式図で、(a)は被加工材と共に示す平面図、(b)は(a)図のAーA線矢視断面図、図2(a)(b)は対向して配置する本発明に係る2つの金敷を加工表面側から見た図、図3(a)〜(d)は矩形状の被加工材を鍛造する場合における断面収縮工程の最初の4工程を搬送方向の正面(背面)側から示した図である。
【0025】
1は本発明に係る金敷であり、通常の方法にて製造された鋼塊或いは鋳塊といった被加工材2に存在する柱状晶に代表される粗い組織を、熱間の自由鍛造によって細かい組織にする場合に用いるものである。
【0026】
本発明に係る金敷1の加工表面は、図1に示すように、ピッチw、高さh、及び、中心線に対しθの角度を有する稜線で構成される山部1aを備えている。例えば山部1aのピッチwは、鍛造加工前における被加工材2の幅bの例えば1/20の長さで、山部1aの高さhは、例えば前記ピッチwの1/3の高さとする。また、山部1aのrは例えば前記ピッチwの1/10とする。
【0027】
本発明に係る金敷1では、中心線に対する角度θは特に規定する必要はないが、図2に示したように、対向配置する2つの金敷1を用いて、例えば矩形断面の被加工材2を金敷1の中心線と平行に送りながら自由鍛造し、一つの工程から次の工程に移る際には、図3の(a)〜(d)に示したように、搬送方向を軸に被加工材2を例えば90°ずつ回転させて同一表面を2回以上繰り返し圧下する場合、対向して配置された他方の金敷1の加工表面の稜線と、対向して配置された一方の金敷1により前工程で被加工材2に形成された稜線との交差角度が40〜140°となるように対抗配置する2つの金敷1の角度を調整する。
【0028】
鍛造は、上記したように、被加工材2を金敷1の中心線と平行に送りながら行い、一つの工程から次の工程に移る際には、送り方向を軸に被加工材2を90°回転させるが、従来、矩形に代表される多角形断面形状で平坦な表面を有する被加工材2を自由鍛造する場合には、鍛造の最初から最後まで、全ての工程において加工表面が平坦である平金敷を用いて行っていた。
【0029】
これに対して、本発明では、n角形断面形状を有する被加工材2を鍛造するに際し、最初のn回以上の工程は上記した構成の本発明に係る自由鍛造用金敷1を用いて、被加工材2の同一表面に対し金敷1の山部1aの稜線の交差角度が例えば90°となるようにして鍛造を行い、最後のn/2回以上の工程は従来の平金敷を用いて行う。なお、途中の工程は、何れの金敷を用いて行なってもよい。
【0030】
本発明の金敷1を用いた場合、鍛造初期において被加工材2の各面(図3におけるA〜D面)をそれぞれの金敷1で少なくとも1回圧下すると、被加工材2の面部表層全域に塑性歪みを均一に分布させ、組織を細かくすることができる。これにより被加工材2の送り量を低減することなく、鍛造割れ等の欠陥が発生しない鍛造を後工程において行うことが可能となる。
【0031】
以下、上記した本発明の効果を確認するために行なった実施結果について説明する。
(実施例1)
長さ2000mm、幅bが500mmの断面矩形状のSUS316鋼塊を素材とし、この素材を1200℃に加熱後、工程毎に圧下方向を90°ずつ変えながら、8工程で一辺が210mmの角ビレットに成形した。この際、同一鍛造工程内における被加工材の送り量は120mmとした。
【0032】
全工程で加工表面が平坦である平金敷を用いる従来方法と、最初の4工程で同一方向に延びる複数条の山部を備える金敷を用いた後、残り4工程で平金敷を用いる本発明方法で、山部のピッチw、高さhを変えて製造比較を行った。金敷加工表面の中心線方向(被加工材送り方向)長さは120mm、山部のrはピッチwの1/3とした。その結果を表1に示す。
【0033】
【表1】
【0034】
上記表1より明らかなように、本発明の金敷を用いて本発明方法により製造した角ビレットは、いずれの条件においても割れや被れ疵は全く見られなかった。また組織を観察して角ビレット全体が微細化した組織であることを確認した。一方、全工程で加工表面が平坦である平金敷を用いた従来方法や、加工表面に形成した山部が本発明の範囲を外れる金敷を使用した比較例では、何れも割れや被れ疵が発生した。
【0035】
(実施例2)
長さ2000mm、幅bが500mmの断面矩形状のSUS316鋼塊を素材とし、この素材を1200℃に加熱後、工程毎に圧下方向を90°ずつ変えながら、8工程で一辺が210mmの角ビレットに成形した。この際、同一鍛造工程内における被加工材の送り量は120mmとした。
【0036】
最初の4工程で同一方向に延びる複数条の山部を備える金敷を用いて交差角を変化させ、その後の残り4工程で平金敷を用いる方法で製造比較を行った。金敷の加工表面の中心線方向(被加工材の搬送方向)長さは120mm、山部のrはピッチwの1/3とした。その結果を表2に示す。
【0037】
【表2】
【0038】
上記表2より明らかなように、本発明金敷を用いた本発明方法の実施例である交差角が40〜140°の範囲で製造した角ビレットには割れはもとより被れ疵も全く見られなかった。また組織を観察の結果、角ビレット全体が微細化した組織であることを確認した。一方、本発明金敷を用いたものの、交差角が40〜140°の範囲を外れた本発明方法の比較例では、割れは見られなかったものの、被れ疵が発生した。
【0039】
【発明の効果】
以上説明したように、本発明の金敷を用いた本発明方法を採用することにより、難加工材でも鍛造割れや被れ疵を生じることなく、高生産能率で自由鍛造を行うことができる。
【図面の簡単な説明】
【図1】本発明に係る金敷の一例を示す模式図で、(a)は被加工材と共に示す平面図、(b)は(a)図のAーA線矢視断面図である。
【図2】(a)(b)は対向して配置する本発明に係る2つの金敷を加工表面側から見た図である。
【図3】(a)〜(d)は矩形状の被加工材を鍛造する場合における断面収縮工程の最初の4工程を搬送方向の正面(背面)側から示した図である。
【符号の説明】
1 金敷
1a 山部
2 被加工材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anvil for free forging, more specifically, an anvil used for free forging by pressing a work material such as carbon steel, alloy steel, stainless steel and high alloy multiple times hot. The present invention relates to a hot free forging method using an anvil.
[0002]
[Prior art]
When forging steel ingots, slabs or ingots by free hot forging, the workpieces are generally opposed by a pair of flat anvils arranged at opposite positions while feeding the workpiece. The two surfaces are sequentially reduced. Then, when the entire length is reduced, the workpiece is rotated by 90 ° around the axis, for example, around the conveying direction, and the two different surfaces are sequentially reduced by a pair of opposing flat anvils while feeding the workpiece again Repeat several times.
[0003]
Here, the flat anvil used for the above free forging has a width larger than the width of the work material, and the surface that mainly squeezes the work material is flattened, and the work material of this flattened surface A tapered surface or a circular arc surface having a predetermined angle of inclination is formed at the front and rear ends in the transport direction.
[0004]
When forging using a flat metal having a flat surface, the surface layer of the workpiece that contacts the flat surface of the flat metal is restrained in plastic flow due to friction with the flat metal, during forging. In the center of the contact area with the flat metal lay, a dead metal region where almost no plastic strain is applied is generated.
[0005]
In general, when hot working is performed on a steel ingot, slab or ingot, the structure is refined by applying plastic strain, and the mechanical properties are improved. However, if the structure of the workpiece is not refined in the initial process of free forging and a rough structure of the steel ingot, slab or ingot remains, large strain and stress are generated in the subsequent process of free forging. When loaded, cracks greatly develop along coarse crystal grains having low ductility, and defects such as forging cracks are generated.
[0006]
Therefore, when free forging is performed using the above-described conventional flat metal laying, the structure is not refined in the region where the plastic strain in the initial process hardly occurs. There is a possibility that a coarse structure with inferior properties is mixed. As a result, in order to prevent the occurrence of defects in the area where the rough structure remains, in the subsequent process of free forging, the reduction amount and feed amount of the work material are reduced, or the work material is removed during forging. Production efficiency had to be reduced, such as by reheating.
[0007]
In the hot free forging process using such a flat anvil, for example, in Japanese Patent Application Laid-Open No. 7-116766, a corner surface inclined at a predetermined angle from both ends of a flat surface to the front and rear in the material conveying direction is formed into a taper surface inclined in multiple steps It has been proposed to form a taper surface and an arc surface, and to make it difficult to break even difficult-to-process materials by loosening the inclination.
[0008]
[Problems to be solved by the invention]
However, even if a flat metal mat proposed in Japanese Patent Laid-Open No. 7-116766 is used during hot free forging, since the flat metal mat still has a flat surface, the mechanical properties due to the dead metal region are inferior and rough. Needless to say, there is a possibility that organizations may coexist.
[0009]
The present invention has been made in view of the above-described problems, and in hot free forging, in particular, forging to reduce a flat surface of a material having a polygonal cross-sectional shape typified by a rectangle, a work material It is an object to provide an anvil shape that can apply uniform strain to the surface layer of the metal and prevent the occurrence of defects such as cracks by not causing a dead metal region, and a forging method using the anvil. .
[0010]
[Means for Solving the Problems]
In order to achieve the above-described object, the anvil for free forging according to the present invention has a height that satisfies the condition defined by the following formula 2 on the processed surface, where b is the width of the workpiece before forging. The ridges of h are formed so as to extend in the same direction in a plurality of strips at a pitch w that satisfies the condition defined in the following Equation 1. And by doing in this way, in free forging, it becomes possible to give a uniform distortion to the surface layer of a work material.
[0011]
[Expression 1]
(1/35) b ≦ w ≦ (1/5) b
[0012]
[Expression 2]
(1/8) w ≦ h ≦ (1/2) w
[0013]
The hot free forging method according to the present invention is a method for forging a workpiece having an n-square cross-sectional shape in a plurality of steps. Forging is performed so that the crossing angle of the ridges of the ridges is 40 to 140 ° with respect to the same surface of the workpiece, and the last n / 2 times or more are forged using a flat anvil. I am going to do that. And by doing in this way, the area which a workpiece and an anvil contact simultaneously can be reliably made small.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
As a result of investigating the shape of an anvil where the dead metal area does not occur on the surface layer of the workpiece that contacts the anvil using numerical analysis as a basic study, the inventors shifted the time for the workpiece to start contacting the anvil. It has been found that the generation of the dead metal region can be suppressed by reducing the area where the work piece and the anvil simultaneously contact each other, that is, by making the processed surface of the anvil uneven.
[0015]
Based on this knowledge, the present inventors further developed a concavo-convex shape formed on the processing surface of the anvil for uniformly distributing plastic strain on the surface layer of the workpiece, and a forging method using the anvil made of stainless steel. We examined by free forging.
[0016]
As a result, it is effective to form a crest composed of a ridge line having a predetermined angle θ with respect to the center line on the processing surface of the anvil. Rotating a predetermined angle around the axis and performing the reduction after the next process, the ridgeline of the processing surface of the other anvil arranged opposite to the other anvil is processed in the previous process When the angle of intersection with the ridgeline formed on the material is 40 to 140 °, the overlapping of both ridgelines can be prevented, and the area in contact with each other can be surely reduced, and the covering process occurs in the subsequent process. It turned out to be difficult.
[0017]
The present invention has been made on the basis of the knowledge obtained as a result of the examination and analysis by the inventors described above. When the width of the workpiece before forging is b, For free forging with the gist of forming a ridge having a height h satisfying the conditions specified in 2 to extend in the same direction in a plurality of strips at a pitch w satisfying the conditions specified in the above-mentioned formula 1. It is an anvil.
[0018]
In the anvil for free forging according to the present invention, the pitch w of the ridges is in the range of 1/35 to 1/5 of the width b of the workpiece before forging. This is because if the width is larger than 1/5 of the width b, the contact area increases almost simultaneously and a dead metal region is generated on the surface layer. Moreover, if it is smaller than 1/35 of the width b of the workpiece before forging, a dead metal region is generated as in the case where the valley is not filled with the material and the flat surface is pressed.
[0019]
That is, when the pitch w of the ridge is outside the range of 1/35 to 1/5 of the width b of the workpiece before forging, a rough structure remains in the workpiece, forging cracks, etc. This is because there is a risk of the occurrence of defects.
[0020]
In addition, in the anvil for free forging according to the present invention, the height h of the ridges is set to 1/8 or more of the pitch w. There is a risk that a rough structure will remain directly under the surface layer and defects such as forging cracks may occur, and the anvil will be smoothed early due to wear and plastic deformation due to changes over time, resulting in the effect of surface refinement This is because it will disappear completely.
[0021]
According to various experiments conducted by the present inventors , the upper limit of the height h of the mountain portion is larger than 1/2 of the pitch w. since there is a possibility of generating scratches Komure the workpiece, the height h of the crest portion you 1/2 or less of the pitch w. The peak r may be 0, but it is preferably 1/10 or more of the pitch w in order to make it difficult for the cover to be covered during rolling.
[0022]
The hot free forging method according to the present invention is a method for forging a workpiece having an n-square cross-sectional shape in a plurality of steps. Forging is performed so that the crossing angle of the ridges of the ridges is 40 to 140 ° with respect to the same surface of the workpiece, and the last n / 2 times or more are forged using a flat anvil. Is.
[0023]
In the hot free forging method according to the present invention, forging is performed by using the anvil for free forging according to the present invention so that the crossing angle of the ridge lines of the ridges is 40 to 140 ° with respect to the same surface of the workpiece. This is because, even if the angle is smaller than 40 ° or larger than 140 °, the end of the intersection becomes an acute angle, and the work material is covered with flaws in the forging by the flat metal laying in the subsequent stage.
[0024]
【Example】
Hereinafter, the present invention will be described based on the embodiments shown in FIGS.
1A and 1B are schematic views showing an example of an anvil according to the present invention, wherein FIG. 1A is a plan view shown with a workpiece, FIG. 1B is a cross-sectional view taken along line AA in FIG. FIGS. 3A to 3D are cross-sectional shrinkage steps when forging a rectangular workpiece. FIGS. It is the figure which showed the first 4 processes of from the front (back) side of the conveyance direction.
[0025]
1 is an anvil according to the present invention, and a rough structure represented by columnar crystals existing in a workpiece 2 such as a steel ingot or ingot produced by a normal method is made into a fine structure by hot free forging. It is used when doing.
[0026]
As shown in FIG. 1, the processed surface of the anvil 1 according to the present invention includes a peak portion 1 a composed of a pitch w, a height h, and a ridge line having an angle θ with respect to the center line. For example, the pitch w of the peak 1a is, for example, 1/20 of the width b of the workpiece 2 before forging, and the height h of the peak 1a is, for example, 1/3 of the pitch w. To do. Further, r of the peak portion 1a is, for example, 1/10 of the pitch w.
[0027]
In the anvil 1 according to the present invention, the angle θ with respect to the center line does not need to be specified in particular. However, as shown in FIG. Free forging while feeding parallel to the center line of the anvil 1 and when moving from one process to the next, as shown in (a) to (d) of FIG. When the material 2 is rotated 90 degrees, for example, and the same surface is repeatedly squeezed twice or more, the ridgeline of the processing surface of the other anvil 1 arranged opposite to the other anvil 1 arranged opposite to the front The angle of the two anvils 1 to be opposed to each other is adjusted so that the intersection angle with the ridge line formed on the workpiece 2 in the process is 40 to 140 °.
[0028]
As described above, forging is performed while feeding the workpiece 2 parallel to the center line of the anvil 1, and when moving from one process to the next, the workpiece 2 is 90 ° around the feed direction. Conventionally, when a workpiece 2 having a flat surface with a polygonal cross-sectional shape typified by a rectangle is freely forged, the processing surface is flat in all steps from the beginning to the end of forging. It was done using a flat anvil.
[0029]
On the other hand, in the present invention, when forging the workpiece 2 having an n-square cross-sectional shape, the first n times or more steps are performed using the anvil 1 for free forging according to the present invention having the above-described configuration. Forging is performed so that the crossing angle of the ridge line of the peak portion 1a of the anvil 1 is, for example, 90 ° with respect to the same surface of the workpiece 2, and the last n / 2 or more steps are performed using a conventional flat anvil. . The intermediate step may be performed using any anvil.
[0030]
When the anvil 1 of the present invention is used, when each surface (surfaces A to D in FIG. 3) of the workpiece 2 is squeezed at least once by the respective anvil 1 in the initial stage of forging, the entire surface of the surface portion of the workpiece 2 is covered. The plastic strain can be uniformly distributed and the structure can be made finer. This makes it possible to perform forging in the subsequent process without reducing defects such as forging cracks without reducing the feed amount of the workpiece 2.
[0031]
Hereinafter, description will be given of the results of experiments performed to confirm the effects of the present invention described above.
Example 1
Using a SUS316 steel ingot with a rectangular cross section of 2000 mm in length and 500 mm in width b as a raw material, and heating this material to 1200 ° C, changing the rolling direction by 90 ° for each process, a square billet with a side of 210 mm in 8 processes Molded into. At this time, the feed amount of the workpiece in the same forging process was 120 mm.
[0032]
The method of the present invention using a flat anvil with a flat working surface in all steps and the method using a flat anvil with a plurality of ridges extending in the same direction in the first four steps and then using the flat anvil in the remaining four steps Thus, manufacturing comparison was performed by changing the pitch w and height h of the ridges. The centerline direction (workpiece feed direction) length of the anvil processing surface was 120 mm, and r at the peak was 1/3 of the pitch w. The results are shown in Table 1.
[0033]
[Table 1]
[0034]
As is clear from Table 1 above, the billet produced by the method of the present invention using the anvil of the present invention showed no cracking or covering wrinkles under any conditions. The structure was observed to confirm that the entire square billet was refined. On the other hand, in the conventional method using a flat anvil with a flat processed surface in all steps and the comparative example using an anvil where the ridges formed on the processed surface deviate from the scope of the present invention, both cracks and covering wrinkles occur. Occurred.
[0035]
(Example 2)
Using a SUS316 steel ingot with a rectangular cross section of 2000 mm in length and 500 mm in width b as a raw material, and heating this material to 1200 ° C, changing the rolling direction by 90 ° for each process, a square billet with a side of 210 mm in 8 processes Molded into. At this time, the feed amount of the workpiece in the same forging process was 120 mm.
[0036]
The crossover angle was changed using an anvil having a plurality of ridges extending in the same direction in the first four steps, and production comparison was performed by a method using a flat anvil in the remaining four steps. The centerline direction (workpiece conveyance direction) length of the processed surface of the anvil was 120 mm, and the r of the peak portion was 1/3 of the pitch w. The results are shown in Table 2.
[0037]
[Table 2]
[0038]
As apparent from Table 2 above, the square billet produced in the range of 40 to 140 °, which is an embodiment of the method of the present invention using the anvil of the present invention, shows no cracks and no wrinkles at all. It was. As a result of observing the structure, it was confirmed that the entire square billet was a refined structure. On the other hand, in the comparative example of the method of the present invention in which the anvil of the present invention was used but the crossing angle was out of the range of 40 to 140 °, cracks were not seen, but covering wrinkles occurred.
[0039]
【The invention's effect】
As described above, by adopting the method of the present invention using the anvil of the present invention, free forging can be performed at a high production efficiency without causing forging cracks and cracks even in difficult-to-work materials.
[Brief description of the drawings]
1A and 1B are schematic views showing an example of an anvil according to the present invention, in which FIG. 1A is a plan view together with a workpiece, and FIG. 1B is a cross-sectional view taken along line AA in FIG.
FIGS. 2A and 2B are views of two anvils according to the present invention arranged to face each other as viewed from the processing surface side.
FIGS. 3A to 3D are views showing the first four steps of the cross-section shrinking step when forging a rectangular workpiece from the front (back) side in the conveying direction.
[Explanation of symbols]
1 Anvil 1a Yamabe 2 Work material

Claims (2)

鍛造加工前における被加工材の幅をbとした場合、加工表面に、下記(2)式に規定する条件を満足する高さhの山部を、下記(1)式に規定する条件を満足するピッチwで複数条、同一方向に延びるように形成させたことを特徴とする自由鍛造用金敷。
(1/35)b≦w≦(1/5)b …(1)
(1/8)w≦h≦(1/2)w …(2)
When the width of the workpiece before forging is b, the height h that satisfies the conditions specified in the following formula (2) on the processed surface satisfies the conditions specified in the following formula (1). An anvil for free forging characterized by being formed to extend in the same direction with a plurality of strips at a pitch w.
(1/35) b ≦ w ≦ (1/5) b (1)
(1/8) w ≦ h ≦ (1/2) w (2)
複数回の工程でn角形断面形状を有する被加工材を鍛造するに際し、最初のn回以上の工程は、請求項1記載の自由鍛造用金敷を用いて被加工材の同一表面に対し山部の稜線の交差角度が40〜140°となるようにして鍛造を行い、最後のn/2回以上の工程は、平金敷を用いて鍛造することを特徴とする熱間自由鍛造方法。When forging a workpiece having an n-gonal cross-sectional shape in a plurality of steps, the first n steps or more steps are ridges with respect to the same surface of the workpiece using the free forging anvil according to claim 1. A hot free forging method characterized in that forging is performed so that the ridge line crossing angle is 40 to 140 °, and the last n / 2 or more steps are forged using a flat metal laying.
JP2001011568A 2001-01-19 2001-01-19 Anvil for free forging and hot forging method using this anvil Expired - Fee Related JP3757800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001011568A JP3757800B2 (en) 2001-01-19 2001-01-19 Anvil for free forging and hot forging method using this anvil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001011568A JP3757800B2 (en) 2001-01-19 2001-01-19 Anvil for free forging and hot forging method using this anvil

Publications (2)

Publication Number Publication Date
JP2002219547A JP2002219547A (en) 2002-08-06
JP3757800B2 true JP3757800B2 (en) 2006-03-22

Family

ID=18878692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001011568A Expired - Fee Related JP3757800B2 (en) 2001-01-19 2001-01-19 Anvil for free forging and hot forging method using this anvil

Country Status (1)

Country Link
JP (1) JP3757800B2 (en)

Also Published As

Publication number Publication date
JP2002219547A (en) 2002-08-06

Similar Documents

Publication Publication Date Title
US8381384B2 (en) Shaped direct chill aluminum ingot
WO2020003784A1 (en) Method for producing titanium material for hot rolling and method for producing hot-rolled material
JP3757800B2 (en) Anvil for free forging and hot forging method using this anvil
JP4843401B2 (en) Forging method and anvil used for the forging method
US8381385B2 (en) Shaped direct chill aluminum ingot
JP3266053B2 (en) Anvil for free forging
JPS583761B2 (en) Ribbon wire manufacturing method
JP2001071086A (en) Anvil for high speed four-surface forging apparatus and high speed four-surface forging apparatus
JP6798567B2 (en) Steel ingot rolling method
JPS61103637A (en) Forging method of metallic material
JP2003145204A (en) Press die for hot slab
SU980881A1 (en) Working roll of roughing stand
JPH06254601A (en) Method for rolling unequal angle steel
JPH09327743A (en) Crack generation preventing method in cogging
JP2675383B2 (en) Continuous forging method for cast strands
JP4556744B2 (en) Manufacturing method of unequal side unequal thickness angle steel
JP2503484B2 (en) Forging method
SU757220A1 (en) Ingot for rolling thick sheets
JP2002160036A (en) Free hot forging method
JPH08150402A (en) Manufacture of thick steel plate without seam flaw
JPH09308936A (en) Method for cogging large steel ingot of difficult workability
JPS62284049A (en) Titanium alloy slab for hot rolling
JP2020104135A (en) Pure titanium plate manufacturing method
JPS586704A (en) Method and device for cogging and rolling of steel ingot for very thick steel plate
JPS6222681B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3757800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees