JP3755932B2 - Sliding material and manufacturing method thereof - Google Patents

Sliding material and manufacturing method thereof Download PDF

Info

Publication number
JP3755932B2
JP3755932B2 JP17571496A JP17571496A JP3755932B2 JP 3755932 B2 JP3755932 B2 JP 3755932B2 JP 17571496 A JP17571496 A JP 17571496A JP 17571496 A JP17571496 A JP 17571496A JP 3755932 B2 JP3755932 B2 JP 3755932B2
Authority
JP
Japan
Prior art keywords
copper
sliding
sintering
sliding material
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17571496A
Other languages
Japanese (ja)
Other versions
JPH101704A (en
Inventor
武盛 高山
裕一 堀
義清 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP17571496A priority Critical patent/JP3755932B2/en
Publication of JPH101704A publication Critical patent/JPH101704A/en
Application granted granted Critical
Publication of JP3755932B2 publication Critical patent/JP3755932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鉄系材料(鉄もしくは鉄合金)よりなる母材に銅系焼結摺動材(焼結材よりなる銅鉛合金,鉛青銅合金もしくは青銅合金)を接合してなる摺動材およびその摺動材の製造方法に関するものである。
【0002】
【従来の技術】
従来、鉄もしくは鉄合金に鉛青銅系の摺動材を接合する接合方法として、次のような方法が知られている。
▲1▼鋳造などにより製造された鉛青銅系の摺動材を切削加工し、この摺動材を、同じく所定の形状に切削加工された後に表面に銅めっきが施されてなる鋼材の上に載せ、約800℃で加圧して接合を行うもの。
▲2▼所定の形状に切削加工された鋼材の接合部分に堰を設け、この堰内に鉛青銅系の材料(鋳造材もしくは合金材をアトマイズして得られる粉体)を配置し、これを鉛青銅系材料の溶融温度以上の還元雰囲気の炉内に装入し、鉛青銅系材料を溶解させた後冷却して、溶融接合した鉛青銅相を得るもの。
▲3▼裏金の上に鉛青銅系の合金粉末を散布し、これを電気炉もしくはガス炉に通して還元性雰囲気中で一次焼結を行い、多孔性合金層を一次圧延にて潰した後再び電気炉へ通し二次焼結を行って合金層の焼結度を高め、更に二次圧延にて裏金の強度向上を図った焼結バイメタルを作り、このバイメタルを溶接にて接合するもの。なお、この方法は、銅系軸受材料の製造に利用されている。
▲4▼前記▲1▼と▲3▼の中間的な方法として、鉛青銅系の合金粉末を圧粉成形した後、この成形材を、所定の形状に切削加工された後に表面に銅めっきが施されてなる鋼材の上に載せ、約800℃で加圧して焼結度を高めて接合するもの。なお、この方法によれば、加圧により円錐状の母材に対しても接合することが可能である。
【0003】
【発明が解決しようとする課題】
しかしながら、前記▲1▼の方法では、鋳造材にめっきを施して昇温加圧接合する方式であるために、めっき費用が嵩むという問題点がある。また、鋳造組織には鉛相が連続して存在し易いことから、摺動材自身が強度不足を生じ易く、摺動特性も良くないといった問題点もある。
【0004】
また、前記▲2▼の方法では、炉内で溶融した鉛青銅が凝固する際に表面部にひけ巣を生じ易いという問題点がある。また、接合面の濡れ不足による接合不良もしくは鋳造欠陥を発生させないためには鉛青銅の量を多くする必要があり、この結果加工代も多くなってコストアップを招いてしまうという問題点がある。また、溶融させた鉛青銅が凝固する際に、接合界面部近傍に鉛が重量偏析現象に従って連続して存在し易くなり、接合強度そのものの顕著な低下に繋がり易い。
【0005】
次に、前記▲3▼の方法では、焼結バイメタルを製作する工程と、この焼結バイメタルを鋼材に接合する工程とからなるために、工程が複雑となってコストアップが避けられないという問題点がある。
【0006】
さらに、前記▲4▼の方法では、焼結により均一な組織の鉛青銅材を得ることができるが、銅めっき工程を含むためにコストアップを招くという問題点がある。特に、鋼材が大径・大重量のときにそのコストアップが顕著になる。
【0007】
さらに、前記▲1▼〜▲4▼の方法において母材に鋳鉄材料を適用した場合には、銅めっきを施す前に接合面に存在する黒鉛を例えばコーリン処理などで除去し、めっき処理および銅系材料との接合時の顕著な濡れ性阻害要因とならないようにする必要があるため、更にコストアップが避けられないという問題点がある。
【0008】
本発明は、このような問題点を解消することを目的として、コスト高となるめっき工程を廃して焼結による摺動材製造工程を採用することにより、製造工程を著しく簡略化するとともに、良好な接合特性を得ることのできる摺動材およびその製造方法を提供することにある。
【0009】
【課題を解決するための手段および作用・効果】
本発明は、前述の目的を達成するために、めっきなしで銅系焼結摺動材を焼結時に鉄系材料よりなる母材に接合させ、かつ適当な焼結組織を得る方法として、銅系焼結摺動材に焼結助材としてのTiを添加することに着目してなされたものである。すなわち、本発明による摺動材は、
鉄系材料よりなる母材の表面に、Ti:0.2〜3.0重量%と、Sn:5〜12重量%と、b:0〜10重量%と、残部がCuよりなる銅系焼結摺動材を焼結により接合してなり、前記鉄系材料と前記銅系焼結摺動材との接合界面での接合せん断強度が14.8kg/mm以上であることを特徴とするものである。
【0010】
この摺動材によれば、焼結助材としてTiが含有されていることによって、接合時における銅系焼結摺動材の鉄系母材への濡れ性が改善され、これら銅系焼結摺動材と鉄系母材との間に良好な接合状況を得ることができ、特に銅系焼結摺動材が鉛青銅材料のように鉛を含有する材料の場合に、鉛粒子の粗大化が抑えられてその鉛が細かく鉄系母材内に分散した組織を得ることができる。また、Tiの添加によってその摺動材の耐摩耗性も向上させることができる。
【0011】
前記母材は、鉄材であるのが好ましい
【0012】
前記母材に黒鉛の析出した鋳鉄を使用する際においても、銅系焼結摺動材料にTiを含有させることによって、接合界面に析出する黒鉛とTiを積極的に反応させ、黒鉛を変質させることによって濡れ性の改善と接合性の改善を図ることができる。
【0013】
次に、本発明による摺動材の製造方法は、
鉄系材料よりなる母材銅系焼結摺動材を接合するに際し、Ti:0.2〜3.0重量%と、Sn:5〜12重量%と、b:0〜10重量%と、残部がCuよりなる銅系焼結摺動材を用い、この銅系焼結摺動材を前記母材と組み合わせて焼結することにより、その焼結と同時に前記母材に接合することを特徴とするものである。
【0014】
この製造方法によれば、めっき工程を廃して焼結による摺動材製造工程を採用しているので、製造工程を簡略化することができてコストアップを避けることができるとともに、銅系焼結摺動材と鉄系材料よりなる母材との間に良好な接合状況を得ることができる。
【0015】
前記焼結は、露点が−30℃以下の還元性もしくは中性雰囲気ガス中で行われるのが好ましい。特に安定な露点を得て、銅系焼結摺動材料が接合するときの濡れ性の安定化を図ることを目的とする場合には、N2 のような中性ガス減圧雰囲気で行われるのが更に好ましい。ただし、10torr以下の減圧下では焼結途中において焼結材中に含有されるPb,Snが蒸発することによる組成変動が1.0wt%を越えて大きくなり、炉内へのPb,Snの堆積が設備上のメンテナンスコストを押し上げることが問題点となる。また、600torr以上では減圧の効果が顕著でなくなるので、適正な減圧範囲としては10〜600torrが好ましい。
【0016】
前記母材は、鉄材であるのが好ましい
【0017】
また、前記Tiの添加割合0.2重量%未満では発泡性、言い換えれば焼結時に焼結体内部より発生するガスによりその焼結体にふくれが発生する性質を呈することとなり、一方3.0重量%を越えると、摺動時に相手材(例;SCM440H,SUJ2等)をアタックすることとなる。
【0018】
【発明の実施の形態】
本発明においては、予め所定の形状に加工した鋼材に鉛青銅粉よりなる圧粉成形体を載せ、還元性雰囲気の炉内に通すことにより、焼結と同時に接合が行われる。
【0019】
鉛青銅系の焼結材を接合するためには、焼結時の温度を高くして焼結しなければならない。ところが、このように焼結温度を高くすると、摺動特性の上でなじみ性を確保する鉛粒子が成長し大きくなって、焼結材の強度低下を招いてしまう。一方、鉛の粒子を細かくして分散させるためには、低い温度で焼結しなければならない。ところが、低い焼結温度では、発生する液相量が少なくて濡れが十分でなく、接合不十分となってしまう。
【0020】
そこで、本発明においては、接合に十分な液相を発生させ、かつ鉛を粗大化させないために、鉛青銅粉に焼結助材としてのチタンを添加して改善を図っている。このようにチタンを添加すると、鉛青銅合金の鉛以外の合金成分からの多量の液相発生が抑えられ、かつ鉄系母材への鉛青銅合金の濡れ性が改善され、更には鉛粒子の成長が抑えられることになる。こうして、焼結相および接合状態の共に良好な摺動材を得ることが可能となる。なお、本発明による摺動材は、ブルドーザ等の下転輪リテーナに適用して好適である。
【0021】
【実施例】
次に、本発明による摺動材およびその製造方法の具体的実施例につき説明する。
【0022】
図1に示されているように、Cu(銅),Sn(錫),Pb(鉛),Ti(チタン),Zn(亜鉛)の各材料の重量比の異なる11種類の銅系焼結摺動材料について試験を行った。この試験においては、各材料をV型混合機で混合した後、2t/cm2 になるような圧力で成形を行って銅系摺動材の圧粉体を得た。圧粉体形状については図2(a)に示されるとおりである。また、鉄系母材の形状については図2(b)に示されている。母材形状で特徴的な点は焼結時の銅系焼結体の収縮代を見込んで焼結体内径部に堰となるものを設け、接合焼結完了時にはこの堰の形状に沿って銅系摺動材料が正確に接合できるようにしてあることである。つまり、製造技術的な観点からすれば、焼結体が上置きで接合できることは生産性やハンドリングの点で大きなメリットが生まれる。母材の材質としてはSCM440HとFCD420の鋳鉄を使用した。なお、具体的に使用した材料としては、Cuは福田金属箔粉工業製の電解銅材CE15,Snは同じく福田金属箔粉工業製のSn−At250,Pbは同じく福田金属箔粉工業製のPb−At250であり、Tiは住友スナック製のTi−H粉末である。
【0023】
図1に記載のNo.1〜10の銅系摺動材の圧粉体をSCM440H材の鉄系母材の上に載せて、850℃と890℃で1時間600torrの窒素雰囲気中で焼結した結果を図3および図4に示した。また、同様に図1に記載のNo.1,3,5,11の銅系摺動材の圧粉体をSCM440H材の上に載せて、露点−27℃のアンモニア分解ガス雰囲気中、840℃で焼結接合した結果を図5に示した。これら図3乃至図5に示した硬さは荷重1kgのビッカース硬度計で測定した。また、図中での面積率は超音波非破壊検査機による鉄系母材と銅系摺動材との接合面積率を測定したものであり、100%であれば完全に接合したことを示している。さらに、発泡性は、焼結時に焼結時に焼結体内部より発生するガスにより焼結体にふくれが発生するか否かを評価したもので、ふくれ発生の場合は×と判断している。なお、図3中のNo.4*は鉄系母材にFCD420鋳鉄を使用したもので、同図中のNo.4と比べて問題なく前述した本発明の主旨を満足していることが分かる。図6にNo.4*の接合部の組織を示した。この界面での接合せん断強度(下記に示した方法で求めたもの)は15.2kg/mm2 と非常に高い強度を示しており、母材がFCD420であること以外は違いをほとんで認めることができなかった。これは、せん断破壊面が界面の銅系焼結体側で起こっているためと考えられ、接合界面が十分に強度の高い状態であることが確認できた。
【0024】
次に、図4,図5に示した焼結水準テストピース(TP)から図7に示されるようなTPを準備して求めた接合せん断強度を図4,図5中に併せて示した。No.1のTPについてはできるだけ接合率の高い部分から切り出しているが、それでも明らかにチタンの添加によって顕著な接合強度の改善が認められている。これらの原因として、前述のようにPbがチタンの添加によって微細にかつ均一に焼結材料中に分散し、Pbの連続的に繋がるような偏析的な作用を防止することと、更に図6にも示されるように接合焼結時に発生する液相内に含まれるチタン成分が黒鉛や鉄中の炭素、更には鉄そのものとの反応によって強固に接合するためと考えられる。また、少量のチタンの添加によりFeに対する濡れ性が顕著に改善されることによって接合面積率が改善されることも液相中に含まれるチタンの顕著な還元力と上述の反応性に原因していると考えられる。
【0025】
次に、チタンの添加が銅系摺動材の摺動特性に及ぼす影響を調査するために、前述の試験片No.1,2,3,5,7,8について図8に示すような形状の試験片を加工し、次の試験条件にて摺動摩擦摩耗試験(摩擦係数,摺動材料および相手材の摩耗量の測定)を行った。この試験結果が図9に示されている。

Figure 0003755932
【0026】
これらの試験結果から、銅系摺動材へのチタンの添加割合は0.2〜3.0重量%であるのが好ましい。この添加割合が0.2重量%未満では、焼結体が発泡性を呈し、かつ摺動材料としての耐摩耗性に顕著な効果が期待されない。また、3.0重量%を越えると、摺動時に相手材料をアタックして摺動特性が悪化する。
【0027】
本実施例においては、銅系摺動材にチタンを添加するものとしたが、クロム−チタン合金を添加しても同様の効果を奏するものである。
【図面の簡単な説明】
【図1】図1は、銅系焼結摺動材料の試験材料を示す表である。
【図2】図2(a)は、銅系摺動材の圧粉体形状,(b)は鉄系母材の形状である。
【図3】図3は、図1の材料の焼結結果を示す表▲1▼である。
【図4】図4は、図1の材料の焼結結果を示す表▲2▼である。
【図5】図5は、図1の材料の焼結結果を示す表▲3▼である。
【図6】図6は、接合部の金属組織を示す顕微鏡写真である。
【図7】図7は、せん断試験片を示す図である。
【図8】図8は、摺動試験片を示す図である。
【図9】図9は、図3の試験片についての摺動摩擦摩耗試験の結果を示す表である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sliding material obtained by joining a copper-based sintered sliding material (copper lead alloy, lead bronze alloy or bronze alloy made of sintered material) to a base material made of iron-based material (iron or iron alloy). And a method of manufacturing the sliding material.
[0002]
[Prior art]
Conventionally, the following method is known as a joining method for joining a lead bronze sliding material to iron or an iron alloy.
(1) A lead bronze sliding material manufactured by casting or the like is cut, and the sliding material is cut into a predetermined shape and then plated on a steel plate with a copper plating on the surface. Put on and pressurize at about 800 ° C for bonding.
(2) A weir is provided at the joining portion of the steel material cut into a predetermined shape, and a lead bronze material (powder obtained by atomizing a cast material or an alloy material) is disposed in the weir. A lead-bronze phase that is charged into a furnace with a reducing atmosphere equal to or higher than the melting temperature of the lead-bronze material, melts the lead-bronze material, and cools to obtain a melt-bonded lead-bronze phase.
(3) After sprinkling lead bronze alloy powder on the back metal, passing it through an electric furnace or gas furnace and performing primary sintering in a reducing atmosphere, and then crushing the porous alloy layer by primary rolling Passing through an electric furnace again, secondary sintering is performed to increase the degree of sintering of the alloy layer, and further, the sintered bimetal is made by secondary rolling to improve the strength of the back metal, and this bimetal is joined by welding. This method is used for the production of copper bearing materials.
(4) As an intermediate method of (1) and (3) above, after compacting lead bronze alloy powder, the formed material is cut into a predetermined shape, and then copper plating is applied to the surface. It is placed on a steel material that has been applied and pressed at about 800 ° C to increase the degree of sintering and join. In addition, according to this method, it is possible to join also to a conical base material by pressurization.
[0003]
[Problems to be solved by the invention]
However, the method (1) has a problem in that the plating cost increases because it is a method in which the cast material is plated and subjected to temperature rise and pressure bonding. In addition, since the lead phase tends to be continuously present in the cast structure, there is a problem that the sliding material itself is likely to have insufficient strength and the sliding characteristics are not good.
[0004]
Further, the method (2) has a problem that a shrinkage nest is likely to occur on the surface portion when the lead bronze melted in the furnace is solidified. Further, in order not to cause joint failure or casting defect due to insufficient wetting of the joint surface, it is necessary to increase the amount of lead bronze. As a result, there is a problem that the processing cost increases and the cost increases. Further, when the molten lead bronze is solidified, the lead tends to be continuously present in the vicinity of the joint interface according to the weight segregation phenomenon, and the joint strength itself is likely to be significantly reduced.
[0005]
Next, in the method (3), since the method comprises a step of manufacturing a sintered bimetal and a step of joining the sintered bimetal to a steel material, the process becomes complicated and a cost increase cannot be avoided. There is a point.
[0006]
Furthermore, in the method (4), a lead bronze material having a uniform structure can be obtained by sintering, but there is a problem in that the cost increases due to the inclusion of a copper plating step. In particular, when the steel material has a large diameter and a large weight, the cost increase becomes remarkable.
[0007]
Furthermore, when a cast iron material is applied to the base material in the methods (1) to (4), the graphite existing on the joint surface is removed by, for example, coring treatment before the copper plating, Since it is necessary not to be a significant impediment to wettability at the time of joining with a system material, there is a problem that further cost increase is unavoidable.
[0008]
In order to eliminate such problems, the present invention eliminates the costly plating process and adopts a sliding material manufacturing process by sintering. An object of the present invention is to provide a sliding material capable of obtaining excellent bonding characteristics and a method for manufacturing the same.
[0009]
[Means for solving the problems and actions / effects]
In order to achieve the above-described object, the present invention provides a method for joining a copper-based sintered sliding material to a base material made of an iron-based material at the time of sintering without plating and obtaining a suitable sintered structure. This was made by paying attention to adding Ti as a sintering aid to the system sintered sliding material. That is, the sliding material according to the present invention is
On the surface of the base made of a ferrous material, Ti: 0.2 to 3.0 and weight%, Sn: 5 to 12 and percent by weight, P b: 0% by weight, copper-based which the balance of Cu A sintered sliding material is joined by sintering, and a joining shear strength at a joining interface between the iron-based material and the copper-based sintered sliding material is 14.8 kg / mm 2 or more. To do.
[0010]
According to this sliding material, by containing Ti as a sintering aid, the wettability of the copper-based sintered sliding material to the iron-based base material at the time of joining is improved. A good bonding condition can be obtained between the sliding material and the iron-based base material, especially when the copper-based sintered sliding material is a lead-containing material such as a lead bronze material. Therefore, it is possible to obtain a structure in which the lead is finely dispersed in the iron-based base material. Further, the wear resistance of the sliding material can be improved by adding Ti.
[0011]
The base material is preferably Ru cast iron der is.
[0012]
Even when using cast iron in which graphite is precipitated as the base material, by allowing Ti to be contained in the copper-based sintered sliding material, the graphite precipitated at the joint interface and Ti are actively reacted to alter the graphite. As a result, wettability and bondability can be improved.
[0013]
Next, the manufacturing method of the sliding material according to the present invention is as follows.
Upon bonding the base material copper-based sintered sliding member made of iron-based material, Ti: 0.2 to 3.0 and weight%, Sn: 5 to 12 and percent by weight, P b: and 0-10 wt% By using a copper-based sintered sliding material, the balance of which is made of Cu, and sintering the copper-based sintered sliding material in combination with the base material, it is possible to join the base material simultaneously with the sintering. It is a feature.
[0014]
According to this manufacturing method, the plating process is eliminated and the sliding material manufacturing process by sintering is adopted, so that the manufacturing process can be simplified and cost increase can be avoided, and copper-based sintering can be performed. A good joining condition can be obtained between the sliding material and the base material made of the iron-based material.
[0015]
The sintering is preferably performed in a reducing or neutral atmosphere gas having a dew point of −30 ° C. or lower. In particular, when the objective is to obtain a stable dew point and stabilize the wettability when the copper-based sintered sliding material is joined, it is performed in a neutral gas decompression atmosphere such as N 2 . Is more preferable. However, under a reduced pressure of 10 torr or less, the compositional fluctuation due to evaporation of Pb and Sn contained in the sintered material during the sintering becomes larger than 1.0 wt%, and Pb and Sn are deposited in the furnace. However, raising the maintenance cost on the equipment is a problem. Moreover, since the effect of pressure reduction is not significant at 600 torr or more, the appropriate pressure reduction range is preferably 10 to 600 torr.
[0016]
The base material is preferably Ru cast iron der is.
[0017]
Moreover, said the addition ratio is less than 0.2 wt% of Ti becomes to exhibit a property of foaming, blisters on the sintered body by gas generated from the sintered body inside it during sintering other words occurs, whereas 3. If it exceeds 0% by weight, the mating material (eg, SCM440H, SUJ2, etc.) will be attacked during sliding.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a compacted body made of lead bronze powder is placed on a steel material that has been processed into a predetermined shape in advance, and is passed through a furnace in a reducing atmosphere, so that joining is performed simultaneously with sintering.
[0019]
In order to join lead bronze-based sintered materials, it is necessary to sinter at a high temperature during sintering. However, when the sintering temperature is increased in this way, lead particles that ensure conformability in terms of sliding characteristics grow and increase, leading to a decrease in strength of the sintered material. On the other hand, in order to finely disperse the lead particles, it must be sintered at a low temperature. However, at a low sintering temperature, the amount of the generated liquid phase is small and the wetting is not sufficient, resulting in insufficient bonding.
[0020]
Therefore, in the present invention, in order to generate a liquid phase sufficient for joining and not to coarsen lead, improvement is made by adding titanium as a sintering aid to lead bronze powder. When titanium is added in this way, the generation of a large amount of liquid phase from alloy components other than lead of the lead bronze alloy is suppressed, the wettability of the lead bronze alloy to the iron-based base material is improved, and further Growth will be suppressed. In this way, it is possible to obtain a sliding material having a good sintered phase and bonding state. The sliding member according to the present invention is suitable for application to a lower roller retainer such as a bulldozer.
[0021]
【Example】
Next, specific examples of the sliding member and the manufacturing method thereof according to the present invention will be described.
[0022]
As shown in FIG. 1, eleven types of copper-based sintered slides having different weight ratios of Cu (copper), Sn (tin), Pb (lead), Ti (titanium), and Zn (zinc) materials. The moving material was tested. In this test, each material was mixed with a V-type mixer and then molded at a pressure of 2 t / cm 2 to obtain a green compact of a copper-based sliding material. The green compact shape is as shown in FIG. The shape of the iron base material is shown in FIG. A characteristic feature of the base metal shape is that it provides a weir on the inner diameter of the sintered body in anticipation of the shrinkage allowance of the copper-based sintered body during sintering. The system sliding material can be accurately joined. In other words, from the viewpoint of manufacturing technology, the fact that the sintered body can be joined on top offers a great merit in terms of productivity and handling. As the base material, cast iron of SCM440H and FCD420 was used. In addition, as a material specifically used, Cu is electrolytic copper material CE15 manufactured by Fukuda Metal Foil Powder Industry, Sn is Sn-At250, also manufactured by Fukuda Metal Foil Powder Industry, and Pb is also Pb manufactured by Fukuda Metal Foil Powder Industry. -At250, Ti is Ti-H powder made by Sumitomo Snack.
[0023]
No. 1 shown in FIG. FIG. 3 and FIG. 3 show the results obtained by placing a green compact of 1 to 10 copper-based sliding material on an iron base material of SCM440H material and sintering at 850 ° C. and 890 ° C. for 1 hour in a nitrogen atmosphere of 600 torr. This is shown in FIG. Similarly, No. 1 described in FIG. FIG. 5 shows the result of sintering and bonding at 840 ° C. in an ammonia-decomposing gas atmosphere having a dew point of −27 ° C. by placing a green compact of 1, 3, 5, 11 copper-based sliding material on the SCM440H material. It was. The hardness shown in FIGS. 3 to 5 was measured with a Vickers hardness tester with a load of 1 kg. In addition, the area ratio in the figure is a measurement of the bonding area ratio between the iron-based base material and the copper-based sliding material using an ultrasonic nondestructive inspection machine. ing. Further, the foamability is an evaluation of whether or not blistering occurs in the sintered body due to the gas generated from the inside of the sintered body during sintering. When blistering occurs, it is determined as x. In FIG. No. 4 * uses FCD420 cast iron as the iron base material. It can be seen that the above-mentioned gist of the present invention is satisfied without problems as compared with FIG. In FIG. A 4 * joint structure was shown. The bond shear strength at this interface (determined by the method shown below) is very high at 15.2 kg / mm 2, and the difference is recognized except that the base material is FCD420. I could not. This is thought to be because the shear fracture surface occurs on the copper-based sintered body side of the interface, and it was confirmed that the joint interface was in a sufficiently high state.
[0024]
Next, the joint shear strength obtained by preparing a TP as shown in FIG. 7 from the sintered level test piece (TP) shown in FIGS. 4 and 5 is also shown in FIGS. No. Although the TP of 1 was cut out from the portion having the highest bonding rate as much as possible, it was clearly recognized that the bonding strength was significantly improved by adding titanium. As described above, as described above, Pb is finely and uniformly dispersed in the sintered material by the addition of titanium, and prevents segregation such that Pb is continuously connected. It is considered that the titanium component contained in the liquid phase generated at the time of joining and sintering is firmly joined by reaction with graphite, carbon in iron, and iron itself as shown in FIG. In addition, the addition of a small amount of titanium significantly improves the wettability to Fe, thereby improving the bonding area ratio due to the remarkable reducing power of titanium contained in the liquid phase and the above-described reactivity. It is thought that there is.
[0025]
Next, in order to investigate the effect of the addition of titanium on the sliding characteristics of the copper-based sliding material, the above-mentioned test piece No. Test pieces of the shape shown in Fig. 8 are processed for 1, 2, 3, 5, 7, and 8, and the sliding friction and wear test (the friction coefficient, the sliding material and the wear amount of the mating material are measured under the following test conditions) Measurement). The test results are shown in FIG.
Figure 0003755932
[0026]
From these test results, the addition ratio of titanium to the copper-based sliding material is preferably 0.2 to 3.0% by weight. When the addition ratio is less than 0.2% by weight, the sintered body exhibits foaming properties, and a significant effect is not expected on the wear resistance as a sliding material. On the other hand, if it exceeds 3.0% by weight, the mating material is attacked at the time of sliding to deteriorate the sliding characteristics.
[0027]
In this embodiment, titanium is added to the copper-based sliding material, but the same effect can be obtained even if a chromium-titanium alloy is added.
[Brief description of the drawings]
FIG. 1 is a table showing test materials for copper-based sintered sliding materials.
FIG. 2A shows a green compact shape of a copper-based sliding material, and FIG. 2B shows a shape of an iron-based base material.
3 is a table {circle around (1)} showing the result of sintering the material of FIG.
FIG. 4 is a table {circle around (2)} showing the results of sintering the material of FIG.
FIG. 5 is a table (3) showing the result of sintering the material of FIG.
FIG. 6 is a photomicrograph showing the metal structure of the joint.
FIG. 7 is a diagram showing a shear test piece.
FIG. 8 is a view showing a sliding test piece.
FIG. 9 is a table showing the results of a sliding friction wear test on the test piece of FIG. 3;

Claims (4)

鉄系材料よりなる母材の表面に、Ti:0.2〜3.0重量%と、Sn:5〜12重量%と、b:0〜10重量%と、残部がCuよりなる銅系焼結摺動材を焼結により接合してなり、前記鉄系材料と前記銅系焼結摺動材との接合界面での接合せん断強度が14.8kg/mm以上であることを特徴とする摺動材。On the surface of the base made of a ferrous material, Ti: 0.2 to 3.0 and weight%, Sn: 5 to 12 and percent by weight, P b: 0% by weight, copper-based which the balance of Cu A sintered sliding material is joined by sintering, and a joining shear strength at a joining interface between the iron-based material and the copper-based sintered sliding material is 14.8 kg / mm 2 or more. Sliding material. 前記母材は、鋳鉄材であることを特徴とする請求項に記載の摺動材。The sliding material according to claim 1 , wherein the base material is a cast iron material. 鉄系材料よりなる母材に銅系焼結摺動材を接合するに際し、Ti:0.2〜3.0重量%と、Sn:5〜12重量%と、b:0〜10重量%と、残部がCuよりなる銅系焼結摺動材を用い、この銅系焼結摺動材を前記母材と組み合わせて焼結することにより、その焼結と同時に前記母材に接合することを特徴とする摺動材の製造方法。Upon bonding the copper-based sintered sliding material in the base material made of iron-based material, Ti: 0.2 to 3.0 and weight%, Sn: 5 to 12% by weight and, P b: 0 wt% And using a copper-based sintered sliding material with the balance made of Cu, and sintering the copper-based sintered sliding material in combination with the base material, thereby joining the base material simultaneously with the sintering. The manufacturing method of the sliding material characterized by these. 前記母材は、鋳鉄材であることを特徴とする請求項に記載の摺動材の製造方法。The method for manufacturing a sliding material according to claim 3 , wherein the base material is a cast iron material.
JP17571496A 1996-06-13 1996-06-13 Sliding material and manufacturing method thereof Expired - Lifetime JP3755932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17571496A JP3755932B2 (en) 1996-06-13 1996-06-13 Sliding material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17571496A JP3755932B2 (en) 1996-06-13 1996-06-13 Sliding material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH101704A JPH101704A (en) 1998-01-06
JP3755932B2 true JP3755932B2 (en) 2006-03-15

Family

ID=16000962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17571496A Expired - Lifetime JP3755932B2 (en) 1996-06-13 1996-06-13 Sliding material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3755932B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399292B1 (en) * 2000-09-04 2003-09-26 정의현 Manufacturing method of bi-metal bushing bonded for press-fit
KR20020050050A (en) * 2000-12-19 2002-06-26 김재진 Bushing material with dual structure
KR100393900B1 (en) * 2000-12-28 2003-08-06 주식회사 다윈프릭션 Junction method between different materials
FR2825764B1 (en) * 2001-06-07 2003-09-19 Hispano Suiza Sa SMOOTH BEARING PROVIDED WITH A FRICTION COATING AND METHOD FOR PRODUCING THE SAME
JP2003089831A (en) 2001-07-12 2003-03-28 Komatsu Ltd Copper-based sintered sliding material and multi-layer sintered sliding member

Also Published As

Publication number Publication date
JPH101704A (en) 1998-01-06

Similar Documents

Publication Publication Date Title
KR101567840B1 (en) Powder method of manufacturing a component and component
JP4215285B2 (en) Self-lubricating sintered sliding material and manufacturing method thereof
JP4424810B2 (en) Sintered material
GB2216545A (en) Sintered alloy for oil-retaining bearing and method for manufacturing the sintered alloy
JPH08232029A (en) Nickel-base grain dispersed type sintered copper alloy and its production
JP3755932B2 (en) Sliding material and manufacturing method thereof
JPS6366362B2 (en)
JP2004083934A (en) Multi-layer sliding part and method for manufacturing it
JP2551981B2 (en) Multi-layer iron copper lead alloy bearing material
JPS63297502A (en) High-strength alloy steel powder for powder metallurgy and its production
WO2021217512A1 (en) Pre-alloyed powder for sinter-brazing, sinter-brazing material and sinter-brazing method.
US5553767A (en) Soldering iron tip made from a copper/iron alloy composite
JP4177534B2 (en) Alloy powder for copper-based high strength sintered parts
Berry Factors affecting the growth of 90/10 copper/tin mixes based on atomized powders
GB2216543A (en) Sintered oil retaining bearing
JP2733684B2 (en) Joined sintered friction material
JPS6038442B2 (en) Manufacturing method of aluminum alloy low density sintered parts
JP3658465B2 (en) Iron-based sintered sliding member and manufacturing method thereof
JP4167011B2 (en) Method for producing composite material comprising non-ferrous metal alloy containing low melting point material and steel
Vetterick et al. Novel Lead-free Bronze Bearing Materials Produced by Powder Metallurgy Processing
JP2000256775A (en) Cu-Ni-Mn SINTERING FRICTIONAL MATERIAL
JP2001073869A (en) Aluminum alloy piston for internal combustion engine with ring groove reinforced with sintered body having grooves in oversurface and undersurface and its manufacture
JPH09287002A (en) Powdery mixture for powder metallurgy
JP2001181753A (en) Alloy powder for copper series high strength sintered parts
JPS61119604A (en) Production of bearing material consisting of ferrous sintered alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050815

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

EXPY Cancellation because of completion of term