JP3756213B2 - Fine particle film, method for forming the same, and apparatus therefor - Google Patents

Fine particle film, method for forming the same, and apparatus therefor Download PDF

Info

Publication number
JP3756213B2
JP3756213B2 JP03889495A JP3889495A JP3756213B2 JP 3756213 B2 JP3756213 B2 JP 3756213B2 JP 03889495 A JP03889495 A JP 03889495A JP 3889495 A JP3889495 A JP 3889495A JP 3756213 B2 JP3756213 B2 JP 3756213B2
Authority
JP
Japan
Prior art keywords
film
particle
particle film
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03889495A
Other languages
Japanese (ja)
Other versions
JPH08229474A (en
Inventor
哲也 三輪
国昭 永山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP03889495A priority Critical patent/JP3756213B2/en
Publication of JPH08229474A publication Critical patent/JPH08229474A/en
Application granted granted Critical
Publication of JP3756213B2 publication Critical patent/JP3756213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、微粒子膜とその形成方法並びにその装置に関するものである。さらに詳しくは、この発明は、超薄膜バインダー上におけるナノメートル単粒子膜の提供をも可能とする、情報記憶素子、ホログラム等への応用が期待されるナノメートルスケール微粒子の単粒子膜や多粒子膜、そしてその作成方法と装置に関するものである。
【0002】
【従来の技術とその課題】
従来より、各種の微粒子を平面配列させ、さらには三次元積層も行うための方法として、移流集積法による単粒子膜、多粒子膜の作成法、さらにはLangmuir-Blodgett (以下、LBと省略)膜の作成方法等が知られている。
移流集積法による単粒子膜、多粒子膜の作成方法は、この発明の発明者らによってもその新しい手段としての展開が図られてきたものであって、溶媒(例えば水溶液)に長時間分散する粒子のサスペンジョンにガラス(または溶媒になじみやすい平坦な基板)を浸漬し、雰囲気・湿度・粒子の濃度・ガラス基板の引き上げ速度を制御することによって、ガラス基板上に単粒子膜、多粒子膜を作成するものである。
【0003】
一方、LB膜の作成方法は、主に清浄な水溶液表面に有機溶媒を溶解させた両親媒性物質を展開し、表面圧をかけることにより水面上に単分子の膜を生成、この膜を固体基板上に写し取り、多重層に積層させる薄膜作成法である。
移流集積による単粒子、多粒子膜作成法は、基板とサスペンジョン界面における粒子の自律的集積力を利用するものであり、基板表面の濡れ性が単粒子膜、多粒子膜自身の形成に大きく作用する。しかしながら、これまでのところ、この濡れ性を制御する方法が解決されていないため、膜作成の再現性等に問題がある。
【0004】
さらに、この膜作成法は、粒子の自律的集積力だけを利用しており、固定化させる手法は組み込まれていないため、その薄膜の安定性に問題がある。
一方、LB膜の作成方法は、薄膜の転写、積層のプロセスが面倒であり、かつ水面から転写、積層の際、単分子膜の構造が乱れやすい等の問題がある。
そこでこの発明は、以上通りの事情を鑑みてなされたものであり、単粒子膜や多粒子膜が形成されにくい表面であっても、その上にナノメートルスケールの微粒子を制御性良く集積した微粒子膜と、その粒子膜の形成方法とその装置を提供することを目的としている。
【0005】
【課題を解決するための手段】
この発明は、上記の課題を解決するものとしてナノメートルスケール微粒子の分散液面に両親媒性分子層を展開し、固体基板をこの微粒子分散液中に浸漬して両親媒性分子層をその表面に付着させてバインダー層を生成させ、次いで固体基板を引上げて移流集積法により微粒子の単粒子膜または多粒子膜をバインダー層の表面に形成固定させることを特徴とする微粒子膜の形成方法と、その一つの態様としての、バインダー層の両親媒性分子層は、単分子層や高分子LB層である方法も提供する。
【0007】
さらに詳しく説明すると、この発明では、粒径がナノメートルオーダーの微粒子を用い、移流集積法を適用することで、単粒子膜、多粒子膜を作成すると同時に、両親媒性の、たとえば高分子からなるLB膜または界面膜をバインダー層として用い、これを単粒子膜、多粒子膜と転写基板の間に介在させることによって粒子薄膜の形成を制御するとともに、これを転写基板に固定し、超薄膜バインダー上におけるナノメートル微粒子の形成を可能とする。
【0008】
この場合、ナノメートルオーダーの微粒子の素材としては、単分散性のポリスチレン粒子、ポリアクリル粒子等の高分子粒子の他に、各種金属粒子(金コロイド、銀コロイド等)、各種セラミック微粒子(シリカ、マイカ、酸化チタン、酸化ジルコニウム、酸化アルミニウム等)等を用いることが考えられる。これらの粒子は溶媒へ懸濁して用いるが、水を溶媒として用いる他に、粒子が分散できる各種有機溶媒、例えば、メタノール、エーテル、ベンゼン、乳化液等を適宜に用いることが考えられる。
【0009】
また、単粒子膜、多粒子膜を固定化するバインダー層は、適当な溶媒界面に界面膜を生成するものであればどのようなものでも良いが、例えば、気水界面の場合、分子内に親水基と疎水基の両方を持つ両親媒性分子が適当であり、一般の有機溶媒に微粒子を懸濁した場合には、不溶性の第2溶媒の間に界面を作り、両親媒性高分子を界面膜として展開し、第2溶媒に良く濡れる基板の上に浸漬しながら転写をすることが必要となる。特に、粒子径にあわせて高分子の大きさを選ぶことが必要であり、より小さい超微粒子ほど、分子量の小さい高分子が適当である。さらに、高分子はその一分子鎖に第1溶媒に対し親水基と疎水基の両方を持ちあわせた、界面化学的性質を有するものが好ましい。また、より小さい微粒子膜の場合、高分子ではなく脂肪酸のような界面活性剤でも良く、例えば、蛋白質、糖鎖の他、合成ポリペプチドやブロックコポリマー、さらに脂肪酸として、リン脂質やステアリン酸の他、脂肪酸が側鎖についたポリエチレングリコールなどが考えられる。
【0010】
さらに、転写基板として、粒子径に比較して平坦な材料が適当であり、また、基板を浸漬する際に界面膜を転写するために溶媒に対して濡れ性の悪いものが良く、例えば、水溶液系の場合疎水的表面、電子顕微鏡で観察する場合や光学的特性を応用する場合、導電性を有するものや透過性、反射特性の良いものが考えられ、例えば、金属(金、銀、白金、アルミニウム等)や高配向性グラファイトの他、シリコンなどのセラミックスや導電性ガラス(ITOガラス)、高分子生体膜などが考えられる。
【0011】
超薄膜バインダー上におけるナノメートル微粒子膜作成のための装置としては、たとえば図 のものを例示することができる。この装置は、水槽上に配設されるものであって、主として表面処理したアルミ材を使用している。図中の符号は、次の表1のものを示している。
【0012】
【表1】

Figure 0003756213
【0013】
その要部について説明すると、駆動部分はたとえば減速器を介したマイクロステップモーター(21)にリニアベアリングとボールネジを組み込み、この二つをコネクターにて結合し、このコネクターにアームをネジ止めしている。これをX軸、Z軸について、それぞれ1組づつ組み込む。X軸アーム(9)にはノックピンを圧入し、各仕切板はこのノックピンに差し込んで用いる。Z軸アーム(15)には基板を固定するためのブラケットを取り付けている。
【0014】
マイクロステップモーター(21)は、たとえば電気的にステップ角を最大1/250にまで分割することが可能であり、リード1mmのネジ軸を用いることにより、最低0.008mm/secの速度で各アーム(9)(15)の移動が可能である。単粒子膜等の形成において、引き上げ速度は重要な制御因子であり、特に低速での移動をなめらかになるように工夫がなされている。
【0015】
上記の装置を載置する水槽はテフロン製であり、片側は深くなっており、基板を挿入できるようになっており、仕切板を取り付けることによって、水槽を二つに仕切ることができる。水槽は、上記装置のテーブル上のノックピンに差し込んで用いる。仕切板は、装置のアームX上のノックピンに差し込んで用いる。
上記装置の使用方法について説明すると、同調運転によりX軸アーム(9)とZ軸アーム(15)が連動して動き、LB膜または界面膜(カゼイン界面膜)の転写を行う。このとき、Z軸アーム(15)が下がると、X軸アーム(9)は左方向に移動するように設定してある。
【0016】
仕切板を水槽内部の凸構造に取り付けることにより、LB膜または界面膜(カゼイン界面膜)のこれ以上の付着を防ぐことができる。その後、Z軸アーム(15)を緩やかに引き上げることにより、単粒子膜、多粒子膜を作成する。
【0017】
【作用】
この発明は、転写基板を溶液に浸漬する際に、垂直浸漬法によって両親媒性分子のバリア層を基板に転写した後に、直ちに移流集積により単粒子膜や多粒子膜を形成するものであるが、このような一連の操作で移流集積を行うことによって、比較的均一に単粒子膜並びに多粒子膜を制御性よく基板上に形成する。
【0018】
以下、実施例を示してさらに詳しくこの発明について説明する。
【0019】
【実施例】
次の2つのステップで単粒子膜、多粒子膜を作成した。
ステップ1として、<a>水槽内の下層液(pH5−7)上に、カゼイン溶液(pH9)を1μL展開し、仕切板を移動させることによって、カゼイン界面膜を作成した。カゼインのpHは5−7であり、不溶性である。<b>次に図1の装置により、疎水性であるITOガラス・シリコン(AsahiGlass社製)製の基板をこれに浸漬し、界面に存在するカゼインの界面膜をバインダー層として基板表面に転写した。
【0020】
ステップ2として、<a>基板浸漬部分に1〜0.1wt%の濃度になるようにポリスチレンラテックスを加えた。ポリスチレンラテックス(5)は市販製(日本合成ゴム社製、STADEX)のものを用いた。次に<b>1〜10μm/secの速さで基板を引き上げることにより、カゼイン界面膜を表面に転写した基板のカゼイン界面膜上にポリスチレンラテックスの単粒子膜、多粒子膜を作成した。
【0021】
1.2μm、144nm、55nm、38nmの4種類の大きさのポリスチレンラテックス粒子で、上記方法によって単粒子膜、多粒子膜を作成し、電子顕微鏡及び光学顕微鏡で観察した。
ポリスチレンラテックスを用いて形成した単粒子膜、多粒子膜は、特定の条件の光をあてることにより発色することを利用して観察した。粒径144nmポリスチレン微粒子の場合には、図2に例示した通り、その層数は、光によって発色する際の波長が特定化されることが、この発明の発明者らによって確認されている。そこで、ポリスチレンラテックス0.2wt%のポリスチレン微粒子(粒径144nm)について、上記のステップ1およびステップ2により微粒子膜を成膜すると、たとえばカゼイン0.1mg/mlの条件とし、かつ、基板の引上げ速度1.8μm/sの場合、図3のように、その層構造が確認される。
【0022】
条件制御して、144nmポリスチレン微粒子の単粒子膜を形成し、その超薄膜を例示したものが図4およびその拡大図としての図5である。さらに、固定化の状態を確かめるために、ポリスチレンラテックス(5)の単粒子膜、多粒子膜を固定した基板を水中で激しく揺すりながら30秒間洗浄し、光学顕微鏡で観察した。
【0023】
図6は、ガラス基板の上の144nmポリスチレン微粒子膜の場合と、ITOガラス基板表面上に配設したカゼイン界面膜上の同様のポリスチレン微粒子膜の場合とについて、洗浄回数と、接着により残存している微粒子の割合を比較した結果を示したものである。この図6より、カゼイン界面膜のない場合には、1回の洗浄でも、残存している割合は40%程度にまで減少するが、カゼイン界面膜がある場合には、ほとんど全て残っていることがわかる。
【0024】
この結果から、カゼイン界面膜で構成された高分子のバインダー層がポリスチレンラテックスの単粒子、多粒子膜を固定していることが認められた。
【0025】
【発明の効果】
この発明により、以上詳しく説明したとおり、粒径がナノメートルオーダーの微小ポリスチレン球のラテックスサスペンジョンを用い、移流集積法を適用することで、単粒子膜、多粒子膜を作成すると同時に、高分子からなるLB膜または界面膜をバインダー層として用い、単粒子膜、多粒子膜と転写基板の間に挿入することによって、粒子薄膜をバインダー層上に形成し固定することが可能となる。
【0026】
また、超薄膜アレイを生成するナノメートルオーダーのポリスチレン微粒子は、球状蛋白質のモデル物質と考えることができることから、この発明は、将来の蛋白質の超薄膜結晶の作成に有用ともなる。
【図面の簡単な説明】
【図1】超薄膜バインダー上におけるナノメートル単粒子膜の作成装置を例示した平面・正面・側面図である。
【図2】ポリスチレン微粒子の層数と発色波長との関係を示した概要図と、図面に代わる光学顕微鏡写真である。
【図3】実際のこの発明におけるポリスチレン微粒子の層構成を示した概要図と、図面に代わる光学顕微鏡写真である。
【図4】ポリスチレン微粒子超薄膜を示した図面に代わる顕微鏡写真である。
【図5】図4の拡大写真である。
【図6】洗浄回数と微粒子の残存率との関係を示した図である。[0001]
[Industrial application fields]
The present invention relates to a fine particle film, a method for forming the same, and an apparatus therefor. More specifically, the present invention is capable of providing a nanometer single particle film on an ultrathin film binder, and is expected to be applied to information storage elements, holograms, etc. The present invention relates to a film, and a method and apparatus for producing the film.
[0002]
[Prior art and its problems]
Conventionally, as a method for arranging various kinds of fine particles in a plane and also performing three-dimensional lamination, a method of creating a single particle film and a multi-particle film by an advection accumulation method, and Langmuir-Blodgett (hereinafter abbreviated as LB) A method for forming a film is known.
The method of producing single particle films and multi-particle films by the advection accumulation method has been developed as a new means by the inventors of the present invention, and is dispersed in a solvent (for example, an aqueous solution) for a long time. Immerse glass (or a flat substrate that is easily compatible with solvents) into the particle suspension, and control the atmosphere, humidity, particle concentration, and glass substrate pulling speed to create a single-particle film or multi-particle film on the glass substrate. To create.
[0003]
On the other hand, the LB film is produced mainly by developing an amphiphilic substance in which an organic solvent is dissolved on a clean aqueous solution surface and applying a surface pressure to form a monomolecular film on the water surface. This is a method for producing a thin film which is copied on a substrate and laminated in multiple layers.
The single particle and multi-particle film making method by advection accumulation utilizes the autonomous accumulation force of particles at the substrate-suspension interface, and the wettability of the substrate surface greatly affects the formation of single-particle film and multi-particle film itself. To do. However, so far, since the method for controlling the wettability has not been solved, there is a problem in the reproducibility of film formation.
[0004]
Furthermore, since this film forming method uses only the autonomous accumulation force of particles and does not incorporate a method for immobilization, there is a problem in the stability of the thin film.
On the other hand, the method for producing the LB film has a problem that the process of transferring and laminating a thin film is troublesome, and the structure of the monomolecular film is easily disturbed when transferring and laminating from the water surface.
Therefore, the present invention has been made in view of the circumstances as described above, and fine particles in which nanometer-scale fine particles are collected with good controllability even on a surface on which a single particle film or a multi-particle film is difficult to be formed. It aims at providing the film | membrane, the formation method of the particle film | membrane, and its apparatus.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention develops an amphiphilic molecular layer on the surface of a nanometer-scale fine particle dispersion, and immerses the solid substrate in the fine particle dispersion to form the amphiphilic molecular layer. A method for forming a fine particle film, comprising: forming a binder layer by attaching to a surface; then pulling up a solid substrate; and forming and fixing a fine particle single particle film or a multi-particle film on the surface of the binder layer by an advection accumulation method; In one embodiment, the amphiphilic molecular layer of the binder layer is a monomolecular layer or a polymer LB layer.
[0007]
More specifically, in the present invention, a single particle film and a multi-particle film are formed by applying advection and accumulation method using fine particles having a particle size of nanometer order, and at the same time, from an amphiphilic, for example, polymer. The LB film or interfacial film is used as a binder layer, and this is interposed between the single-particle film, the multi-particle film and the transfer substrate to control the formation of the particle thin film, and this is fixed to the transfer substrate, and the ultra-thin film Allows formation of nanometer particles on the binder.
[0008]
In this case, the material of the nanometer order fine particles includes various metal particles (gold colloid, silver colloid, etc.), various ceramic fine particles (silica, Mica, titanium oxide, zirconium oxide, aluminum oxide, etc.) can be used. These particles are used after being suspended in a solvent. In addition to using water as a solvent, various organic solvents in which the particles can be dispersed, for example, methanol, ether, benzene, emulsion, and the like can be appropriately used.
[0009]
In addition, the binder layer for immobilizing the single particle film and the multiparticulate film may be any material as long as it generates an interface film at an appropriate solvent interface. An amphiphilic molecule having both a hydrophilic group and a hydrophobic group is suitable. When fine particles are suspended in a general organic solvent, an interface is formed between the insoluble second solvent, and the amphiphilic polymer is formed. It is necessary to transfer the film while immersing it on a substrate that develops as an interface film and gets wet well with the second solvent. In particular, it is necessary to select the size of the polymer in accordance with the particle diameter, and a polymer having a smaller molecular weight is suitable for smaller ultrafine particles. Furthermore, the polymer preferably has a surface chemical property in which both a hydrophilic group and a hydrophobic group are contained in one molecular chain with respect to the first solvent. In the case of smaller fine particle membranes, surfactants such as fatty acids may be used instead of polymers. For example, in addition to proteins and sugar chains, synthetic polypeptides and block copolymers, and fatty acids such as phospholipids and stearic acid. Further, polyethylene glycol having a fatty acid attached to the side chain can be considered.
[0010]
Furthermore, a material that is flat compared to the particle diameter is suitable as the transfer substrate, and a substrate that has poor wettability with respect to the solvent is good for transferring the interface film when the substrate is immersed, for example, an aqueous solution. In the case of the system, when the surface is observed with a hydrophobic surface, an electron microscope, or when optical characteristics are applied, those having conductivity, those having good transparency and reflection characteristics are considered, for example, metals (gold, silver, platinum, Aluminum, etc.) and highly oriented graphite, ceramics such as silicon, conductive glass (ITO glass), polymer biomembranes, and the like are conceivable.
[0011]
As an apparatus for producing a nanometer fine particle film on an ultra-thin binder, for example, the apparatus shown in the figure can be exemplified. This apparatus is disposed on a water tank and mainly uses a surface-treated aluminum material. The reference numerals in the figure indicate those in the following Table 1.
[0012]
[Table 1]
Figure 0003756213
[0013]
The main part will be explained. For example, the drive part incorporates a linear bearing and a ball screw into a microstep motor (21) via a speed reducer, and these two are connected by a connector, and an arm is screwed to this connector. . One set is incorporated for each of the X and Z axes. A knock pin is press-fitted into the X-axis arm (9), and each partition plate is inserted into the knock pin for use. A bracket for fixing the substrate is attached to the Z-axis arm (15).
[0014]
The microstep motor (21) can electrically divide the step angle up to 1/250, for example, and each arm can be used at a speed of at least 0.008 mm / sec by using a screw shaft with a lead of 1 mm. (9) The movement of (15) is possible. In the formation of a single particle film or the like, the pulling speed is an important control factor, and has been devised so that the movement at a low speed is particularly smooth.
[0015]
The water tank on which the above apparatus is placed is made of Teflon, and one side is deep, so that the substrate can be inserted. By attaching a partition plate, the water tank can be divided into two. The water tank is used by inserting it into a knock pin on the table of the apparatus. The partition plate is used by being inserted into a knock pin on the arm X of the apparatus.
The method of using the above apparatus will be described. The X-axis arm (9) and the Z-axis arm (15) move in conjunction with each other in a synchronized operation, and the LB film or the interface film (casein interface film) is transferred. At this time, when the Z-axis arm (15) is lowered, the X-axis arm (9) is set to move leftward.
[0016]
By attaching the partition plate to the convex structure inside the water tank, further adhesion of the LB film or the interface film (casein interface film) can be prevented. Thereafter, the single-axis film and the multi-particle film are formed by gently pulling up the Z-axis arm (15).
[0017]
[Action]
In the present invention, when a transfer substrate is immersed in a solution, a barrier layer of amphiphilic molecules is transferred to the substrate by a vertical immersion method, and then a single particle film or a multi-particle film is formed immediately by advection accumulation. By carrying out advection and accumulation in such a series of operations, a single particle film and a multi-particle film are formed on the substrate with high controllability relatively uniformly.
[0018]
Hereinafter, the present invention will be described in more detail with reference to examples.
[0019]
【Example】
Single particle film and multi-particle film were prepared in the following two steps.
As Step 1, 1 μL of the casein solution (pH 9) was developed on the lower layer solution (pH 5-7) in the <a> water tank, and the partition plate was moved to create a casein interface film. Casein has a pH of 5-7 and is insoluble. <B> Next, a hydrophobic ITO glass silicon (AsahiGlass) substrate was immersed in the apparatus shown in FIG. 1, and the casein interface film present at the interface was transferred to the substrate surface as a binder layer. .
[0020]
As step 2, polystyrene latex was added to the <a> substrate immersion part so that it might become a density | concentration of 1 to 0.1 wt%. As the polystyrene latex (5), a commercially available product (manufactured by Nippon Synthetic Rubber Co., Ltd., STADEX) was used. Next, by pulling up the substrate at a speed of <b> 1 to 10 μm / sec, a single particle film and a multiparticle film of polystyrene latex were formed on the casein interface film of the substrate on which the casein interface film was transferred.
[0021]
Single particle films and multi-particle films were prepared by the above-described method using polystyrene latex particles having four sizes of 1.2 μm, 144 nm, 55 nm, and 38 nm, and observed with an electron microscope and an optical microscope.
Single-particle films and multi-particle films formed using polystyrene latex were observed using the fact that color was developed by applying light under specific conditions. In the case of a 144 nm particle size polystyrene fine particle, as illustrated in FIG. 2, the inventors of the present invention have confirmed that the number of layers is specified by the wavelength when color is developed by light. Accordingly, when a fine particle film is formed by the above Step 1 and Step 2 with respect to polystyrene fine particles (particle diameter 144 nm) of polystyrene latex 0.2 wt%, the condition is, for example, 0.1 mg / ml of casein and the pulling speed of the substrate is increased. In the case of 1.8 μm / s, the layer structure is confirmed as shown in FIG.
[0022]
FIG. 4 and FIG. 5 as an enlarged view thereof illustrate an ultrathin film formed by controlling the conditions to form a single particle film of 144 nm polystyrene fine particles. Furthermore, in order to confirm the state of immobilization, the substrate on which the single-particle film and the multi-particle film of polystyrene latex (5) were fixed was washed for 30 seconds while vigorously shaking in water, and observed with an optical microscope.
[0023]
FIG. 6 shows the number of washings and the case of the 144 nm polystyrene fine particle film on the glass substrate and the case of the similar polystyrene fine particle film on the casein interface film disposed on the surface of the ITO glass substrate. It shows the result of comparing the proportion of fine particles. From FIG. 6, when there is no casein interface film, the remaining ratio is reduced to about 40% even with one washing, but almost all remains when the casein interface film is present. I understand.
[0024]
From this result, it was confirmed that the polymer binder layer composed of the casein interface film fixed the single particle and multiparticulate films of polystyrene latex.
[0025]
【The invention's effect】
According to the present invention, as explained in detail above, by using a latex suspension of micro polystyrene spheres having a particle size of the order of nanometers, and applying an advection accumulation method, a single particle film and a multiparticulate film are created, and at the same time, from a polymer By using an LB film or an interfacial film as a binder layer and inserting it between a single particle film, a multi-particle film and a transfer substrate, a particle thin film can be formed and fixed on the binder layer.
[0026]
In addition, since the nanometer-order polystyrene fine particles for producing the ultrathin film array can be considered as a model substance of a globular protein, the present invention is useful for the production of an ultrathin crystal of a future protein.
[Brief description of the drawings]
FIG. 1 is a plan, front, and side view illustrating an apparatus for producing a nanometer single particle film on an ultra-thin binder.
FIG. 2 is a schematic diagram showing the relationship between the number of layers of polystyrene fine particles and the coloring wavelength, and an optical micrograph in place of the drawing.
FIG. 3 is a schematic view showing the layer structure of polystyrene fine particles in the present invention, and an optical micrograph in place of the drawing.
FIG. 4 is a photomicrograph in place of a drawing showing an ultrathin polystyrene fine particle film.
FIG. 5 is an enlarged photograph of FIG.
FIG. 6 is a graph showing the relationship between the number of cleanings and the residual rate of fine particles.

Claims (3)

ナノメートルスケール微粒子の分散液面に両親媒性分子層を展開し、固体基板をこの微粒子分散液中に浸漬して両親媒性分子層をその表面に付着させてバインダー層を生成させ、次いで固体基板を引上げて移流集積法により微粒子の単粒子膜または多粒子膜をバインダー層の表面に形成固定させることを特徴とする微粒子膜の形成方法。An amphiphilic molecular layer is developed on the dispersion surface of nanometer-scale fine particles, and a solid substrate is immersed in the fine particle dispersion to attach an amphiphilic molecular layer to the surface to form a binder layer, and then a solid layer. A method of forming a fine particle film, comprising pulling up a substrate and forming and fixing a single particle film or a multi-particle film of fine particles on the surface of a binder layer by an advection accumulation method. バインダー層としての両親媒性分子層は、単分子層である請求項1の形成方法。The method according to claim 1, wherein the amphiphilic molecular layer as the binder layer is a monomolecular layer. バインダー層としての両親媒性分子層は、高分子LB層である請求項1の形成方法。The method according to claim 1 , wherein the amphiphilic molecular layer as the binder layer is a polymer LB layer .
JP03889495A 1995-02-27 1995-02-27 Fine particle film, method for forming the same, and apparatus therefor Expired - Fee Related JP3756213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03889495A JP3756213B2 (en) 1995-02-27 1995-02-27 Fine particle film, method for forming the same, and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03889495A JP3756213B2 (en) 1995-02-27 1995-02-27 Fine particle film, method for forming the same, and apparatus therefor

Publications (2)

Publication Number Publication Date
JPH08229474A JPH08229474A (en) 1996-09-10
JP3756213B2 true JP3756213B2 (en) 2006-03-15

Family

ID=12537917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03889495A Expired - Fee Related JP3756213B2 (en) 1995-02-27 1995-02-27 Fine particle film, method for forming the same, and apparatus therefor

Country Status (1)

Country Link
JP (1) JP3756213B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4116401A (en) 2000-03-16 2001-09-24 Matsushita Electric Industrial Co., Ltd. Nucleotide detector, process for producing the same and process for forming fineparticle membrane
JP4611583B2 (en) * 2001-09-19 2011-01-12 株式会社リコー Artificial crystal forming device
US7109247B2 (en) * 2003-05-30 2006-09-19 3M Innovative Properties Company Stabilized particle dispersions containing nanoparticles
US8202582B2 (en) * 2006-06-30 2012-06-19 Oji Paper Co., Ltd. Single particle film etching mask and production method of single particle film etching mask, production method of micro structure with use of single particle film etching mask and micro structure produced by micro structure production method
JP7020874B2 (en) * 2017-11-17 2022-02-16 ポリプラスチックス株式会社 Composite member and its manufacturing method

Also Published As

Publication number Publication date
JPH08229474A (en) 1996-09-10

Similar Documents

Publication Publication Date Title
Hidber et al. Microcontact printing of palladium colloids: Micron-scale patterning by electroless deposition of copper
Dimitrov et al. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces
Sukhorukov et al. Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design
Nagayama Two-dimensional self-assembly of colloids in thin liquid films
Yousefi et al. Probing the interaction between nanoparticles and lipid membranes by quartz crystal microbalance with dissipation monitoring
Nikoobakht et al. Self-assembly of gold nanorods
Cheng et al. Synthesis and self-assembly of cetyltrimethylammonium bromide-capped gold nanoparticles
Zhang et al. Didodecyldimethylammonium bromide lipid bilayer-protected gold nanoparticles: synthesis, characterization, and self-assembly
Bunker et al. The impact of solution agglomeration on the deposition of self-assembled monolayers
Lvov et al. Molecular film assembly via layer-by-layer adsorption of oppositely charged macromolecules (linear polymer, protein and clay) and concanavalin A and glycogen
Hassenkam et al. Fabrication of 2D gold nanowires by self‐assembly of gold nanoparticles on water surfaces in the presence of surfactants
Xia et al. A facile approach to directed assembly of patterns of nanoparticles using interference lithography and spin coating
Lee et al. Selective electroless nickel plating of particle arrays on polyelectrolyte multilayers
Kooij et al. Ionic strength mediated self-organization of gold nanocrystals: An AFM study
Masuda et al. Two-dimensional self-assembly of spherical particles using a liquid mold and its drying process
JP2003522621A (en) Fabrication of multilayer coated particles and hollow shells by electrostatic self-assembly of nanocomposite multilayers on degradable colloid prototypes
KR20070054182A (en) Thin-filmy polymeric structure and method of preparing the same
Ducker et al. Controlled modification of silicon nitride interactions in water via zwitterionic surfactant adsorption
Blomberg et al. Surface interactions during polyelectrolyte multilayer buildup. 1. Interactions and layer structure in dilute electrolyte solutions
Sleytr et al. Crystalline bacterial cell surface layers (S-layers): a versatile self-assembly system
JP3756213B2 (en) Fine particle film, method for forming the same, and apparatus therefor
ITTO970466A1 (en) METHOD AND EQUIPMENT FOR PREPARATION OF MONOLAYER FILM OF PA RTICLES OR MOLECULES.
Tero et al. Lipid membrane formation by vesicle fusion on silicon dioxide surfaces modified with alkyl self-assembled monolayer islands
Cho et al. Modulating the pattern quality of micropatterned multilayer films prepared by layer-by-layer self-assembly
Wirth et al. Fabrication of planar colloidal clusters with template-assisted interfacial assembly

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051102

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees