JP3756728B2 - Control method of deformation characteristics of soil - Google Patents

Control method of deformation characteristics of soil Download PDF

Info

Publication number
JP3756728B2
JP3756728B2 JP2000189922A JP2000189922A JP3756728B2 JP 3756728 B2 JP3756728 B2 JP 3756728B2 JP 2000189922 A JP2000189922 A JP 2000189922A JP 2000189922 A JP2000189922 A JP 2000189922A JP 3756728 B2 JP3756728 B2 JP 3756728B2
Authority
JP
Japan
Prior art keywords
soil
compressive strength
uniaxial compressive
deformation
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000189922A
Other languages
Japanese (ja)
Other versions
JP2002004267A (en
Inventor
清之 堀井
雅人 森
Original Assignee
雅人 森
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雅人 森 filed Critical 雅人 森
Priority to JP2000189922A priority Critical patent/JP3756728B2/en
Publication of JP2002004267A publication Critical patent/JP2002004267A/en
Application granted granted Critical
Publication of JP3756728B2 publication Critical patent/JP3756728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、土の強度の改良方法に係るものであって、土の変形特性の制御方法に関するものである。
【0002】
【従来の技術】
土とは、主として岩石の風化作用によってできた比較的粒径の小さい粒の集合体であり、土質工学でいう「土」は、地盤を構成するあらゆる材料を含んでいるため、岩塊から粘土に至るまで、その粒子の大きさも広範囲であり、また、構成する材料も純粋な鉱物から産業廃棄物までいろいろな種類のものを含んでいる。たとえば、有機物含有量の高い河川、湖沼、運河、海域などに堆積したヘドロ、セメント等の固化材の添加によって改質された浚渫埋立土も含まれる。したがって、その挙動はきわめて複雑で変化に富んでいる。
【0003】
通常、盛土や道路の施工等を行なう際、大量の土質材料の締固め特性や路盤としての適否を試験することは容易ではない。そのため、粒度試験やコンシステンシー試験のような簡単な試験の結果から土の分類名を調べて、その土の工学的性質がおおよそ判定可能となるように、多くの資料に基づいて土を分類し、分類名が付与されている。
【0004】
土は、土粒子と間隙からなり、間隙には水や空気が存在している。土は、含水比の低下とともに、液体、塑性体、半固体および固体としての性状を示し、この状態の境界を示す含水比をコンシステンシー限界と呼び、それぞれの境界は、液性限界、塑性限界、収縮限界と定義されている。塑性限界以下の含水状態では、土は高いせん断強度を示すが非弾性的である。収縮限界以下の含水状態では、含水量が減少しても体積は減少しないという性状を示す。
【0005】
たとえば以上のような知見も含めて、これまでに得られている土に関しての知識や経験を踏まえて、環境保全、盛土・構造物基礎などの本構造、あるいは仮設構造のためなど、種々の目的で土の強度の改良が試みられている。たとえば、各種の処理対象土からなる地盤の改良工事においては、その表層部にセセント系固化材を添加混合して改良層を造成する浅層改良等が知られている。
【0006】
【発明が解決しようとする課題】
しかしながら、従来の工法では、処理対象土の変形係数や破壊ひずみなどの特性を用途に応じて自在に制御することができなかった。たとえば、一軸圧縮強さを有する通常の土において、元の一軸圧縮強さを保持しながら変形係数を小さくするとともに破壊歪みを大きくする方法は知られていなかった。また一軸圧縮強さを有しない汚泥等をセメント系固化材で固化処理した固化処理土は、圧縮強度は大きいが破壊歪みが小さく(すなわち変形係数が大きく)、通常の土とは特性が大きく異なるので、破砕、ときほぐしを行い変形特性を改善しなければならないが、やはり目的に応じて特性を自在に制御できるものではなかった。
【0007】
ここで一軸圧縮強さとは、一軸圧縮試験における供試体の最大圧縮応力qu で表すことができるものである。
【0008】
土の一軸圧縮強さを求めるための前記一軸圧縮試験は、自立する土の円柱供試体を側圧を加えることなく軸方向に圧縮して破壊する試験であり、JIS A 1216に規定されている。透水性の低い粘性土を対象とする非圧密非排水試験であり、もっとも簡単な土のせん断試験として広く用いられている。
【0009】
あまり堅くない飽和粘土は非圧密非排水条件で内部摩擦角φu =0となり、全応力によらず一定の非排水せん断強さ(Cu )を示し、とくに軟弱粘土では、Cu =qu /2を粘着力とし、φu =0方が安定解析に広く用いられる。一軸圧縮試験におけるせん断面の傾き、クリープや強度異方性等実際問題の条件と比べてCu を過大評価する要因があるが、一方試料採取や整形に伴う乱れが避けられず、これが上記の要因と相殺された一応妥当な結果を与えるものと考えられている。
【0010】
一軸圧縮強さ等についての知識が以上のように深められてきており、その試験方法も確立されてきてはいるが、実際の施工においては、前記のとおり土の変形特性を自在に制御して、より負担を少くして、工期の短縮やコスト低減、さらには施工品質向上や安定化を図ることは容易ではなかった。
【0011】
そこで、この出願の発明は、以上のとおりの従来の実際上の問題点を解消するためになされたものであって、処理対象土の変形係数や破壊ひずみなどの特性を目的、用途に応じて自在に制御できるようにすることを課題としている。
【0012】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、第1には、一軸圧縮強さを有する土に1cm四方以下で厚さ0.1mm以下の古紙を対象土1m 3 に対して30〜90kg対象土1m 3 に対して1kg以上の高分子系改良材を添加することにより、元の一軸圧縮強さと同等の一軸圧縮強さを維持しながら、その変形係数を元の変形係数よりも小さくし、その破壊ひずみを元の破壊ひずみよりも大きくするように制御することを特徴とする既存の地盤への盛土又は軟弱地盤の浅層改良用の土の変形特性の制御方法を提供し、第2には、一軸圧縮強さを有する土に、1cm四方以下で厚さ0.1mm以下の古紙を対象土1m 3 に対して30〜90kg対象土1m 3 に対して1kg以上の高分子系改良材を添加することにより、元の一軸圧縮強さと同等の一軸圧縮強さを維持しながら、繊維質物質のみまたは前記高分子系改良材のみ添加した場合よりも、変形係数を小さくし、破壊ひずみを大きくするように制御することを特徴とする既存の地盤への盛土又は軟弱地盤の浅層改良用の土の変形特性の制御方法を提供する。
【0013】
また、この出願の発明は、第3には、一軸圧縮強さを有しない土に1cm四方以下で厚さ0.1mm以下の古紙を対象土1m 3 に対して30〜90kg対象土1m 3 に対して1kg以上の高分子系改良材を添加した後、これを固化処理することにより、一軸圧縮強さを有しない土を固化処理して得られた土と同等の一軸圧縮強さを維持しながら、その変形係数を一軸圧縮強さを有しない土を固化処理して得られた土の変形係数よりも小さくし、その破壊ひずみを一軸圧縮強さを有しない土を固化処理して得られた土の破壊ひずみよりも大きくするように制御することを特徴とする既存の地盤への盛土又は軟弱地盤の浅層改良用の土の変形特性の制御方法を提供し、第4には、前記一軸圧縮強さを有しない土に1cm四方以下で厚さ0.1mm以下の古紙を対象土1m 3 に対して30〜90kg対象土1m 3 に対して1kg以上の高分子系改良材を添加した後、これを固化処理することにより、一軸圧縮強さを有しない土を固化処理して得られた土と同等の一軸圧縮強さを維持しながら、繊維質物質のみまたは前記高分子系改良材のみ添加した場合よりも、変形係数を小さくし、破壊ひずみを大きくするように制御することを特徴とする既存の地盤への盛土又は軟弱地盤の浅層改良用の土の変形特性の制御方法を提供する。
【0014】
そして、この出願の発明は、第5には、前記固化処理が、脱水、乾燥、および固化材の添加の少くとも一種の処理として行われることを特徴とする既存の地盤への盛土又は軟弱地盤の浅層改良用の土の変形特性の制御方法を、第には、前記のいずれかの土の変形特性の制御方法において、繊維質物質と新しい高分子系改良材を添加した土に機械的剪断応力を加えることにより前記土を団粒化することを特徴とする既存の地盤への盛土又は軟弱地盤の浅層改良用の土の変形特性の制御方法を提供する。
【0015】
【発明の実施の形態】
この出願の発明は、上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。
【0016】
この出願の発明による土の変形特性の制御方法は、あらゆる土の変形特性を向上させるものであるが、その適用対象土としては、一軸圧縮強さを測定出来るような土と、一軸圧縮強さが測定できないような土の2つに分けて考えることができる。
【0017】
(1)一軸圧縮強さを測定できる土の場合
図1は、(1−1)に示す特性を持つ一軸圧縮強さを有する処理対象土に高分子系改良材を1.0kg/m3 添加した場合(1−2)と、さらに繊維質物質を添加した場合(1−3)の圧縮ひずみと圧縮応力との関係を示したものである。
【0018】
繊維質物質と高分子系改良材とを添加すること(1−3)により、一軸圧縮強さは、元の土(1−1)さらには高分子系改良材のみを添加した土(1−2)よりも増大し、変形係数(図1の各々のグラフの接線の傾きで表される)は小さくなる。すなわち、繊維質物質と高分子系改良材とを添加した土の特性は破壊しにくく、残留強度の保持が可能となり、ねばり強い土構造物を構築する上で、非常に有益であるといえる。
【0019】
このようにして土の変形特性が制御された土は、既存の地盤の上に盛土して使用する各種用途に適しており、また軟弱地盤の浅層改良にも適している。しかも、この場合には、前記固化材を加えるなどの固化処理のみを行なった場合に比べて、はじめから団粒化しているので従来の技術で述べたように特性改善のために破砕、ときほぐしする必要がない。
【0020】
(2)一軸圧縮強さが測定できない土
一軸圧縮強さが測定できない土の一例として、たとえば、含水比の高い未改良土を対象として考えることができる。この出願の発明の場合には、まずこの未改良土に繊維質物質と高分子系改良材を添加する。次いで固化処理を行なう。具体的にはセメント系固化材を加える。これにより、応力−ひずみ線図において従来知られていなかったような特性の制御が行なわれ、団粒化した改良土が得られる。
【0021】
▲1▼一軸圧縮強さを50kN/m2 に調製した土との比較
図2には、一軸圧縮強さが測定できない前記未改良土にセメントなどの固化材を添加して一軸圧縮強さを50kN/m2 に調製した調製土(2−1)の場合の圧縮ひずみと圧縮応力との関係を示している。
【0022】
また、図2には、これと比較して、前記未改良土に高分子系改良材を1.0kg/m3 を添加して攪拌した後、固化材を加えた場合(2−2)と、さらに繊維質物質を添加して攪拌した後、固化材を加えた場合(2−3)を示している。
【0023】
繊維質物質と高分子系改良材を添加することにより、一軸圧縮強さは調製土(2−1)の場合、さらには、高分子系改良材を添加した調製土(2−2)の場合と同等の一軸圧縮強さを維持しながら、変形係数は調製土(2−1)の変形係数よりも小さくなり、破壊ひずみは前記の調製土(2−1)および高分子系改良材を添加した調製土(2−2)の破壊ひずみよりも大きくなる。すなわち、土の特性は破壊しにくく残留強度の保持が可能となり、ねばり強い土構造物を構築する上で非常に有益である。
【0024】
▲2▼一軸圧縮強さを100kN/m2 に調製した土との比較
図3には、一軸圧縮強さが測定できない前記未改良土にセメントなどの固化材を添加して一軸圧縮強さを100kN/m2 に調製した調製土(3−1)の場合の圧縮ひずみと圧縮応力との関係を示している。
【0025】
また、図3には、これと比較して、前記未改良土に高分子系改良材を1.0kg/m3 を添加して攪拌した後、固化材を加えた場合(3−2)と、さらに繊維質物質を添加して攪拌した後、固化材を加えた場合(3−3)を示している。
【0026】
繊維質物質と高分子系改良材を添加することにより、一軸圧縮強さは調製土(3−1)の場合、さらには、高分子系改良材を添加した調製土(3−2)の場合と同等の一軸圧縮強さを維持しながら、変形係数は調製土(3−1)の変形係数よりも小さくなり、破壊ひずみは調製土(3−1)(3−2)の破壊ひずみよりも大きくなる。すなわち、土の特性は破壊しにくく残留強度の保持が可能となり、ねばり強い土構造物を構築する上で非常に有益である。
【0027】
▲3▼一軸圧縮強さを200kN/m2 に調製した土との比較
図4には、一軸圧縮強さが測定できない前記未改良土にセメントなどの固化材を添加して一軸圧縮強さを200kN/m2 に調製した調製土(4−1)の場合の圧縮ひずみと圧縮応力との関係を示している。
【0028】
また、図4には、これと比較して、前記未改良土に高分子系改良材を1.0kg/m3 を添加して攪拌した後、固化材を加えた場合(4−2)と、さらに繊維質物質を添加して攪拌した後、固化材を加えた場合(4−3)を示している。
【0029】
繊維質物質と高分子系改良材を添加することにより、一軸圧縮強さは調製土(4−1)、さらには、高分子系改良材を添加した調製土(4−2)の場合と同等の一軸圧縮強さを維持しながら、変形係数は調製土(4−1)の変形係数よりも小さくなり、破壊ひずみは調製土(4−1)(4−2)の破壊ひずみよりも大きくなる。すなわち、土の特性は破壊しにくく残留強度の保持が可能となり、ねばり強い土構造物を構築する上で非常に有益である。
【0030】
以上、一軸圧縮強さが測定できない土を対象とした場合について3つの例を呈示したが、このような土の変形特性の制御によって得られた土は、既存の地盤の上に盛土して使用する補強土盛土に適しており、また軟弱地盤の浅層改良にも適している。しかも、前記固化材を加えるなどの固化処理のみを行なった場合に比べて、はじめから団粒化しているので従来の技術で述べたように破砕、ときほぐしをする必要がなく、従って破砕による強度の低下がない。よって、強度の低下を見越してセメント系固化材を割増しする必要もない。
【0031】
前述した各例においても使用されている高分子系改良材としては、従来より土壌改良材として知られているポリアクリル酸、ポリアクリル酸塩、ポリアクリル酸エステル、ポリアクリルアミド、それらの組合わせによるコポリマーや、それらのポリアルキレングリコールや無水マレイン酸、エポキシ化合物等とのコポリマー等の各種のものが考慮されるが、なかでも水溶性のポリマーが好適なものとして挙げられる。たとえば、前記図1、図2、図3および図4の例においても使用されている、主成分をポリアクリル系ポリマーとする合成水溶性ポリマー粉末(PH7〜8、水分10±2%、嵩比重0.6〜0.7、真比重1.4〜1.5)などが例示される。これらの高分子系改良材については、この出願の発明では、対象土1m3 に対して1kg以上の割合で添加するのが望ましい。
【0032】
また、前述した各例においても使用されている繊維質物質としては、天然、または合成の各種のものでよく、例えば新聞紙の古紙、農業用排ビニール、ポリエチレン、ポリエステルの再生品などが使用できる。これらの繊維質物質については、その形状は、細片状、小片状、糸状、布状等の各種の形状であってよく、たとえば古紙においては、1cm四方以下で、厚さ0.1mm以下のものとして添加することができる。添加量については、高分子系改良材の添加量との相乗効果が大きなものとなるように、対象土の種類、性質に応じて適宜に実験的に定めることができる。たとえばその添加量は対象土1m3 に対し、古紙の場合は望ましくは30kg以上、さらには50kg〜90kgとすることが目安として考慮される。
【0033】
また、セメント固化材の使用も、この添加量の選定においては考慮されることが望ましい。
【0034】
高分子系改良材を少量添加しただけでも強度特性は改善されるが、実際の工事を行う場合において有意な改善を見るには、繊維質物質を添加することが必要となる。また、セメント配合量の少ないものは破壊後の残留強度の保持が可能であり、ねばり強さが特徴的である。セメント配合量が多くなると、破壊ひずみが小さくなり繊維質物質と高分子改良材を混合することの効果が小さくなることがわかる。
【0035】
このように、破壊しにくく残留強度の保持が可能となり、ねばり強さの発現は、低強度の安定処理土に顕著に現れる。
【0036】
以上説明した土の変形特性の制御方法においては、特に土に繊維質物質と高分子系改良材を添加した後に、へらで攪拌するなどの手段でこの土に機械的剪断応力を加えると、前述したように土の特性が破壊しにくくねばり強くなる方向に制御されるとともに、前記土は団粒化する。
【0037】
一般的に一軸圧縮強度が高い改良土に、攪拌のような機械的剪断応力を与えると砕石状になる。また、一軸圧縮強度が低い改良土である場合にはペースト状になる。
【0038】
このように改良土の団粒化は難しい。
【0039】
団粒化するには、適度な圧縮強度と大きな破壊ひずみを改良土が有することが必要条件になる。この出願の発明では、前述したような繊維質物質と高分子系改良材の添加といった操作を行うことにより、適度な圧縮強度と大きな破壊ひずみを得ることができる。そして、機械的剪断応力による動圧と回転運動を与えると、大きな圧縮ひずみ応力を有する処理土は、その空隙率を低下させる。すなわち、空隙率の低下は、処理土を構成する粒子間の距離が短くなることを意味する。
【0040】
その結果、粒子間結合力増大による粘りが発生し、団粒化を可能にする。
【0041】
圧縮応力を100kN/m2 に調整した土を実験対象に、団粒化の試験を行なった結果について説明すると、高分子系改良材無添加の場合には団粒化されず、ペースト状になる。一方、高分子系改良材を1.0kg/m3 添加した土は団粒化する。機械攪拌による剪断応力の与え方により、その粒径を制御できる。
【0042】
たとえば、平行に移動するへらを用いて機械的攪拌を約1分間行い、へらの速度を25,50,75,100cm/secと変化させたところ、へらの速度25cm/secでは団粒化せず、速度50cm/secでは平均粒径2.5cm、速度75cm/secでは平均粒径2.0cm、速度100cm/secでは平均粒径1.0cmと変化する。これは破壊ひずみに関わるもので、大きな機械的剪断応力を与えると細粒化し、与える機械的剪断応力が小さいと大粒になる。
【0043】
しかし、剪断応力が小さすぎると団粒化しない。このように、団粒化するとハンドリング性が向上し、処理後に即時運搬が可能となる。
【0044】
【発明の効果】
以上詳しく説明したとおり、この出願の発明に係る土の変形特性の制御方法によれば、一軸圧縮強さを有する土もしくは有しない土に繊維質物質と高分子系改良材を添加することにより、処理対象土の変形係数や破壊ひずみなどの特性を用途に応じて自在に制御することができるという効果が得られる。
【図面の簡単な説明】
【図1】一軸圧縮強さを有する土とこれを対象としたこの発明の実施例の土に関して圧縮応力と圧縮ひずみの関係を例示した図である。
【図2】一軸圧縮強さを有しない土に強度調整を施した土とこれを対象とした本発明の実施例の土に関して圧縮応力と圧縮ひずみの関係を例示した図である。
【図3】一軸圧縮強さを有しない土に強度調整を施した土とこれを対象とした本発明の実施例の土に関して圧縮応力と圧縮ひずみの関係を例示した図である。
【図4】一軸圧縮強さを有しない土に強度調整を施した土とこれを対象とした本発明の実施例の土に関して圧縮応力と圧縮ひずみの関係を例示した図である。
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a method for improving soil strength, and relates to a method for controlling the deformation characteristics of soil.
[0002]
[Prior art]
Soil is an aggregate of grains with relatively small particle size, which is mainly formed by the weathering of rock. “Soil” in geotechnical engineering contains all the materials that make up the ground. The size of the particles is wide, and the materials of the materials include various kinds from pure minerals to industrial waste. For example, dredged landfills modified by the addition of solidified materials such as sludge and cement deposited in rivers, lakes, canals, and sea areas with high organic matter content are also included. Therefore, its behavior is extremely complex and varied.
[0003]
Usually, when performing embankment or road construction, it is not easy to test the compaction characteristics of a large amount of soil material and its suitability as a roadbed. Therefore, the soil classification name is examined from the results of simple tests such as a grain size test and a consistency test, and the soil is classified based on many materials so that the engineering properties of the soil can be roughly determined. The classification name is given.
[0004]
The soil consists of soil particles and gaps, and water and air exist in the gaps. Soil exhibits properties as liquids, plastics, semi-solids, and solids as the moisture content decreases, and the moisture content that indicates the boundary of this state is called the consistency limit. Each boundary is a liquid limit, a plastic limit. , Defined as the shrinkage limit. In the hydrous state below the plastic limit, the soil shows high shear strength but is inelastic. When the water content is below the shrinkage limit, the volume does not decrease even if the water content decreases.
[0005]
For example, for the purpose of environmental conservation, main structures such as embankments and structures, or temporary structures, based on the knowledge and experience of the soil obtained so far, including the above knowledge Attempts have been made to improve soil strength. For example, in ground improvement work made of various soils to be treated, shallow layer improvement is known in which an improved layer is formed by adding and mixing a cecent solidified material to the surface layer portion.
[0006]
[Problems to be solved by the invention]
However, in the conventional construction method, the characteristics such as the deformation coefficient and fracture strain of the soil to be treated cannot be freely controlled according to the application. For example, in ordinary soil having uniaxial compressive strength, there has been no known method for reducing the deformation coefficient and increasing the fracture strain while maintaining the original uniaxial compressive strength. Solidified soil obtained by solidifying sludge that does not have uniaxial compressive strength with cement-based solidification material has high compressive strength but low fracture strain (that is, a large deformation coefficient), and its properties are significantly different from ordinary soil. Therefore, it is necessary to improve the deformation characteristics by crushing and loosening, but the characteristics cannot be freely controlled according to the purpose.
[0007]
Here, the uniaxial compressive strength can be expressed by the maximum compressive stress q u of the specimen in the uniaxial compression test.
[0008]
The uniaxial compression test for determining the uniaxial compressive strength of soil is a test for compressing and destroying a self-supporting soil cylindrical specimen in the axial direction without applying side pressure, and is defined in JIS A 1216. This is a non-consolidation and non-drainage test for viscous soils with low water permeability and is widely used as the simplest soil shear test.
[0009]
Saturated clay that is not very hard has an internal friction angle φ u = 0 under non-consolidated and non-drained conditions, and exhibits a constant undrained shear strength (C u ) regardless of the total stress. In particular, with soft clay, C u = q u / 2 is the adhesive strength, and φ u = 0 is widely used for stability analysis. The inclination of the shear plane in the uniaxial compression test, but there is a factor to overestimate C u as compared to conditions of creep and strength anisotropy such practical problems, whereas inevitably disturbed due to sampling and shaping, which is the It is believed to give reasonable results, offset by the factors.
[0010]
Although knowledge about uniaxial compressive strength has been deepened as described above, and the test method has been established, in actual construction, the deformation characteristics of the soil are freely controlled as described above. However, it was not easy to reduce the burden, shorten the construction period, reduce the cost, and improve and stabilize the construction quality.
[0011]
Therefore, the invention of this application was made to solve the conventional practical problems as described above, and the characteristics such as the deformation coefficient and fracture strain of the soil to be treated depend on the purpose and application. It is an issue to be able to control freely.
[0012]
[Means for Solving the Problems]
The invention of this application, as to solve the above problem, in the first, 30 to a thickness of 0.1mm or less of waste paper to the target soil 1 m 3 at 1cm square below the soil having a uniaxial compressive strength By adding 1 kg or more of a polymer improver to 90 kg and 1 m 3 of the target soil , the deformation coefficient is made higher than the original deformation coefficient while maintaining the uniaxial compression strength equivalent to the original uniaxial compression strength. Providing a method for controlling the deformation characteristics of soil for embankment to existing ground or for improving shallow layers of soft ground, characterized by reducing and controlling the fracture strain to be larger than the original fracture strain, secondly, the soil having an axial compressive strength, 1 kg or more high for 30~90kg and the target soil 1 m 3 to the target soil 1 m 3 the thickness 0.1mm or less wastepaper in 1cm square or less Original uniaxial pressure by adding molecular system improver While maintaining the strength and equivalent uniaxial compressive strength, characterized in that than when added alone fiber維質material only or the polymeric modifying material, which reduce the modulus of deformation is controlled so as to increase the strain fracture A method for controlling the deformation characteristics of soil for embankment on existing ground or for improving the shallow layer of soft ground is provided.
[0013]
The invention of this application, the first 3, 30~90Kg the target soil 1 m 3 to the target soil 1 m 3 the thickness 0.1mm or less wastepaper in 1cm square below soil no uniaxial compressive strength After adding 1 kg or more of the polymer-based improving material to the solid, this is solidified to maintain the uniaxial compressive strength equivalent to that obtained by solidifying the soil that does not have uniaxial compressive strength. However, the deformation coefficient is made smaller than the deformation coefficient of soil obtained by solidifying soil without uniaxial compressive strength, and the fracture strain is obtained by solidifying soil without uniaxial compressive strength. Provide a method for controlling the deformation characteristics of soil for embankment to an existing ground or for improving the shallow layer of soft ground, characterized in that the soil is controlled to be larger than the fracture strain of the soil, Less than 1cm square and 0.1mm thick on soil without uniaxial compressive strength The following used paper has 30 to 90 kg of 1 m 3 of the target soil and 1 kg or more of the polymer improving material to 1 m 3 of the target soil , and then solidifies it so that it does not have uniaxial compressive strength. while maintaining the soil solidification treated is soil equivalent uniaxial compressive strength obtained, fiber維質material only or than when added alone the polymeric modifying material, to reduce the modulus of deformation, the strain fracture Provided is a method for controlling the deformation characteristics of soil for embankment on existing ground or for improving shallow layers of soft ground, which is characterized by being controlled to increase.
[0014]
The invention of this application, the fifth, pre Symbol solidification process, dewatering, drying, and embankment or soft to existing ground, characterized in that it is carried out as at least one process of addition of the solidified material A method for controlling the deformation characteristics of the soil for improving the shallow ground layer , and sixth , in any one of the above-described methods for controlling the deformation characteristics of the soil, the soil added with a fibrous material and a new polymer-based improvement material Provided is a method for controlling deformation characteristics of soil for embankment on existing ground or for improving shallow layers of soft ground, wherein the soil is aggregated by applying mechanical shear stress.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The invention of this application has the features as described above, and an embodiment thereof will be described below.
[0016]
The method for controlling the deformation characteristics of soil according to the invention of this application is intended to improve the deformation characteristics of all soils, but the applicable soils include soil that can measure uniaxial compressive strength, uniaxial compressive strength, and so on. Can be divided into two types of soil that cannot be measured.
[0017]
(1) In the case of soil capable of measuring uniaxial compressive strength Fig. 1 shows that 1.0 kg / m 3 of polymer-based improving material is added to the soil to be treated having the uniaxial compressive strength having the characteristics shown in (1-1). The relationship between the compressive strain and the compressive stress in the case (1-2) and the case where the fibrous substance is further added (1-3) is shown.
[0018]
By adding the fibrous material and the polymer-based improving material (1-3), the uniaxial compressive strength is the same as that of the original soil (1-1) or the soil containing only the polymer-based improving material (1- 2), and the deformation coefficient (represented by the slope of the tangent of each graph in FIG. 1) becomes smaller. That is, it can be said that the characteristics of the soil to which the fibrous material and the polymer-based improving material are added are difficult to break, the residual strength can be maintained, and it is very useful in constructing a strong soil structure.
[0019]
The soil in which the deformation characteristics of the soil are controlled in this way is suitable for various uses that are used by embankment on the existing ground, and is also suitable for the improvement of the shallow layer of the soft ground. In addition, in this case, compared to the case where only the solidification treatment such as addition of the solidification material is performed, the particles are aggregated from the beginning, so that they are crushed and loosened to improve the characteristics as described in the prior art. There is no need.
[0020]
(2) Soil in which uniaxial compressive strength cannot be measured As an example of soil in which uniaxial compressive strength cannot be measured, for example, unmodified soil having a high water content ratio can be considered. In the case of the invention of this application, first, a fibrous material and a polymer-based improving material are added to the unmodified soil. Next, a solidification process is performed. Specifically, cement-based solidifying material is added. As a result, control of the characteristics not conventionally known in the stress-strain diagram is performed, and aggregated improved soil is obtained.
[0021]
(1) Comparison with soil prepared with a uniaxial compressive strength of 50 kN / m 2 Figure 2 shows the uniaxial compressive strength obtained by adding a solidifying material such as cement to the unmodified soil where the uniaxial compressive strength cannot be measured. The relationship between the compressive strain and the compressive stress in the case of the prepared soil (2-1) prepared to 50 kN / m 2 is shown.
[0022]
In addition, in FIG. 2, in comparison with this, when 1.0 kg / m 3 of a polymer-based improving material is added to the unmodified soil and stirred, and then a solidifying material is added (2-2) Furthermore, the case (2-3) where a solidifying material is added after adding a fibrous substance and stirring is shown.
[0023]
By adding the fibrous material and the polymer-based improving material, the uniaxial compressive strength is in the case of the prepared soil (2-1), and further in the case of the prepared soil (2-2) to which the polymer-based improving material is added. The deformation coefficient is smaller than that of the prepared soil (2-1), while maintaining the uniaxial compressive strength equivalent to the above, and the fracture strain is added to the prepared soil (2-1) and the polymer-based improving material. It becomes larger than the fracture strain of the prepared soil (2-2). That is, the characteristics of the soil are difficult to break, and the residual strength can be maintained, which is very useful in constructing a sticky and strong earth structure.
[0024]
(2) Comparison with soil prepared with a uniaxial compressive strength of 100 kN / m 2 Figure 3 shows the uniaxial compressive strength by adding a solidifying material such as cement to the unmodified soil where the uniaxial compressive strength cannot be measured. The relationship between the compressive strain and the compressive stress in the case of the prepared soil (3-1) prepared to 100 kN / m 2 is shown.
[0025]
In addition, in FIG. 3, in comparison with this, when 1.0 kg / m 3 of the polymer-based improving material is added to the unmodified soil and stirred, and then a solidifying material is added (3-2) Furthermore, (3-3) is shown in the case where a solidifying material is added after adding a fibrous substance and stirring.
[0026]
By adding the fibrous material and the polymer-based improving material, the uniaxial compressive strength is in the case of the prepared soil (3-1), and further in the case of the prepared soil (3-2) to which the polymer-based improving material is added. The deformation coefficient is smaller than that of the prepared soil (3-1) while maintaining the uniaxial compressive strength equivalent to that of the prepared soil (3-1) (3-2). growing. That is, the characteristics of the soil are difficult to break, and the residual strength can be maintained, which is very useful in constructing a sticky and strong earth structure.
[0027]
(3) Comparison with soil prepared with uniaxial compressive strength of 200 kN / m 2 Figure 4 shows the uniaxial compressive strength by adding a solidifying material such as cement to the unmodified soil where uniaxial compressive strength cannot be measured. The relationship between the compressive strain and the compressive stress in the case of the prepared soil (4-1) prepared at 200 kN / m 2 is shown.
[0028]
In addition, in FIG. 4, in comparison with this, when 1.0 kg / m 3 of the polymer-based improving material is added to the unmodified soil and stirred, and then a solidifying material is added (4-2) Furthermore, after adding a fibrous substance and stirring, the case (4-3) when a solidification material is added is shown.
[0029]
By adding the fibrous material and the polymer-based improving material, the uniaxial compressive strength is equivalent to that of the prepared soil (4-1), and further, the prepared soil (4-2) to which the polymer-based improving material is added. While maintaining the uniaxial compressive strength, the deformation coefficient becomes smaller than that of the prepared soil (4-1), and the fracture strain becomes larger than that of the prepared soil (4-1) (4-2). . That is, the characteristics of the soil are difficult to break, and the residual strength can be maintained, which is very useful in constructing a sticky and strong earth structure.
[0030]
In the above, three examples have been presented for soils where uniaxial compressive strength cannot be measured. The soil obtained by controlling the deformation characteristics of such soil is used by embedding it on the existing ground. It is suitable for reinforced earth embankment, and it is also suitable for shallow layer improvement of soft ground. Moreover, compared to the case where only the solidification process such as adding the solidification material is performed, the agglomeration is performed from the beginning, so that it is not necessary to crush and loosen as described in the prior art, and therefore the strength by crushing is increased. There is no decline. Therefore, it is not necessary to increase the cement-based solidified material in anticipation of a decrease in strength.
[0031]
As the polymer-based improving material used in each of the examples described above, polyacrylic acid, polyacrylic acid salt, polyacrylic acid ester, polyacrylamide, and combinations thereof, which are conventionally known as soil improving materials, are used. Various types of copolymers and their copolymers with polyalkylene glycol, maleic anhydride, epoxy compounds, and the like are considered. Among them, water-soluble polymers are preferable. For example, synthetic water-soluble polymer powder (PH 7-8, moisture 10 ± 2%, bulk specific gravity) whose main component is a polyacrylic polymer, which is also used in the examples of FIG. 1, FIG. 2, FIG. 3, and FIG. 0.6-0.7, true specific gravity 1.4-1.5) etc. are illustrated. In the invention of this application, it is desirable to add these polymer-based improving materials at a rate of 1 kg or more with respect to 1 m 3 of the target soil.
[0032]
Further, the fibrous material used in each of the above-described examples may be various natural or synthetic materials. For example, recycled newspaper paper, recycled vinyl for agriculture, polyethylene, polyester, and the like can be used. About these fibrous substances, the shape may be various shapes such as a strip shape, a small piece shape, a thread shape, and a cloth shape. For example, in waste paper, it is 1 cm square or less and a thickness of 0.1 mm or less. Can be added. The amount of addition can be determined experimentally as appropriate according to the type and properties of the target soil so that a synergistic effect with the amount of addition of the polymer-based improving material becomes large. For example, the amount added is preferably 30 kg or more, more preferably 50 kg to 90 kg in the case of waste paper with respect to 1 m 3 of the target soil.
[0033]
In addition, it is desirable to consider the use of a cement solidifying material in selecting the addition amount.
[0034]
Even if a small amount of the polymer-based improving material is added, the strength characteristics are improved, but it is necessary to add a fibrous substance in order to see a significant improvement in actual construction. In addition, those with a small amount of cement can retain the residual strength after breaking, and are characterized by stickiness. It can be seen that when the amount of cement is increased, the fracture strain is reduced and the effect of mixing the fibrous material and the polymer improving material is reduced.
[0035]
In this way, it is difficult to break, and it is possible to maintain the residual strength, and the manifestation of stickiness appears remarkably in the low-strength stabilized soil.
[0036]
In the method for controlling the deformation characteristics of the soil described above, when a mechanical shear stress is applied to the soil by means such as stirring with a spatula after adding a fibrous material and a polymer-based improving material to the soil, As described above, the soil properties are controlled in such a way that the soil properties are hard to break and become strong, and the soil aggregates.
[0037]
In general, when a mechanical shear stress such as stirring is applied to improved soil having a high uniaxial compressive strength, it becomes a crushed stone. Moreover, when it is improved soil with low uniaxial compressive strength, it becomes a paste.
[0038]
Thus, it is difficult to aggregate the improved soil.
[0039]
In order to aggregate, it is a necessary condition that the improved soil has an appropriate compressive strength and a large fracture strain. In the invention of this application, an appropriate compressive strength and a large fracture strain can be obtained by performing operations such as the addition of the fibrous material and the polymer-based improving material as described above. And if the dynamic pressure and rotational motion by a mechanical shear stress are given, the process soil which has a big compressive-strain stress will reduce the porosity. That is, the decrease in the porosity means that the distance between the particles constituting the treated soil is shortened.
[0040]
As a result, stickiness is generated due to an increase in the bonding force between particles, and aggregation is enabled.
[0041]
Explaining the results of the agglomeration test using the soil with the compressive stress adjusted to 100 kN / m 2 as the test object, it is not agglomerated in the case of no addition of the polymer-based improving material, and becomes a paste. . On the other hand, the soil to which 1.0 kg / m 3 of the polymer improving material is added aggregates. The particle size can be controlled by applying shear stress by mechanical stirring.
[0042]
For example, when mechanical stirring is performed for about 1 minute using a spatula moving in parallel and the speed of the spatula is changed to 25, 50, 75, 100 cm / sec, no aggregation occurs at the spatula speed of 25 cm / sec. When the speed is 50 cm / sec, the average particle diameter is 2.5 cm, when the speed is 75 cm / sec, the average particle diameter is 2.0 cm, and when the speed is 100 cm / sec, the average particle diameter is 1.0 cm. This is related to fracture strain. When a large mechanical shear stress is applied, it is finely divided, and when a small mechanical shear stress is applied, it becomes large.
[0043]
However, when the shear stress is too small, no aggregation occurs. Thus, handling is improved when aggregated, and immediate transportation is possible after processing.
[0044]
【The invention's effect】
As described in detail above, according to the method for controlling the deformation characteristics of soil according to the invention of this application, by adding a fibrous material and a polymer-based improving material to soil having or without uniaxial compressive strength, The effect that characteristics, such as a deformation coefficient of a processing object soil and a fracture strain, can be freely controlled according to a use is acquired.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the relationship between compressive stress and compressive strain for soil having uniaxial compressive strength and soil according to an embodiment of the present invention.
FIG. 2 is a diagram exemplifying a relationship between compressive stress and compressive strain with respect to a soil that has been subjected to strength adjustment to a soil that does not have uniaxial compressive strength and a soil according to an embodiment of the present invention.
FIG. 3 is a diagram exemplifying a relationship between compressive stress and compressive strain with respect to a soil that has been subjected to strength adjustment to a soil that does not have uniaxial compressive strength and a soil according to an embodiment of the present invention.
FIG. 4 is a diagram exemplifying a relationship between compressive stress and compressive strain with respect to a soil that has been subjected to strength adjustment to a soil that does not have uniaxial compressive strength and a soil according to an embodiment of the present invention.

Claims (6)

一軸圧縮強さを有する土に1cm四方以下で厚さ0.1mm以下の古紙を対象土1m 3 に対して30〜90kg対象土1m 3 に対して1kg以上の高分子系改良材を添加することにより、元の一軸圧縮強さと同等の一軸圧縮強さを維持しながら、その変形係数を元の変形係数よりも小さくし、その破壊ひずみを元の破壊ひずみよりも大きくするように制御することを特徴とする既存の地盤への盛土又は軟弱地盤の浅層改良用の土の変形特性の制御方法。Adding 1kg or more polymeric modifying material against 30~90kg and the target soil 1 m 3 the thickness 0.1mm or less wastepaper in 1cm square or less with respect to the target soil 1 m 3 soil having uniaxial compressive strength Therefore, while maintaining the uniaxial compressive strength equivalent to the original uniaxial compressive strength, the deformation coefficient is controlled to be smaller than the original deformation coefficient and the fracture strain is made larger than the original fracture strain. A method for controlling the deformation characteristics of soil for embankment on existing ground or for improving shallow layers of soft ground . 軸圧縮強さを有する土に、1cm四方以下で厚さ0.1mm以下の古紙を対象土1m 3 に対して30〜90kg対象土1m 3 に対して1kg以上の高分子系改良材を添加することにより、元の一軸圧縮強さと同等の一軸圧縮強さを維持しながら、繊維質物質のみまたは前記高分子系改良材のみ添加した場合よりも、変形係数を小さくし、破壊ひずみを大きくするように制御することを特徴とする既存の地盤への盛土又は軟弱地盤の浅層改良用の土の変形特性の制御方法。Soil with an axial compression strength, 1 kg or more polymeric modifying material against 30~90kg and the target soil 1 m 3 to the target soil 1 m 3 the thickness 0.1mm or less wastepaper in 1cm square below by adding, while maintaining original uniaxial compressive strength comparable to uniaxial compressive strength, fiber維質material only or than when added alone the polymeric modifying material, to reduce the modulus of deformation, the strain fracture A method for controlling the deformation characteristics of soil for embankment on existing ground or for improving shallow layers of soft ground, characterized in that control is performed so as to increase. 一軸圧縮強さを有しない土に1cm四方以下で厚さ0.1mm以下の古紙を対象土1m 3 に対して30〜90kg対象土1m 3 に対して1kg以上の高分子系改良材を添加した後、これを固化処理することにより、一軸圧縮強さを有しない土を固化処理して得られた土と同等の一軸圧縮強さを維持しながら、その変形係数を一軸圧縮強さを有しない土を固化処理して得られた土の変形係数よりも小さくし、その破壊ひずみを一軸圧縮強さを有しない土を固化処理して得られた土の破壊ひずみよりも大きくするように制御することを特徴とする既存の地盤への盛土又は軟弱地盤の浅層改良用の土の変形特性の制御方法。Added 1kg or more polymeric modifying material against 30~90kg and the target soil 1 m 3 the thickness 0.1mm or less of waste paper to the target soil 1 m 3 at 1cm square below soil no uniaxial compressive strength After that, by solidifying this, the deformation coefficient has a uniaxial compressive strength while maintaining a uniaxial compressive strength equivalent to that obtained by solidifying a soil that does not have a uniaxial compressive strength. Control so that the deformation coefficient of the soil obtained by solidifying the non-contaminated soil is smaller than that of the soil, and the fracture strain is larger than that of the soil obtained by solidifying the soil that does not have uniaxial compressive strength. A method for controlling the deformation characteristics of soil for embankment on existing ground or for improving shallow layers of soft ground . 一軸圧縮強さを有しない土に1cm四方以下で厚さ0.1mm以下の古紙を対象土1m 3 に対して30〜90kg対象土1m 3 に対して1kg以上の高分子系改良材を添加した後、これを固化処理することにより、一軸圧縮強さを有しない土を固化処理して得られた土と同等の一軸圧縮強さを維持しながら、繊維質物質のみまたは前記高分子系改良材のみ添加した場合よりも、変形係数を小さくし、破壊ひずみを大きくするように制御することを特徴とする既存の地盤への盛土又は軟弱地盤の浅層改良用の土の変形特性の制御方法。Added 1kg or more polymeric modifying material against 30~90kg and the target soil 1 m 3 the thickness 0.1mm or less of waste paper to the target soil 1 m 3 at 1cm square below soil no uniaxial compressive strength after, by solidification of this, while maintaining the uniaxial compressive strength comparable to soil obtained by solidification having no soil uniaxial compressive strength, fiber維質material or only the polymer system Control of deformation characteristics of soil for embankment on existing ground or for improvement of shallow layer of soft ground, which is controlled to reduce deformation coefficient and increase fracture strain than when only improved material is added Method. 前記固化処理が、脱水、乾燥、および固化材の添加の少くとも一種の処理として行われることを特徴とする請求項3または4の既存の地盤への盛土又は軟弱地盤の浅層改良用の土の変形特性の制御方法。5. The soil for embankment on existing ground or shallow ground improvement of soft ground according to claim 3, wherein the solidification treatment is performed as at least one kind of treatment of dehydration, drying, and addition of a solidifying material. Method of controlling the deformation characteristics. 請求項1ないしのいずれかの土の変形特性の制御方法において、繊維質物質と新しい高分子系改良材を添加した土に機械的剪断応力を加えることにより前記土を団粒化することを特徴とする既存の地盤への盛土又は軟弱地盤の浅層改良用の土の変形特性の制御方法。The method for controlling deformation characteristics of soil according to any one of claims 1 to 5 , wherein the soil is agglomerated by applying mechanical shear stress to the soil to which a fibrous material and a new polymeric material are added. A method for controlling the deformation characteristics of soil for embankment on existing ground or for improving shallow layers of soft ground .
JP2000189922A 2000-06-23 2000-06-23 Control method of deformation characteristics of soil Expired - Fee Related JP3756728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000189922A JP3756728B2 (en) 2000-06-23 2000-06-23 Control method of deformation characteristics of soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000189922A JP3756728B2 (en) 2000-06-23 2000-06-23 Control method of deformation characteristics of soil

Publications (2)

Publication Number Publication Date
JP2002004267A JP2002004267A (en) 2002-01-09
JP3756728B2 true JP3756728B2 (en) 2006-03-15

Family

ID=18689487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000189922A Expired - Fee Related JP3756728B2 (en) 2000-06-23 2000-06-23 Control method of deformation characteristics of soil

Country Status (1)

Country Link
JP (1) JP3756728B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884785B2 (en) * 2006-01-23 2012-02-29 雅人 森 Improved soil and method for producing improved soil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3496851B2 (en) * 1995-06-06 2004-02-16 住友精化株式会社 Residual soil solidifying agent and method for solidifying residual soil
JP3783388B2 (en) * 1997-12-26 2006-06-07 栗田工業株式会社 Method for reforming and solidifying high water content mud, mud or sludge
JP3525084B2 (en) * 1999-12-08 2004-05-10 前田建設工業株式会社 Soil improvement method and soil improvement material for highly hydrous soil

Also Published As

Publication number Publication date
JP2002004267A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
Yuan et al. Mechanical and microstructural properties of recycling granite residual soil reinforced with glass fiber and liquid-modified polyvinyl alcohol polymer
Shooshpasha et al. Effect of cement stabilization on geotechnical properties of sandy soils
Al-Khanbashi et al. Evaluation of three waterborne polymers as stabilizers for sandy soil
Ekinci Effect of preparation methods on strength and microstructural properties of cemented marine clay
Sudhakar et al. Performance evaluation of quarry dust treated expansive clay for road foundations
Adhikary et al. Potentials of rice husk ash as a soil stabilizer
Xiao et al. Assessment of strength development in cemented coastal silt admixed granite powder
Taheri et al. Desiccation cracking of polymer-bentonite mixtures: An experimental investigation
Ennahal et al. Performance of lightweight aggregates comprised of sediments and thermoplastic waste
Kavak et al. In-situ modification of a road material using a special polymer
Lukiantchuki et al. Geotechnical behavior of Construction Waste (CW) as a partial replacement of a lateritic soil in fiber-reinforced cement mixtures
Mistry et al. A new mixing technique for randomly distributed fibre-reinforced expansive soil
Chaduvula et al. Desiccation cracking behavior of geofiber-reinforced expansive clay
JP3756728B2 (en) Control method of deformation characteristics of soil
JPH07157761A (en) Soil stabilization treating material and method for soil stabilization treatment
Wijepala et al. Characterization of the properties of manufactured sand and natural river sand
JP3525084B2 (en) Soil improvement method and soil improvement material for highly hydrous soil
Prakash et al. A study on stabilization of marine dredged soil using quarry dust
Rachmawati et al. Shear strength of soil by using clam shell waste as recycle aggregate
JP3799024B2 (en) Improved soil and manufacturing method thereof
Kafodya et al. Desiccation characteristics and desiccation-induced compressive strength of natural fibre-reinforced soil
Hartono et al. Influence of the pulverised method on the plasticity and strength behaviour of cement stabilised clayshale and sandstone
JP2001254347A (en) Controlling method for deformation property of soil
Amu et al. Sugarcane straw ash effects on lime stabilized lateritic soil for structural works
JP2003321830A (en) Improved soil

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees