JP3756884B2 - How to improve soft soil - Google Patents

How to improve soft soil Download PDF

Info

Publication number
JP3756884B2
JP3756884B2 JP2003071505A JP2003071505A JP3756884B2 JP 3756884 B2 JP3756884 B2 JP 3756884B2 JP 2003071505 A JP2003071505 A JP 2003071505A JP 2003071505 A JP2003071505 A JP 2003071505A JP 3756884 B2 JP3756884 B2 JP 3756884B2
Authority
JP
Japan
Prior art keywords
soil
improved
gypsum
soft soil
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003071505A
Other languages
Japanese (ja)
Other versions
JP2004278133A (en
Inventor
道三 市原
秀則 小寺
学 小林
謙一 佐々木
誠司 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2003071505A priority Critical patent/JP3756884B2/en
Publication of JP2004278133A publication Critical patent/JP2004278133A/en
Application granted granted Critical
Publication of JP3756884B2 publication Critical patent/JP3756884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軟弱土を植生可能な土工材料として再利用可能に改良する、軟弱土の改良方法に関するものである。
【0002】
【従来の技術】
従来、建設工事などにおいて発生する軟弱土に対して、改良材を添加することによる改良処理が施されている。これは、改良処理を施すことにより軟弱土に強度をもたせ、改良処理を施した軟弱土(以下「改良土」という)を土工材料として再利用するための改良である場合や、改良処理を施すことで軟弱土の流動性を抑えて、残土として搬出することを可能にするための改良である場合など、その目的は様々である。
【0003】
軟弱土の改良方法として、最も多く行われているセメント系改良材を混合撹拌することによる地盤改良方法は、水中に分散した粒子や水溶液中の溶質などが、溶媒の水分子との相互作用により早期に結合する水和反応と、可溶性シリカが水酸化カルシウムと反応し、不溶性で硬化するシリカ質化合物を生成することにより時間をかけて固化するポゾラン反応とにより、強度的に優れた改良土を提供することができる。しかし、アルカリ性であるセメントを使用することにより、その改良土は高いアルカリ性を示し、植生に適さないとともに、降雨時などにおけるアルカリ性の浸出水による周辺地域への影響が懸念され、また改良材を添加した分だけ体積が増加してしまうこと、高い含水比のまま硬化しているので重機械で敷き均しや締固めを行うと強度低下を招きトラフィカビリティが確保できないため施工不可能に至る等、土工材料としての再利用に制限があり、他の地域への搬出も、産業廃棄物として扱われることがあるなどの問題があった。
【0004】
このため、軟弱土を中性領域で改良することができ、アルカリ性の浸出水などによるアルカリ公害を引き起こさない改良方法として、従来から農業用資材として、酸性土壌の矯正、土壌表面硬化の防止、塩類土壌の除塩やアルカリ土壌の矯正などに用いられている、石こうを主成分とした改良材を添加する改良方法が開発された。しかし、石こう系改良材は、水和反応により短時間で改良土に強度を発現させるものの、長期的には、雨水や地下水などの浸透により石こうが溶出し、改良土の強度が低下することが懸念されていた。
【0005】
このような石こう系改良材の短所を補うことのできるものとして、特許文献1では、従来から無機肥料の成分として用いられてきたマグネシウムを加えた石こう系改良材が開示されている。例えば、石こうに酸化マグネシウムと硫酸アルミニウム及び/又は硫酸鉄を加えた石こう系改良材を軟弱土に添加することで、軟弱土を中性領域で水和反応にて固化させることが可能となる。また、さらに、吸水材としての無機質多孔体吸水材及び/又は吸水性有機物をこの改良土に添加することにより、吸水材と土粒子間に存在する重力水とを結合・固定化して重力水量を少なくし、対象土の一軸圧縮強度を高めることができる。
【0006】
この石こう系改良材は、短時間で強度を発現するが長期強度の信頼性に欠ける石こうに、短期強度は小さいが固化後の強度の信頼性が高い酸化マグネシウムを添加し、石こうと酸化マグネシウムの欠点を補い合うものである。しかしながら、酸化マグネシウムは、セメントに比べて飽和水溶液のpH値は低いものの、やはりアルカリ性であるため、改良材の主成分として使用するにはpH値の調整が必要である。そのため、中和剤として硫酸アルミニウム及び/又は硫酸鉄を使用し、改良土を中性領域に保っている。
【0007】
【特許文献1】
特開2000−109829号公報([0005]〜[0017])
【0008】
【発明が解決しようとする課題】
しかしながら、特許文献1に開示されている石こう系改良材を用いた軟弱土の改良方法には下記のような問題点がある。
(1)本来酸化マグネシウムは、アルカリであるが故に固化する物質であり、固化の初期段階において硫酸アルミニウムや硫酸鉄等の中和剤を混入してそれを中和することは、酸化マグネシウムの強度発現そのものを小さくするため、改良土に所定の強度をもたせるためには、改良材の添加量を増加させなければならない。
(2)軟弱土に改良材とともに吸水材を添加することにより、土粒子の間隙の重力水が吸水材によって結合・固定されるため、改良土の更なる強度増加が得られるが、土壌内の全含有水量は変化しない。したがって、対象土を締固める行為などにより土粒子が密実になることで、土粒子間の含有水が外ににじみ出て改良土が泥状になり強度が低下する、いわゆる過転圧状態になるため、このような改良方法による改良土は、締固め作業等を行う土工材料としては適さない。
(3)河川・湖沼あるいは港湾等において大量に堆積する軟弱土の改良材による固化処理は、添加量に見合う体積増加が避けられないため、軟弱土の処理量が減少してしまうこと、改良土の用途が少ないことで、軟弱土の大量処理の必要がある場合には適さない。
【0009】
本発明は、このような問題に鑑みてなされたものであって、大量の軟弱土を、比較的少ない添加量の改良材にて減容化させ中性領域で改良し、また、土工材料としても使用可能な土壌に改良する、経済的な軟弱土の改良方法を提案するものである。
【0010】
【課題を解決するための手段】
上記の課題を解決するために、請求項1に係る発明は、軟弱土に改良材を添加して混合撹拌することにより中途改良土とする工程と、その後、この中途改良土を乾燥させることによりその含水比を液性限界以下にするとともに、これを屋外に曝すことによって中和する工程とからなり、前記軟弱土を減容化し締固め可能な耐水性を有する土に改良する軟弱土の改良方法であって、前記改良材は、石こうと酸化マグネシウムからなり、石こう100重量部に対して酸化マグネシウムを20〜100重量部混合してなることを特徴としている
【0011】
前記軟弱土の改良方法において、請求項2に係る発明は、前記中途改良土の乾燥は、天日乾燥にて行うことを特徴とする。
【0012】
前記軟弱土の改良方法において、請求項3に係る発明は、前記改良材の添加量は、乾燥させた中途改良土の含水比が液性限界以下になる量で決まる上限値と、前記軟弱土と均一に混合できる量で決まる下限値の範囲から決定することを特徴とする。
【0014】
前記軟弱土の改良方法において、請求項に係る発明は、前記改良材は、軟弱土1m3に対して50〜200kg添加することを特徴とする。
【0015】
かかる軟弱土の改良方法により、石こうの、瞬時に軟弱土を中性領域で固化する固化機能と、酸化マグネシウムの、長期的に安定した強度を保つ固化機能に加え、これらの改良材を混合撹拌した軟弱土(本明細書において「中途改良土」ということがある)を乾燥することにより、土粒子の間隙にある重力水を排除し土壌の含水比を液性限界以下まで低下させることで、締固めても過転圧状態にならないように軟弱土を改良することができる。また、乾燥工程は、中途改良土中の含有水を排出すること(以下「脱水」という場合がある)で体積を減少させることができるため、軟弱土の利用率が向上し、大量に処理することができる。さらに、屋外で曝すことにより、空気中の炭酸ガス及び降雨中に含まれる酸性の亜硫酸に中途改良土を曝すこととなり、中途改良土を中性化させる中和促進の効果が得られ、中和剤を使用することなく中性領域で改良することが可能となる。そのため、本発明の改良方法によれば、中和剤を混入することで酸化マグネシウムの強度発現を小さくすることがないため、酸化マグネシウムのアルカリ性を中和剤により中和する改良方法に比べ、少ない改良材の添加量で同等の強度を発現することができる。
【0016】
したがって、本発明による軟弱土の改良方法を採用することで、改良材の添加量が少ない経済的な改良方法で、塩類土壌やアルカリ土壌などを植生可能な土壌へと改良することを可能とした。つまり、例えば、港湾工事などで発生する浚渫土のように、塩分を多量に含むために作物の正常な育成を妨げるような塩類土壌であっても、石こうの除塩効果により、植生可能な土壌に改良し、土壌粒子表面の交換性陽イオン中のナトリウムイオンが相対的に多いアルカリ土壌のように、pH値が高く、植物養分であるリン酸、鉄、マグネシウム、亜鉛の植物への加給性も低く、乾燥する時に緻密構造を形成するため、植物の育成が困難な土壌に対しても、ナトリウムイオンをカルシウムイオンに置き換えることができ、比較的ポーラスな構造を形成するため、軟弱土を一定の強度で固化し、透水性が高く、中性領域で植生可能な土工材料として改良することを可能とした。
【0017】
【発明の実施の形態】
本発明の軟弱土の改良方法は、(1)改良材を作製し、(2)これを軟弱土に添加・混合撹拌し、(3)その後中和及び乾燥するものである。
【0018】
(1)改良材の作製
本発明で用いる軟弱土の改良材として、石こう100重量部と20〜100重量部の酸化マグネシウムとで混合体を作製する。
【0019】
石こうを改良材として使用することにより、透水性の大きいポーラスな結晶を得ることができ、乾燥時に重力水が移動しやすい構造を形成する。この際、石こうの改良材としての固化機能は、無水石こう(CaSO4)又は半水石こう(CaSO4・1/2H2O)が水と反応して二水石こう(CaSO4/2H2O)となる際に周囲の土粒子を含んで固まることや、無水石こう又は半水石こうが二水石こうになる際の脱水効果により軟弱土に強度をもたらすこと等であるため、使用する石こうは、無水石こう、半水石こう、あるいは、無水石こうと半水石こうの混合物とする。
また、酸化鉄を配合すると硫化水素発生の抑制や植物の成長を促進する効果があるので、有機物その他の化学物質を含む軟弱土への混合や植生土壌への転換を図る場合に適している。さらに少量の酸化鉄を均一に混合することが困難なことを考慮すると、特開2001−335317で知られているように予め酸化鉄が混入されている石こうを用いることが望ましい。
【0020】
酸化マグネシウムの改良材としての効果は、酸化マグネシウムの水和反応による固化機能や、酸化マグネシウム(MgO)が水と反応してなる水酸化マグネシウム(Mg(OH)2)の高い錯体形成能力により周囲の土粒子や有機物等と錯体を形成する機能がある。このため、二水石こうの固化機能により結合した土粒子の結合体も取り込んだ形で、水酸化マグネシウムの錯体形成能力による結合体が形成され、その水溶性が懸念される石こうの欠点を補う素地が整う。また、さらに中途改良土を積極的に乾燥させることにより、土粒子の間隙の重力水に替えて二酸化炭素(CO2)を深部まで効率よく供給するため、水酸化マグネシウム(Mg(OH)2)から炭酸マグネシウム(MgCO3)への化学反応を促進させ、強度発現を促進させると同時に石こうの水溶性を改善する。
【0021】
この際、酸化マグネシウムの配合量は、改良土の用途に応じて変化する。
改良土が植生土壌として使用される場合は、構造物を支持するほどの強度は要求されず、また、経験上改良材が一ヶ月の間に10%程度溶解して土壌が再泥化し流出もしくは圧縮されたとしても、植物の根が成長し土壌全体の保護機能を発揮するから、酸化マグネシウムの配合量は石こう100重量部に対して20重量部以上であれば実際的には許容されるから良い。
【0022】
一方、改良土が、土工材料として使用される場合は、改良土には耐水性を付与することが好ましいため、酸化マグネシウムの配合量は、酸化マグネシウムの固化機能により石こうが水に溶解しない配合量である、石こう100重量部に対して70重量部以上必要となる。しかしながら、酸化マグネシウムの配合量を多くすると、石こうが形成するポーラスな結晶が密になり、透水性が悪化し効率的な含水比の低下が図れず、また、石こうの比重が2.6に対し、酸化マグネシウムの比重が3.3と大きいため粒子が沈降しやすく均一に混合できなくなる。さらに、酸化マグネシウムは石こうに比べ高価であり、酸化マグネシウムの配合量を多くすることは不経済である。
したがって、酸化マグネシウムの配合量は、多くても石こう100重量部に対して100重量部以下が良い。
【0023】
したがって、酸化マグネシウムは、石こう100重量部に対して20〜100重量部、望ましくは、石こうが水溶化しない範囲で配合量が少なく経済的な70重量部の配合量で、十分その機能を発揮することができる。
【0024】
本発明で用いる軟弱土の改良材は、石こうと酸化マグネシウムの単なる混合体であるため、その混合においては、特別な機器、方法を使用する必要はなく、ミキサーなどの公知の機器を使用することができる。
【0025】
(2)改良材の添加・混合撹拌
前述の配合で作製した改良材を、軟弱土1m3に対して50〜200kg添加し、混合撹拌する。
【0026】
改良材の軟弱土への添加及び混合作業については、均一な混合を確保するために必要な水以外の余分な水を対象土に加えないように、スタビライザーや混合機などを用いた浅層改良工法や、ミキサー等の泥土処理機械を配備したプラントにて混合するミキサー混合工法や大量処理に適した管中混合工法により行う。
【0027】
改良材は、多く添加すればその分改良土の強度発現を上げることが可能となる。しかしながら、改良材の添加量が多すぎると、改良土が硬くなりすぎるため植物の根がつきにくく植生に適さない土壌となり、改良土に接触する水のpH値は水質汚濁防止法の基準値である8.6を上回る。また、土粒子の間隙の重力水も含めた密な結合体を形成し、天日乾燥等の脱水を行ってもみかけの体積が収縮せず降雨時に容易に吸水してしまうため含水比の低下が阻害されることで、締固め等を行うと過転圧状態となり施工できないため、土工材料として適さない。
【0028】
一方、改良材の添加量が少なければ、天日乾燥等の脱水時にみかけの体積が収縮し降雨時にも降雨を吸水しないため効果的に含水量を低下させることが可能となる。
そのため、改良材添加量はなるべく少ないほうが好ましく、下限値は、軟弱土と改良材を均一に混合できること、短期間で運搬(移動)等ができること、改良土の再泥化を抑制することが可能であればよい。
【0029】
したがって、改良材の添加量を50〜200kg/m3とする。
ここで、下限値の50kg/m3は過去の実績により施工時の均一な混合限界及び締固め時の土壌硬度が植生に適した範囲から決定しており、上限値の200kg/m3は、改良土に接触した水のpH値が中性領域内で、短時間で軟弱土に強度を発現させてハンドリング性を求めるときの添加量とする。
【0030】
(3)中和・乾燥
中途改良土を屋外で天日乾燥し、大気中に曝すことで、改良土を中性化させる中和促進の効果を得ると同時に、土粒子の間隙に存在する重力水を減少させ、含水比を液性限界以下までにする。
【0031】
前述の改良材の配合・添加量で改良を行った中途改良土を乾燥させると、土粒子の間隙の重力水が減少し、みかけの体積が収縮するため、ひび割れを誘発することが可能となる。中途改良土に、ひび割れが生じることにより、空気と接触する表面積が増加するため、特に手を加えることなく乾燥を早めることが可能となる。
【0032】
本発明にかかる改良方法により、石こうの瞬時に軟弱土を中性領域で固化する固化機能、酸化マグネシウムの長期的に安定した強度を保つ固化機能に加え、屋外にて天日乾燥することにより、空気中の炭酸ガス及び降雨中に含まれる酸性の亜硫酸に中途改良土が曝されることとなり、改良土を中性化させる中和促進の効果が得られ、また、土粒子の間隙にある重力水を減少させて減容化することで、土壌の含水比を液性限界以下まで低下させることが可能となり、締固めても過転圧状態にならないように軟弱土を改良することができる。また、本改良方法による改良土は比較的ポーラスな構造を形成するため、改良土を一定の強度で固化し、透水性が高く、中性で、植生に適した土壌に改良することを可能とした。
【0033】
つまり、河川改修などにおける発生土をそのまま河川堤防に再利用することができ、この際、植生可能な土であることから、植生用の覆土として新たな良質土を外部から搬入する必要もなく、現場内で必要な材料を調達することができる。
【0034】
また、本発明の軟弱土の改良方法による改良土は、強度的にも環境的にも問題が無いことから、発生現場内外問わず、良質土として埋め戻し土に使用したり、のり面の覆土として使用したり、または、農業用の土壌として利用するなど、残土や浚渫土の有効利用が可能となる。
【0035】
さらに、本発明の軟弱土の改良方法によれば、軟弱土に改良材を混合撹拌した中途改良土を乾燥させることで、その体積を減少させることが可能となり、河川・港湾の浚渫工事などにおいて大量に発生する軟弱土を経済的に処理することが可能となる。
【0036】
以上、本発明について、好適な実施形態の一例を説明した。しかし、本発明はこれに限定されるものではなく、発明の趣旨に応じた様々な変更実施が可能である。例えば、本実施の形態では、改良材を混合撹拌した軟弱土を天日乾燥することとしたが、乾燥方法はこれに限定されるものではなく、加熱、送風、真空脱水等、中途改良土の含水比を液性限界以下まで低下させることが可能であればその方法は限定されない。
【0037】
【実施例】
(1)使用材料:
改良対象土には、含水比250%、単位体積重量1.25t/m3の浚渫土を使用した。また、改良材は、所定量の半水石こうと酸化マグネシウムをホバートミキサーにて混合したものを使用した。
【0038】
(2)石こうと酸化マグネシウムの配合:
図1のグラフに示すように、石こう100重量部に対して、酸化マグネシウムを0〜100重量部の間で重量部を変化させた5種類の供試体を作製した。供試体は、それぞれ所定の分量の石こうと酸化マグネシウムを水道水とともに混合したペーストを、φ5cm×h10cmのモールドに流し込み、7日間固化させたものである。固化後、各供試体をモールドから取り出し、4週間定期的に水を交換しながら水浸させた後の湿潤重量の減少率を示したものである。
また、表1は、改良材100kgを添加した改良土をそれぞれ水中、砂地盤相当の透水性、シルト地盤相当の透水性を有するモデル地盤中に放置し、30日間モデル地盤内に水を浸透流下させた時の体積変化を示したものである。
さらに、図2は、石こうと酸化マグネシウムと水道水の混合体において、酸化マグネシウムの配合比に対する3時間後のブリーディング率を示したグラフである。
【0039】
【表1】

Figure 0003756884
【0040】
図1に示すように、石こう100重量部に対して酸化マグネシウム20重量部付近で湿潤重量の減少率は10%程度となり、酸化マグネシウムが約70重量部を超えると、湿潤重量の変化はなくなった。この結果から、石こうに対する酸化マグネシウムの配合は、改良土を植生土壌として使用する場合を想定して、改良材の一ヶ月間の溶解が10%程度に収まる配合として、石こう100重量部に対して酸化マグネシウム20重量部以上、改良土を土工材料として使用する場合を想定して石こう100重量部に対して酸化マグネシウム70重量部以上が良となる。
【0041】
表1に示すように、改良土の溶解度は、前述の改良材と水を混合したのみのペーストに比べると、水との接触面積の違いにより約半分程度に低減している。
改良土の再泥化で見ると、地下水が豊富で耐水性を要求される地盤では、酸化マグネシウムの配合は、石こう100重量部に対し70〜100重量部が良い。また、シルト地盤であれば20〜70重量部でも良く、荷重を支持しない植生土壌であれば、降雨に直接曝されるものとして「水中」を適用すると20重量部であっても溶解度はわずか5%である。植物の根が発達すると水と直接接触する面積も低減されるから、溶解度はさらに小さくなる。特に、植物の種を改良土に混合してのり面等に敷き均す方法の場合に20重量部程度であれば降雨で種が洗い流されることも相当少ないので植生できることになり、このような用途において適用が可能である。
【0042】
図2に示すように、石こう100重量部に対する酸化マグネシウムの配合が100重量部を超えると、粒子が沈降し材料分離するため、均一な混合ができなくなる。これは、石こうの比重が2.6に対し、酸化マグネシウムの比重が3.3と大きいため、粒子が沈降しやすいことと、強度発現に時間を有する酸化マグネシウムの配合量が多いことにより、十分な粘着力を発現する前に粒子が沈降してしまうことが原因である。このため、石こう100重量部に対する酸化マグネシウムの配合は100重量部以下とする。
【0043】
したがって、石こう100重量部に対する酸化マグネシウムの配合は下限値を20重量部、上限値を100重量部とし、望ましくは経済性及び信頼性から、70重量部とする。
【0044】
(3)軟弱土に対する改良材の添加量:
軟弱土1m3に対して、石こう100重量部に対し酸化マグネシウム70重量部の改良材を、0〜300kgの範囲で添加量を変化させて撹拌混合した試料の、屋外乾燥による含水比の経時変化を図3のグラフに示し、改良材添加量と屋外乾燥後及び締固め後の土壌硬度との関係を図4のグラフに示し、改良材添加量と接触水のpH値との関係を図5のグラフに示した。ここで、図3の点線は液性限界を示し、図4の点線は道路公団基準による植生のり面の土壌硬度の範囲の上限値と下限値を示し、さらに、図5の点線は、水質汚濁防止法のpH値の上限値と下限値を示している。
【0045】
図3に示す通り、改良材を添加していない原泥を屋外で乾燥した場合、約20日間で含水比が液性限界以下になり、さらに乾燥すると60日経過後に約50%程度まで含水比が低下した。一方、改良材を添加した試料は、6日目以降から含水比の低下が鈍化し、また、改良材の添加量の多い試料ほど、含水比の低下が小さい。つまり、改良材の添加量が多いと、これを乾燥させても、みかけの体積が減少しないため降雨時に吸水することで含水比が低下せず、液性限界以下とはならないため、その後の締固めなどにより過転圧状態になる恐れがある。一方、改良材の添加量が少ない場合は、ポーラス状に固化するため、乾燥することにより、見かけの体積が容易に減少するので降雨時の吸水がほとんどなく、重力水が排除された分、含水比が液性限界以下まで低下する。したがって、その後に締固め作業等を行っても過転圧状態になる恐れはない。
【0046】
また、試料の乾燥後及び締固め後の土壌硬度については、図4より、添加量50kg/m3〜290kg/m3が、道路公団基準による植生のり面の土壌硬度の範囲である10〜27mm内に収まっている。一方、改良土に接触した水のpH値は、図5から、添加量が250kg/m3付近で、水質汚濁防止法の範囲である5.6〜8.6の上限値8.6を超えてしまう。
つまり、改良材の添加量が少ないと、中性領域での改良が可能となるが、乾燥により土壌硬度が硬すぎて、植生が難しくなり、また、改良材の添加量が多すぎても土壌硬度が硬く、また、改良土の接触水のpH値も上がりアルカリ性となり、水質汚濁防止法の範囲外となる結果となった。
【0047】
したがって、含水比の低下率、土壌硬度及び接触水のpH値、軟弱土のpH値をにらみつつ、改良土の使用目的に応じて、改良材の添加量を改良対象土1m3に対して50〜200kgの範囲で定めるものとする。
【0048】
(4)中性化:
表2は、石こう100重量部に対して酸化マグネシウム70重量部の改良材を100kg/m3添加した改良対象土を、8月から12月の期間において屋外で曝し定期的にpH値の計測を行った結果と、温度20℃±3℃、湿度30%の室内にて存置し定期的にpH値の計測を行った結果を示したものである。
【0049】
【表2】
Figure 0003756884
【0050】
表2に示すように、室内存置では、pH値の変動はほとんど無く、中性化の中和作用は見られないのに対し、屋外で曝した改良土に関しては、混合時に比べpH値が減少しており、屋外で曝すことによる中性化の促進が見受けられる。したがって、改良土を屋外で曝すことで、空気中の炭酸ガス及び降雨による酸性の亜硫酸に曝されることにより中途改良土に中和作用が施され、中和剤を使用することなく、軟弱土を中性領域で改良することが可能となる。
【0051】
(5)中和剤の有無による添加量の違い:
表3は、石こうと酸化マグネシウムからなる改良材に中和剤を加えることによる強度の変化を測定した結果である。測定は下記の要領で行った。
(a)石こうと酸化マグネシウムと水道水を混合したペーストを、φ5cm×h10cmのモールドに流し込み固化させた供試体を作製した。(供試体NO.1及びNO.2)
(b)石こうと酸化マグネシウムと硫酸を添加した水道水を混合したペーストを、φ5cm×h10cmのモールドに流し込み固化させた供試体を作製した。(供試体NO.3及びNO.4)
(c)各供試体を、材齢7日間で一軸圧縮試験を行い、その強度を測定した。また、同時にpH値の測定も行った。
【0052】
【表3】
Figure 0003756884
【0053】
表3に示す通り、硫酸を加えた供試体はpH値が中性領域内に収まる反面、硫酸を加えていない供試体に比べ、一軸圧縮強度が20%程度小さくなった。この結果から、中和剤を添加することにより、酸化マグネシウムのアルカリ性質を中和する反面、その固化機能を阻害してしまうため、中和剤を添加しない改良土と同等の強度をもたらすためには、改良材の添加量を増やす必要がある。
【0054】
したがって、本発明による石こうと酸化マグネシウムからなる改良材による撹拌混合と、この中途改良土を乾燥させるとともに屋外に曝す改良方法により、中和剤を添加することなく中性領域で軟弱土の改良が可能となるため、改良材の添加量が少ない経済的な軟弱土の改良が可能となる。
【0055】
(6)乾燥工程による添加量の低減:
図6は、改良材の添加量を変化させて撹拌混合した中途改良土を、湿潤養生での材齢7日間強度と、乾燥養生での材齢7日間強度とを一軸圧縮試験にて測定を行った結果を示すグラフである。
【0056】
図6は、軟弱土の改良時に乾燥工程を含むことで、改良材の添加量を少なくすることが可能となったことを示している。例えば、一軸圧縮強度50kN/m2を確保するための改良材添加量を図6から推定すると、湿潤養生では250kg/m3程度、乾燥養生では80kg/m3程度となり、中途改良土を乾燥することにより改良材の添加量を約3割に抑えることが可能となる。つまり、本発明の改良方法は、乾燥工程を含むことで改良材の添加量を少なくすることができるため、経済的な改良方法である。
【0057】
【発明の効果】
本発明による軟弱土の改良方法は、石こうと酸化マグネシウムとの混合体からなる改良材を撹拌混合し、乾燥させるとともに屋外に曝すといった簡単なものであるが、その結果、土壌硬度は硬すぎず軟らかすぎない植生に最適の範囲を示し、また、接触水のpH値も中性領域で収まり水環境への影響が少ない、さらに、土粒子の間隙の重力水を除去させたことにより軟弱土の減容化を図り、経済的な大量処理を提供できる。また含水比を低下させたことにより締固めができ、含水比による施工管理もできることから、土工材料としても最適な改良土を得ることが可能となった。
さらに、改良効果に対しては、改良材添加量の寄与度よりも含水比低下の寄与のほうが大きいため、軟弱土の含水比にバラツキを生じても、改良材添加量をその都度、変更することなく改良することができる。
また、改良土を捨土処分する場合、改良土の体積が減るため処分場の延命化を可能にし、環境負荷を抑制することができる。
【図面の簡単な説明】
【図1】石こうに対する酸化マグネシウムの重量比と、4週間水浸させた後の湿潤重量の減少率との関係を示したグラフである。
【図2】石こうと酸化マグネシウムと水道水の混合体において、酸化マグネシウムの配合比に対する3時間後のブリーディング率を示したグラフである。
【図3】改良材の添加量を変化させた中途改良土の、天日乾燥による含水比の経時変化を示したグラフである。
【図4】改良材添加量と屋外乾燥後及び締固め後の土壌硬度との関係を示したグラフである。
【図5】改良材添加量と接触水のpH値との関係を示したグラフである。
【図6】改良材の添加量と、湿潤養生及び乾燥養生での材齢7日間強度との関係を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for improving soft soil, in which soft soil is improved so as to be reusable as a vegetable earthwork material.
[0002]
[Prior art]
Conventionally, the improvement process by adding an improving material is performed with respect to the soft soil generated in construction work. This is to improve the strength of soft soil by applying an improvement treatment, and to improve the soft soil that has been subjected to the improvement treatment (hereinafter referred to as “improvement soil”) as an earthwork material. The purpose is various, such as when it is an improvement for suppressing the fluidity of the soft soil and making it possible to carry it out as a residual soil.
[0003]
As a method for improving soft soil, the most commonly used method for ground improvement by mixing and stirring cement-based improvement materials is that particles dispersed in water or solutes in aqueous solution interact with water molecules in the solvent. Improved soil with excellent strength by hydration reaction that binds early, and pozzolanic reaction in which soluble silica reacts with calcium hydroxide to form an insoluble and hardened siliceous compound, which solidifies over time. Can be provided. However, by using cement that is alkaline, the improved soil shows high alkalinity and is not suitable for vegetation, and there is a concern about the influence of alkaline leachate on the surrounding area during rainfall, etc. The volume will increase by the amount of water, and since it has been cured with a high water content ratio, if it is spread and compacted with a heavy machine, strength will be reduced and trafficability will not be secured, making construction impossible, etc. There is a limit to the reuse as earthwork material, and there are problems such as being transported to other areas as industrial waste.
[0004]
For this reason, soft soil can be improved in the neutral region, and as an improvement method that does not cause alkaline pollution due to alkaline leachate, etc., as an agricultural material conventionally, correction of acidic soil, prevention of soil surface hardening, salts An improved method has been developed to add an improvement material mainly composed of gypsum, which is used for soil desalination and alkaline soil correction. However, although the gypsum-based improving material causes strength to be improved in the improved soil in a short time due to the hydration reaction, in the long term, the gypsum is eluted due to infiltration of rainwater or groundwater, and the strength of the improved soil may decrease. There was concern.
[0005]
As a material that can compensate for the disadvantages of such a gypsum-based improving material, Patent Document 1 discloses a gypsum-based improving material to which magnesium that has been conventionally used as a component of inorganic fertilizer has been added. For example, by adding a gypsum-based improving material obtained by adding magnesium oxide and aluminum sulfate and / or iron sulfate to gypsum, the soft soil can be solidified by a hydration reaction in a neutral region. Furthermore, by adding an inorganic porous water absorbing material and / or a water absorbing organic substance as a water absorbing material to the improved soil, the gravity water existing between the water absorbing material and the soil particles is combined and fixed, thereby reducing the amount of gravity water. The uniaxial compressive strength of the target soil can be increased.
[0006]
This improved gypsum-based material is a combination of gypsum that develops strength in a short time but lacks reliability in long-term strength, and magnesium oxide that has small short-term strength but high strength after solidification. It compensates for the shortcomings. However, although magnesium oxide has a lower pH value of a saturated aqueous solution than cement, it is still alkaline, so that it needs to be adjusted to be used as a main component of the improving material. Therefore, aluminum sulfate and / or iron sulfate is used as a neutralizing agent, and the improved soil is kept in a neutral region.
[0007]
[Patent Document 1]
JP 2000-109829 A ([0005] to [0017])
[0008]
[Problems to be solved by the invention]
However, the method for improving soft soil using the gypsum-based improving material disclosed in Patent Document 1 has the following problems.
(1) Magnesium oxide is a substance that solidifies because it is an alkali, and neutralizing it by mixing a neutralizing agent such as aluminum sulfate or iron sulfate in the initial stage of solidification is the strength of magnesium oxide. In order to make the improved soil have a predetermined strength in order to reduce the expression itself, the amount of the improved material added must be increased.
(2) By adding a water-absorbing material together with the improving material to soft soil, the gravity water in the gap between the soil particles is bound and fixed by the water-absorbing material, so that the strength of the improved soil can be further increased. Total water content does not change. Therefore, the soil particles become dense due to the action of compacting the target soil, etc., so that the water contained between the soil particles oozes out and the improved soil becomes muddy and the strength is reduced, so that it becomes a so-called over-rolling state. The soil improved by such an improvement method is not suitable as an earthwork material for performing compaction work or the like.
(3) Solidification treatment with soft soil improvement material that accumulates in large quantities in rivers, lakes, harbors, etc. inevitably increases the volume commensurate with the amount of addition, so the amount of soft soil treatment decreases, and improved soil This is not suitable when there is a need for mass treatment of soft soil.
[0009]
The present invention has been made in view of such a problem, and a large amount of soft soil was reduced in volume by a relatively small amount of an improving material and improved in a neutral region, and as an earthwork material It proposes an economical method for improving soft soil, which improves the soil into usable soil.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 includes a step of adding an improving material to soft soil and mixing and stirring the mixture, and then drying the intermediate improved soil. The water content ratio is made lower than the liquid limit, and it is neutralized by exposing it to the outdoors, and the soft soil is reduced in volume and improved to a water-resistant soil that can be compacted. A method for improving soft soil, wherein the improving material is composed of gypsum and magnesium oxide, and 20 to 100 parts by weight of magnesium oxide is mixed with 100 parts by weight of gypsum. With features is doing .
[0011]
In the method for improving soft soil, the invention according to claim 2 is characterized in that drying of the intermediate improved soil is performed by sun drying.
[0012]
In the method for improving soft soil, the invention according to claim 3 is characterized in that the addition amount of the improving material is an upper limit value determined by an amount at which the moisture content of the dried intermediate improved soil is less than a liquid limit, and the soft soil It is determined from the lower limit range determined by the amount that can be uniformly mixed.
[0014]
In the method for improving soft soil, 4 In the invention according to the present invention, the improvement material is 1 m of soft soil. Three It is characterized by adding 50 to 200 kg to the above.
[0015]
In addition to the solidification function of gypsum that solidifies soft soil instantly in the neutral region and the solidification function of magnesium oxide that maintains stable strength over the long term, these improvement materials are mixed and stirred by this method of soft soil improvement. By drying the soft soil (sometimes referred to as “midway improved soil” in this specification), the gravitational water in the gaps between the soil particles is eliminated, and the water content ratio of the soil is reduced to below the liquid limit, Soft soil can be improved so that it does not become over-rolled even when compacted. In addition, since the volume of the drying process can be reduced by discharging the water contained in the midway improved soil (hereinafter sometimes referred to as “dehydration”), the utilization rate of soft soil is improved and a large amount is processed. be able to. Furthermore, when exposed outdoors, the intermediate improved soil will be exposed to carbon dioxide in the air and acidic sulfurous acid contained in the rain, and the neutralization promotion effect of neutralizing the intermediate improved soil is obtained. It becomes possible to improve in a neutral region without using an agent. Therefore, according to the improved method of the present invention, the strength expression of magnesium oxide is not reduced by mixing the neutralizing agent, so that it is less than the improved method of neutralizing the alkalinity of magnesium oxide with the neutralizing agent. Equivalent strength can be expressed with the amount of the improved material added.
[0016]
Therefore, by adopting the method for improving soft soil according to the present invention, it has become possible to improve salt soil, alkaline soil, etc. to soil that can be vegetated by an economical improvement method in which the amount of improvement material added is small. . In other words, for example, dredged soil generated in harbor construction, even salt soil that contains a large amount of salt and hinders the normal growth of crops, can be vegetated due to the gypsum removal effect. As in alkaline soil with relatively high sodium ions in the exchangeable cations on the surface of the soil particles, the pH is high and the plant nutrients phosphate, iron, magnesium and zinc can be fed to plants. Since it forms a dense structure when it is dry, it can replace sodium ions with calcium ions even in soil where it is difficult to grow plants, and forms a relatively porous structure. It was possible to improve it as an earthwork material that solidifies at a high strength, has high water permeability and can be vegetated in a neutral region.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The method for improving soft soil according to the present invention comprises (1) producing an improved material, (2) adding and mixing the mixture to soft soil, and (3) then neutralizing and drying.
[0018]
(1) Production of improved material
As a soft earth improving material used in the present invention, a mixture is prepared with 100 parts by weight of gypsum and 20 to 100 parts by weight of magnesium oxide.
[0019]
By using gypsum as an improving material, porous crystals with high water permeability can be obtained, and a structure in which gravity water easily moves during drying is formed. At this time, the solidification function as an improvement material of gypsum is anhydrous gypsum (CaSO Four ) Or hemihydrate gypsum (CaSO Four ・ 1 / 2H 2 O) reacts with water to produce dihydrate gypsum (CaSO Four / 2H 2 Gypsum to be used is to harden by including surrounding soil particles when it becomes O), and to give strength to soft soil by dehydration effect when anhydrous gypsum or hemihydrate gypsum becomes dihydrate gypsum, etc. , Anhydrous gypsum, hemihydrate gypsum, or a mixture of anhydrous gypsum and hemihydrate gypsum.
In addition, the addition of iron oxide has the effect of suppressing the generation of hydrogen sulfide and promoting the growth of plants, so it is suitable for mixing with soft soil containing organic substances and other chemical substances and for switching to vegetation soil. Further, considering that it is difficult to uniformly mix a small amount of iron oxide, it is desirable to use gypsum preliminarily mixed with iron oxide as known in JP-A-2001-335317.
[0020]
The effect of magnesium oxide as an improved material is the solidification function due to the hydration reaction of magnesium oxide and magnesium hydroxide (Mg (OH)) formed by the reaction of magnesium oxide (MgO) with water. 2 ) Has a function of forming a complex with surrounding soil particles or organic matter due to its high complex formation ability. For this reason, the soil particles combined by the solidification function of dihydric gypsum are also incorporated, and a complex is formed by the ability of magnesium hydroxide to form a complex. Is ready. In addition, carbon dioxide (CO2) is used instead of gravity water in the gaps between the soil particles by actively drying the midway improved soil. 2 ) Is efficiently supplied to the deep part, magnesium hydroxide (Mg (OH) 2 ) To magnesium carbonate (MgCO Three ) To improve the water solubility of gypsum at the same time.
[0021]
Under the present circumstances, the compounding quantity of magnesium oxide changes according to the use of improved soil.
When the improved soil is used as vegetation soil, the strength is not required to support the structure, and experience shows that the improved material dissolves by about 10% in one month, and the soil re-mudged and flows out. Even if compressed, the roots of the plant grow and exert the protective function of the whole soil. Therefore, if the blending amount of magnesium oxide is 20 parts by weight or more with respect to 100 parts by weight of gypsum, it is practically acceptable. good.
[0022]
On the other hand, when improved soil is used as an earthwork material, it is preferable to impart water resistance to the improved soil. Therefore, the amount of magnesium oxide is such that gypsum does not dissolve in water due to the solidification function of magnesium oxide. 70 parts by weight or more are required for 100 parts by weight of gypsum. However, when the compounding amount of magnesium oxide is increased, the porous crystals formed by the gypsum become dense, the water permeability deteriorates and the water content ratio cannot be lowered effectively, and the specific gravity of the gypsum is 2.6. In addition, since the specific gravity of magnesium oxide is as large as 3.3, the particles are liable to settle and cannot be mixed uniformly. Furthermore, magnesium oxide is more expensive than gypsum, and it is uneconomical to increase the amount of magnesium oxide.
Therefore, the blending amount of magnesium oxide is preferably 100 parts by weight or less with respect to 100 parts by weight of gypsum at most.
[0023]
Therefore, magnesium oxide exhibits its function sufficiently in an economical amount of 70 parts by weight, preferably 20 to 100 parts by weight with respect to 100 parts by weight of gypsum, preferably in a range where the amount of gypsum is not water-soluble. be able to.
[0024]
Since the soft earth improving material used in the present invention is a simple mixture of gypsum and magnesium oxide, it is not necessary to use any special equipment or method for the mixing, and a known equipment such as a mixer should be used. Can do.
[0025]
(2) Addition / mixing of improved materials
1m of soft soil with the improved material prepared with the above-mentioned composition Three 50 to 200 kg is added to the mixture and mixed and stirred.
[0026]
Regarding the addition and mixing of the improved material to soft soil, shallow layer improvement using stabilizers or mixers, etc. so as not to add extra water to the target soil other than water necessary to ensure uniform mixing This method is carried out by a mixing method, a mixer mixing method that mixes in a plant equipped with a mud processing machine such as a mixer, or an in-pipe mixing method suitable for mass processing.
[0027]
If a large amount of the improved material is added, the strength of the improved soil can be increased accordingly. However, if the amount of the improved material added is too large, the improved soil becomes too hard and the roots of the plants are difficult to be rooted, making the soil unsuitable for vegetation. The pH value of water in contact with the improved soil is the standard value of the Water Pollution Control Law. It exceeds a certain 8.6. In addition, the water content ratio is reduced because a dense combination including gravitational water in the gaps between soil particles is formed, and even when dehydration such as sun drying is performed, the apparent volume does not shrink and water is easily absorbed during rainfall. Is impeded, and when compacted or the like, it becomes over-rolled and cannot be constructed, so it is not suitable as an earthwork material.
[0028]
On the other hand, if the addition amount of the improving material is small, the apparent volume shrinks at the time of dehydration such as sun drying, and the water content can be effectively reduced because it does not absorb the rain even when it rains.
Therefore, it is preferable that the amount of addition of the improving material is as small as possible. The lower limit value is that the soft soil and the improving material can be mixed uniformly, that it can be transported (moved) in a short period of time, and that re-mudging of the improved soil can be suppressed. If it is.
[0029]
Therefore, the amount of improvement material added is 50 to 200 kg / m. Three And
Here, the lower limit of 50 kg / m Three Has been determined from the range suitable for vegetation, the uniform mixing limit at the time of construction and the soil hardness at the time of compaction based on past results, the upper limit of 200 kg / m Three Is the amount added when the pH value of water in contact with the improved soil is within a neutral range and the strength is expressed in the soft soil in a short time to determine the handleability.
[0030]
(3) Neutralization and drying
By drying the midway improved soil outdoors in the sun and exposing it to the atmosphere, the neutralization of the improved soil is neutralized, and at the same time, the gravity water present in the gaps between the soil particles is reduced, and the moisture content is reduced. To below the liquid limit.
[0031]
When the previously improved soil is improved with the above-mentioned improvement agent blending / addition amount, the gravity water in the gaps between the soil particles decreases and the apparent volume shrinks, so that it becomes possible to induce cracks. . Since the surface area that comes into contact with air increases due to the occurrence of cracks in the midway improved soil, drying can be accelerated without any particular modification.
[0032]
By the improved method according to the present invention, in addition to the solidification function that solidifies soft soil instantly in the neutral region of gypsum, the solidification function that maintains the long-term stable strength of magnesium oxide, by sun drying outdoors, The intermediate improved soil is exposed to the carbon dioxide in the air and the acidic sulfurous acid contained in the rain, and the neutralization promoting effect of neutralizing the improved soil is obtained, and the gravity in the gap between the soil particles is obtained. By reducing the volume by reducing the water, it becomes possible to reduce the moisture content of the soil to below the liquid limit, and soft soil can be improved so that it does not become over-rolled even when compacted. In addition, since the improved soil by this improved method forms a relatively porous structure, it is possible to solidify the improved soil with a certain strength, improve water permeability, neutral, and suitable for vegetation. did.
[0033]
In other words, the soil generated during river improvement can be reused as it is for river embankments. At this time, since it is vegetable soil, there is no need to bring in new high quality soil from outside as vegetation covering soil, Necessary materials can be procured on site.
[0034]
In addition, the improved soil by the soft soil improvement method of the present invention has no problem in terms of strength or environment, so it can be used as backfill soil as a high-quality soil regardless of whether it is generated on the ground, or it is used to cover the slope surface. The remaining soil and dredged soil can be used effectively, for example, as a soil for agricultural use.
[0035]
Furthermore, according to the method for improving soft soil of the present invention, it is possible to reduce the volume by drying the intermediate improved soil obtained by mixing and agitating the improving material to the soft soil. It is possible to economically process a large amount of soft soil.
[0036]
Heretofore, an example of a preferred embodiment has been described for the present invention. However, the present invention is not limited to this, and various modifications can be made according to the spirit of the invention. For example, in the present embodiment, soft soil mixed and stirred with an improving material is sun-dried, but the drying method is not limited to this, and heating, blowing, vacuum dehydration, etc. The method is not limited as long as the water content ratio can be lowered to the liquid limit or less.
[0037]
【Example】
(1) Materials used:
The soil to be improved has a moisture content of 250% and a unit volume weight of 1.25 t / m. Three The dredged soil was used. Further, the improved material used was a mixture of a predetermined amount of hemihydrate gypsum and magnesium oxide by a Hobart mixer.
[0038]
(2) Blending of gypsum and magnesium oxide:
As shown in the graph of FIG. 1, five types of specimens were produced in which the weight of magnesium oxide was changed between 0 to 100 parts by weight with respect to 100 parts by weight of gypsum. The specimen was prepared by pouring a paste in which a predetermined amount of gypsum and magnesium oxide together with tap water was poured into a mold of φ5 cm × h10 cm and solidified for 7 days. After solidification, each specimen was taken out of the mold and immersed in water while periodically changing water for 4 weeks.
Table 1 shows that the improved soil added with 100kg of the improved material is left in the model ground having water permeability equivalent to sand and water permeability equivalent to silt ground, and water is allowed to flow into the model ground for 30 days. The volume change when it was made to show is shown.
Further, FIG. 2 is a graph showing the bleeding rate after 3 hours with respect to the mixing ratio of magnesium oxide in a mixture of gypsum, magnesium oxide and tap water.
[0039]
[Table 1]
Figure 0003756884
[0040]
As shown in FIG. 1, the reduction rate of the wet weight is about 10% in the vicinity of 20 parts by weight of magnesium oxide with respect to 100 parts by weight of gypsum, and when the magnesium oxide exceeds about 70 parts by weight, the change in wet weight disappeared. . From this result, the composition of magnesium oxide for gypsum is based on the assumption that the improved soil will be used as vegetation soil, and the amount of dissolution of the improved material within one month is about 10%. Assuming a case where 20 parts by weight or more of magnesium oxide is used as an earthwork material, 70 parts by weight or more of magnesium oxide is good with respect to 100 parts by weight of gypsum.
[0041]
As shown in Table 1, the solubility of the improved soil is reduced to about half due to the difference in the contact area with water compared to the paste obtained by mixing the improved material and water.
From the viewpoint of re-mudification of the improved soil, 70-100 parts by weight of magnesium oxide is preferable for 100 parts by weight of gypsum in the ground where groundwater is abundant and water resistance is required. Moreover, 20-70 weight part may be sufficient if it is a silt ground, and if it is a vegetation soil which does not support a load, even if it is 20 weight part when applying "underwater" as what is directly exposed to rain, solubility is only 5 %. As plant roots develop, so does the area of direct contact with water, further reducing solubility. In particular, in the case of a method of mixing plant seeds in improved soil and spreading on a slope, etc., if it is about 20 parts by weight, it will be possible to plant vegetation because seeds will not be washed away by rainfall. Can be applied.
[0042]
As shown in FIG. 2, when the amount of magnesium oxide added to 100 parts by weight of gypsum exceeds 100 parts by weight, the particles settle and the material is separated, so that uniform mixing cannot be performed. This is because the specific gravity of gypsum is 2.6 and the specific gravity of magnesium oxide is as large as 3.3, so that the particles are likely to settle, and the amount of magnesium oxide that has time to develop strength is large. This is because the particles settle before the adhesive strength is developed. For this reason, the compounding of magnesium oxide with respect to 100 parts by weight of gypsum is 100 parts by weight or less.
[0043]
Accordingly, the blending of magnesium oxide with respect to 100 parts by weight of gypsum has a lower limit of 20 parts by weight and an upper limit of 100 parts by weight, preferably 70 parts by weight from the viewpoint of economy and reliability.
[0044]
(3) Amount of improvement material added to soft soil:
1m soft soil Three In contrast, FIG. 3 shows the time-dependent change in the moisture content due to outdoor drying of a sample in which an additive of 70 parts by weight of magnesium oxide with respect to 100 parts by weight of gypsum was stirred and mixed while changing the addition amount in the range of 0 to 300 kg. The graph shows the relationship between the amount of improvement material added and the soil hardness after outdoor drying and compaction in the graph of FIG. 4, and the relationship between the amount of improvement material addition and the pH value of contact water is shown in the graph of FIG. It was. Here, the dotted line in FIG. 3 indicates the liquid limit, the dotted line in FIG. 4 indicates the upper and lower limits of the soil hardness range of the vegetation slope according to the road corporation standards, and the dotted line in FIG. 5 indicates water pollution. The upper and lower limits of the pH value of the prevention method are shown.
[0045]
As shown in FIG. 3, when the raw mud to which the improving material is not added is dried outdoors, the moisture content falls below the liquid limit within about 20 days, and when further dried, the moisture content is reduced to about 50% after 60 days. Decreased. On the other hand, in the sample to which the improved material was added, the decrease in the water content ratio slowed down from the 6th day onward, and the decrease in the water content ratio was smaller as the sample with a larger amount of the improved material added. In other words, if the amount of the improved material added is large, the apparent volume will not decrease even if it is dried, so the water content will not be reduced by absorbing water during rainfall and will not fall below the liquid limit. There is a risk of over-compression due to hardening. On the other hand, when the amount of the improved material added is small, it solidifies into a porous shape, so that the apparent volume is easily reduced by drying, so there is almost no water absorption during rainfall, and the amount of water content is eliminated. The ratio drops below the liquid limit. Therefore, there is no fear that an over-compressed state will occur even if a compacting operation or the like is subsequently performed.
[0046]
Moreover, about the soil hardness after drying and compacting of a sample, the addition amount is 50 kg / m from FIG. Three ~ 290kg / m Three However, it is within 10-27 mm which is the range of soil hardness of the vegetation slope according to the road corporation standard. On the other hand, the pH value of the water in contact with the improved soil is as shown in FIG. Three In the vicinity, the upper limit 8.6 of 5.6 to 8.6, which is the range of the Water Pollution Control Law, is exceeded.
In other words, if the addition amount of the improving material is small, it is possible to improve in the neutral region, but the soil hardness is too hard due to drying, making vegetation difficult, and even if the adding amount of the improving material is too large, the soil The hardness was high, and the pH value of the contact water of the improved soil was increased to be alkaline, resulting in a result outside the scope of the water pollution prevention method.
[0047]
Therefore, the amount of improvement material added to the soil to be improved is 1 m depending on the purpose of use of the improved soil while looking at the rate of decrease in the water content, the soil hardness, the pH value of the contact water, and the pH value of the soft soil. Three It shall be determined in the range of 50 to 200 kg.
[0048]
(4) Neutralization:
Table 2 shows 100 kg / m of the improvement material of 70 parts by weight of magnesium oxide with respect to 100 parts by weight of gypsum. Three The added soil to be improved is exposed outdoors in the period from August to December, and the pH value is periodically measured, and it is kept indoors at a temperature of 20 ° C ± 3 ° C and a humidity of 30%. The result of measuring the pH value is shown.
[0049]
[Table 2]
Figure 0003756884
[0050]
As shown in Table 2, there is almost no change in the pH value when it is placed indoors, and neutralization of neutralization is not seen. In addition, the neutralization is promoted by exposure outdoors. Therefore, when the improved soil is exposed outdoors, it is neutralized by being exposed to carbon dioxide in the air and acidic sulfurous acid due to rainfall, so that soft soil can be used without using a neutralizer. Can be improved in a neutral region.
[0051]
(5) Difference in addition amount depending on the presence or absence of a neutralizing agent:
Table 3 shows the results of measuring changes in strength caused by adding a neutralizing agent to an improved material composed of gypsum and magnesium oxide. The measurement was performed as follows.
(A) A specimen in which a paste in which gypsum, magnesium oxide and tap water were mixed was poured into a φ5 cm × h10 cm mold to be solidified. (Specimens No. 1 and No. 2)
(B) A specimen was prepared by pouring a paste mixed with tap water added with gypsum, magnesium oxide and sulfuric acid into a mold of φ5 cm × h10 cm and solidifying. (Specimen No. 3 and NO. 4)
(C) A uniaxial compression test was performed for each specimen at a material age of 7 days, and the strength was measured. At the same time, the pH value was also measured.
[0052]
[Table 3]
Figure 0003756884
[0053]
As shown in Table 3, the specimen added with sulfuric acid had a pH value in the neutral range, but the uniaxial compressive strength was reduced by about 20% compared to the specimen not added with sulfuric acid. From this result, to neutralize the alkaline properties of magnesium oxide by adding a neutralizing agent, but to inhibit its solidification function, in order to bring about the same strength as improved soil without the addition of neutralizing agent It is necessary to increase the amount of improvement material added.
[0054]
Therefore, with the stirring and mixing by the improvement material consisting of gypsum and magnesium oxide according to the present invention and the improvement method of drying this midway improved soil and exposing it outdoors, the soft soil can be improved in the neutral region without adding a neutralizing agent. Therefore, it is possible to improve the soft soil economically with a small addition amount of the improving material.
[0055]
(6) Reduction of the amount added by the drying process:
FIG. 6 shows the measurement of the strength of 7-day age in wet curing and the strength of 7-day age in dry curing in a uniaxial compression test for midway improved soil mixed and mixed by changing the addition amount of the improved material. It is a graph which shows the result.
[0056]
FIG. 6 shows that the addition amount of the improving material can be reduced by including the drying step when the soft soil is improved. For example, uniaxial compressive strength 50kN / m 2 Assuming from FIG. 6 that the amount of improvement material added to ensure the amount is 250 kg / m for wet curing Three About 80kg / m for dry curing Three It becomes possible to reduce the amount of the improved material added to about 30% by drying the midway improved soil. That is, the improvement method of the present invention is an economical improvement method because the addition amount of the improvement material can be reduced by including a drying step.
[0057]
【The invention's effect】
The method for improving soft soil according to the present invention is a simple method in which an improving material composed of a mixture of gypsum and magnesium oxide is stirred and mixed, dried and exposed to the outdoors. As a result, the soil hardness is not too hard. It shows the optimum range for vegetation that is not too soft, the pH value of the contact water is also in the neutral region, has little effect on the water environment, and the gravitational water in the pores of the soil particles has been removed to remove soft soil. The volume can be reduced and economical mass processing can be provided. Moreover, since the moisture content can be reduced and compaction can be performed, and the construction management can be performed based on the moisture content, it is possible to obtain an improved soil that is optimal as an earthwork material.
Furthermore, for the improvement effect, the contribution of the water content ratio decrease is larger than the contribution of the improvement material addition amount, so even if the water content ratio of soft soil varies, the improvement material addition amount is changed each time. It can be improved without any problems.
Moreover, when discarding the improved soil, the volume of the improved soil is reduced, so that the life of the disposal site can be extended and the environmental load can be suppressed.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the weight ratio of magnesium oxide to gypsum and the reduction rate of wet weight after immersion in water for 4 weeks.
FIG. 2 is a graph showing the bleeding rate after 3 hours with respect to the mixing ratio of magnesium oxide in a mixture of gypsum, magnesium oxide and tap water.
FIG. 3 is a graph showing the change over time in the water content ratio of sun-dried soil with intermediate improved soil with different amounts of improved material added.
FIG. 4 is a graph showing the relationship between the amount of improved material added and the soil hardness after outdoor drying and compaction.
FIG. 5 is a graph showing the relationship between the amount of improved material added and the pH value of contact water.
FIG. 6 is a graph showing the relationship between the amount of improved material added and the strength for 7 days of age in wet curing and dry curing.

Claims (4)

軟弱土に改良材を添加して混合撹拌することにより中途改良土とする工程と、その後、この中途改良土を乾燥させることによりその含水比を液性限界以下にするとともに、これを屋外に曝すことによって中和する工程とからなり、前記軟弱土を減容化し締固め可能な耐水性を有する土に改良する軟弱土の改良方法であって、
前記改良材は、石こうと酸化マグネシウムからなり、石こう100重量部に対して酸化マグネシウムを20〜100重量部混合してなることを特徴とする軟弱土の改良方法。
A process of adding improved material to soft soil and mixing and agitating it, and then improving the moisture content below the liquid limit by drying the intermediate improved soil and exposing it to the outdoors A method for improving soft soil , wherein the soft soil is reduced to a volume having a water resistance that can be reduced and compacted .
The improvement material is composed of gypsum and magnesium oxide, and is formed by mixing 20 to 100 parts by weight of magnesium oxide with 100 parts by weight of gypsum .
前記中途改良土の乾燥は、天日乾燥にて行うことを特徴とする請求項1に記載の軟弱土の改良方法。    The method for improving soft soil according to claim 1, wherein the drying of the midway improved soil is performed by sun drying. 前記改良材の添加量は、乾燥させた中途改良土の含水比が液性限界以下になる量で決まる上限値と、前記軟弱土と均一に混合できる量で決まる下限値の範囲から決定することを特徴とする請求項1又は請求項2に記載の軟弱土の改良方法。    The addition amount of the improving material is determined from a range between an upper limit value determined by an amount at which the moisture content of the dried intermediate improved soil is not more than the liquid limit and a lower limit value determined by an amount capable of being uniformly mixed with the soft soil. The improvement method of the soft soil of Claim 1 or Claim 2 characterized by these. 前記改良材は、軟弱土1m3に対して50〜200kg添加することを特徴とする請求項1乃至請求項のいずれか一項に記載の軟弱土の改良方法。The said improvement material adds 50-200 kg with respect to 1 m < 3 > of soft soil, The improvement method of the soft soil as described in any one of Claim 1 thru | or 3 characterized by the above-mentioned.
JP2003071505A 2003-03-17 2003-03-17 How to improve soft soil Expired - Fee Related JP3756884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071505A JP3756884B2 (en) 2003-03-17 2003-03-17 How to improve soft soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071505A JP3756884B2 (en) 2003-03-17 2003-03-17 How to improve soft soil

Publications (2)

Publication Number Publication Date
JP2004278133A JP2004278133A (en) 2004-10-07
JP3756884B2 true JP3756884B2 (en) 2006-03-15

Family

ID=33287930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071505A Expired - Fee Related JP3756884B2 (en) 2003-03-17 2003-03-17 How to improve soft soil

Country Status (1)

Country Link
JP (1) JP3756884B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104594148B (en) * 2014-12-01 2016-07-27 安徽建工集团有限公司 The classification processing method of high liquid limit soil in subgrade engineering

Also Published As

Publication number Publication date
JP2004278133A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
Zhou et al. Sewage sludge ash-incorporated stabilisation/solidification for recycling and remediation of marine sediments
CN104891892A (en) Method used for preparing simulate planting concrete from sludge
CN106673569A (en) High-organic-content dredged silt composite curing material
CN103289703A (en) Early-strength soil solidifying agent and manufacturing method and application for same
JP2000176493A (en) Sludge solidifying material and solidifying treatment
KR100773991B1 (en) Solidification method of dredged soils
JP2935408B2 (en) Inorganic material for greening and soil stabilization, thick layer base seed spraying method or soil stabilization method using it
CN107879569A (en) A kind of new organo-mineral complexing sludge curing agent and its application method and application
JP4675937B2 (en) Solidification method
KR20060136325A (en) Solidification method of dredged soils
CN104086070A (en) Sludge curing agent with high water content
JP5533690B2 (en) Granular materials for civil engineering work
CN117229013A (en) Excavation silt solidified soil, preparation method and application
JP3756884B2 (en) How to improve soft soil
JP6536102B2 (en) Solidification material for neutralization treatment residue of acid water, solidification treatment product of neutralization treatment residue of acid water, and solidification treatment method of neutralization treatment residue of acid water
JP2006111489A (en) Solidification method and solidifying agent used in the same
CN113429151B (en) Curing agent for cement or soft soil and roadbed material formed by curing agent
JP2002121552A (en) Solidifier for water-containing soil and process for solidifying water-containing soil using this
JP3803076B2 (en) Admixture for soil stabilization and soil stabilization method using the same
WO2019138538A1 (en) Method for improving ground
JP4093808B2 (en) Soil solidifying agent
JPH1034125A (en) Solidifying agent for sludge, organic soil, and harmful soil
JP7497177B2 (en) Method for producing improved ground and insolubilizer
CN107129226A (en) A kind of freeze thawing resistance alkaline residue solidified earth and preparation method thereof
KR20010014471A (en) Founding method of wall for blocking a leachate from a buried wastes

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3756884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees