JP3754755B2 - Soil water retention agent - Google Patents

Soil water retention agent Download PDF

Info

Publication number
JP3754755B2
JP3754755B2 JP14781696A JP14781696A JP3754755B2 JP 3754755 B2 JP3754755 B2 JP 3754755B2 JP 14781696 A JP14781696 A JP 14781696A JP 14781696 A JP14781696 A JP 14781696A JP 3754755 B2 JP3754755 B2 JP 3754755B2
Authority
JP
Japan
Prior art keywords
water
temperature
sensitive
absorbing polymer
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14781696A
Other languages
Japanese (ja)
Other versions
JPH09302339A (en
Inventor
洋 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohjin Holdings Co Ltd
Original Assignee
Kohjin Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohjin Holdings Co Ltd filed Critical Kohjin Holdings Co Ltd
Priority to JP14781696A priority Critical patent/JP3754755B2/en
Publication of JPH09302339A publication Critical patent/JPH09302339A/en
Application granted granted Critical
Publication of JP3754755B2 publication Critical patent/JP3754755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/46Water-loss or fluid-loss reducers, hygroscopic or hydrophilic agents, water retention agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、植生土壌の改質に用いられる土壌保水剤に関するものである。
【0002】
【従来技術】
法面緑化用土壌、都市空間緑化用土壌、プランタ、鉢もの等、水の不足しがちな土壌で植物を育成する場合、土壌に保水剤を添加することは有効である。保水剤の一つに感温吸水性ポリマーがある。感温吸水性ポリマーは特定の設定温度(以下、感温点と称する)以下の温度では水を吸収膨潤し、感温点以上の温度になると収縮、排水する為、地温の変化によって水を給排水する土壌保水剤となり植生土壌用の保水剤として優れた機能を有する。
【0003】
しかしながら感温吸水成ポリマーの原粉末で土壌に混合すると膨潤時にゲルが土壌空間を閉塞したり、膨潤にともない土面が盛り上がる等の問題がある。又、粉末での土壌への混合は作業性にも難がある。
【0004】
【発明が解決しようとする課題】
本発明は上記課題を解決しようとするものであり、作業性に優れかつ土壌に混合吸水した場合、土壌空間を閉塞することがなく、土壌の容積変化をきたすことの少ない、温度の変化によって水を給排水する土壌保水剤を得ることを目的とする。
【0005】
【課題を解決するための手段】
本発明者は、かかる課題を解決すべく鋭意検討の結果、感温吸水性ポリマーを多孔材と複合化することによって課題を解決できることを見出し、本発明を完成するに至った。
すなわち本発明は、収縮時の粒径が多孔材の空孔の径より小さい感温吸水性ポリマー粉末を、感温吸水性ポリマーの感温点以上の温度で多孔材と水に混合し、次いで温度を感温点以下に下げて感温吸水性ポリマーを膨潤させた後、余剰水を除去することにより得られる感温性吸水性ポリマーと多孔材の複合材料からなる土壌保水剤である。
【0006】
本発明に用いられる感温吸水性ポリマーは水中で下限臨界共溶温度を有するポリマーを架橋することによって得られる。具体的にはN−イソプロピル(メタ)アクリルアミド、N−n−プロピル(メタ)アクリルアミド、N、Nージエチルアクリルアミド、アクリロイルピペリジン、アクリロイルピロリジン等のNーアルキル置換アクリルアミドモノマーを主成分としこれに架橋性の多官能モノマーを加えて重合することによって得られる。感温点のコントロール、吸水倍率の向上率等必要に応じて他のビニルモノマーを共重合することもできる。共重合するビニルモノマーとしては、(メタ)アクリル酸及びその塩、(メタ)アクリルアミド、オーブチルアクリルアミド、ダイアセトンアクリルアミド等があげられる。
【0007】
本発明に利用される多孔材は、耐圧強度を有する硬質材料であること、孔が連続孔であることが必要であり、具体的にはパーライト、軽石、バーミキュライト等の無機多孔体、ソバガラ、モニガラ等の植物由来の天然有機物多孔体、連続気泡型発泡スチール等の合成樹脂多孔体が利用できる。
【0008】
感温吸水性ポリマーの粒径は非膨潤状態で多孔材の孔径より小さいことが必要である。感温吸水性ポリマーの非膨潤状態での粒径が多孔材の孔径より大きいと多孔材の孔の中に入らず複合化の意味をなさないのみならず、多孔材の孔を塞いで土壌にとって無意味な空間を生ずることになる。実際には多孔材、感温吸水性ポリマーとも孔径分布、粒径分布を有するため厳密な定量的定義は難しいがおおむね感温吸水性ポリマー非膨潤時の平均粒径が多孔材の平均孔径の1/3以下が適当である。例えば、多孔体として平均孔径100μmの真珠岩パーライトを用いる場合は33μm以下の粒径の感温吸水性ポリマーを用いる。
【0009】
この様な粒径の感温吸水性ポリマーを感温点以上の温度(非膨潤状態)で水の存在下、多孔材と混合すると感温吸水性ポリマーは水と共に多孔材の孔中に侵入する。この際に使用する水の量は特に限定しないが感温吸水性ポリマーの50〜500倍で多孔材の全孔容積の1〜2倍が好ましい。混合後、温度を感温吸水性ポリマーの感温点以下に下げることにより感温吸水性ポリマーは膨潤し、粒径が4〜6倍となると同時に接粘着性を生じ多孔材からの脱着しにくくなる。この様にして得られた複合体から濾過等により物理的に余剰水を除去することで目的とする土壌保水剤が得られる。
【0010】
本発明の土壌保水剤は低温度時に高い保水量を示し、感温点以上ではその大半を植物の利用可能な水として排出する。別の表現をすると土中に混合した場合、ほぼ感温吸水性ポリマーの理論吸水量の保水量増加を示す。又、土壌の空間部を閉塞したり土壌の容積変化を起こすこともない。さらにこの土壌保水剤は水に溶けた肥料成分も保持排水する為、肥料の有効利用率も向上する。以下実施例をもって本発明を具体的に説明する。
【0011】
【実施例】
実施例1 土壌保水剤(感温吸水性ポリマー/パーライト複合材料)の製法
粒径20μm以下の感温吸水性ポリマー(N−イソプロピルアクリルアミドを主成分とする重合架橋体;感温点30℃)10gを40℃の温水2ιに分散させた。これを真珠岩パーライト(平均孔径100μm)を1ι入れた容器中に攪拌しながら注ぎ込み、その後系の温度を20℃まで冷却し2時間放置した。固形分を濾過分取乾燥し、感温吸水性ポリマー/パーライト複合材料を1ι得た。
【0012】
実施例2 保水量の測定
底抜きコックのついた円筒容器に実施例1で製造した感温吸水性ポリマー/パーライト複合材料を300cc(65g)まで満たし、これに20℃の水500ccを加え1時間放置した。この間、複合材料の表面の上昇はなく容積の増加はほとんど認められなかった。次いで底抜きコックを開け水を排水し一夜放置した後重量を測定したところ240gであった。保水量は175g/300cc(580g/ι)であった。
【0013】
比較例1
感温吸水性ポリマー/パーライト複合材料に代え、パーライト単体を用いた以外は実施例2と同様なテストを行った。その結果、保水量は180g/300cc(383g/ι)であった。
【0014】
比較例2
感温吸水性ポリマーとして粒径100〜500μmのN−イソプロピルアクリルアミドを主成分とする重合架橋体(感温点30℃)3g、多孔材として真珠岩パーライト(平均孔径100μm)300ccとした以外は、実施例1と同様の方法で感温吸水性ポリマー/パーライト複合材料を得た。得られた複合材料を用い実施例2と同様のテストを行ったところ、20℃の水500cc中で吸水させたところで複合材料の表面が上昇し容積が80cc増加したことが確認された。また排水後一夜放置した後の重量増加は220gであった(保水量517g/ι)。
【0015】
実施例3 土壌への混合試験
乾燥した黒土500cc(350g)に実施例1で得られた感温吸水性ポリマー/パーライト複合材料500cc(105g)を混合した。これを底抜きコックのついた容器に入れ、水1ιを加え2時間放置した後、底抜きコックを開け余剰水を排水した。この段階での土壌全重量は880gで含水量は425g/ιであった。この時容器は1000ccで変化しなかった。次に環境温度を35℃に上げ5時間底抜きより排出される水を補足し、その重量を求めた。排出された水の重量は165gであった。
【0016】
比較例3
実施例3の黒土と感温吸水性ポリマー/パーライト複合材料を混合したものの代わりに、黒土1ι(700g)に実施例1で用いた感温吸水性ポリマー5gを入れ混合したものを用いる以外は、実施例3と同様の試験を行った。全土壌重量は1050gで保水量は350g/ιであった。この時点で土壌の容積は1120ccに増加した。昇温度の排水量は90gであった。
【0017】
比較例4
実施例3の黒土と感温吸水性ポリマー/パーライト複合材料を混合したものの代わりに、黒土1ι(700g)を単独で用いた以外は、実施例3と同様の試験を行った。保水量は260g/ιで昇温度の排水は認められなかった。
【0018】
【発明の効果】
本発明の土壌保水剤は、大きな保水力を有し、かつ、温度変化に対応して水を給排水するすぐれた特性を持ちながら、給排水時の容積変化がほとんどなく、湿潤時土壌を閉塞したり、乾燥時ひび割れを生じたりする欠点のない優れた土壌保水剤であり、植生分野の土壌の水管理を大幅に省力できる。
[0001]
[Industrial application fields]
The present invention relates to a soil water retention agent used for reforming vegetation soil.
[0002]
[Prior art]
When growing plants in soil that tends to lack water, such as soil for slope planting, soil for planting urban spaces, planters, pots, etc., it is effective to add a water retention agent to the soil. One water retention agent is a temperature-sensitive water-absorbing polymer. The temperature-sensitive water-absorbing polymer absorbs and swells water at a temperature below a specific set temperature (hereinafter referred to as temperature-sensitive point), and shrinks and drains when the temperature is higher than the temperature-sensitive point. It has an excellent function as a water retention agent for vegetation soil.
[0003]
However, when mixed into the soil with the raw powder of the thermosensitive water-absorbing polymer, there are problems such as the gel clogging the soil space at the time of swelling and the soil surface rising with swelling. Moreover, mixing with soil with powder is difficult to work.
[0004]
[Problems to be solved by the invention]
The present invention is intended to solve the above-mentioned problems, and is excellent in workability and, when mixed and absorbed with soil, does not block the soil space and causes little change in the volume of the soil. It aims at obtaining the soil water retention agent which supplies and drains water.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve such problems, the present inventor has found that the problem can be solved by compositing a temperature-sensitive water-absorbing polymer with a porous material, and has completed the present invention.
That is, the present invention mixes a temperature-sensitive water-absorbing polymer powder having a particle size at shrinkage smaller than the pore size of the porous material with the porous material and water at a temperature equal to or higher than the temperature-sensitive point of the temperature-sensitive water-absorbing polymer, A soil water-retaining agent composed of a composite material of a temperature-sensitive water-absorbing polymer and a porous material obtained by removing the excess water after the temperature is lowered to a temperature-sensitive point or less to swell the temperature-sensitive water-absorbing polymer.
[0006]
The temperature-sensitive water-absorbing polymer used in the present invention is obtained by crosslinking a polymer having a lower critical solution temperature in water. Specifically, N-alkyl-substituted acrylamide monomers such as N-isopropyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N, N-diethylacrylamide, acryloylpiperidine, acryloylpyrrolidine and the like are cross-linkable. It is obtained by adding a polyfunctional monomer and polymerizing. Other vinyl monomers can be copolymerized as required, such as control of the temperature sensitive point and improvement rate of water absorption. Examples of the vinyl monomer to be copolymerized include (meth) acrylic acid and salts thereof, (meth) acrylamide, obutyl acrylamide, diacetone acrylamide and the like.
[0007]
The porous material used in the present invention needs to be a hard material having a pressure resistance, and the pores must be continuous pores. Specifically, inorganic porous bodies such as pearlite, pumice, and vermiculite, buckwheat, monigara Natural organic porous materials derived from plants such as synthetic resin porous materials such as open cell foamed steel can be used.
[0008]
The particle size of the temperature-sensitive water-absorbing polymer must be smaller than the pore size of the porous material in a non-swelled state. If the particle size of the temperature-sensitive water-absorbing polymer in the non-swelled state is larger than the pore size of the porous material, it does not enter the pores of the porous material and does not make sense, but also closes the pores of the porous material and prevents the soil It creates a meaningless space. Actually, since the porous material and the temperature-sensitive water-absorbing polymer both have a pore size distribution and a particle size distribution, strict quantitative definition is difficult, but the average particle size when the temperature-sensitive water-absorbing polymer is not swollen is generally 1 of the average pore size of the porous material. / 3 or less is appropriate. For example, when nacreous pearlite having an average pore diameter of 100 μm is used as the porous body, a thermosensitive water-absorbing polymer having a particle diameter of 33 μm or less is used.
[0009]
When a temperature-sensitive water-absorbing polymer having such a particle size is mixed with a porous material in the presence of water at a temperature higher than the temperature-sensitive point (non-swelled state), the temperature-sensitive water-absorbing polymer penetrates into the pores of the porous material together with water. . The amount of water used at this time is not particularly limited, but is preferably 50 to 500 times that of the thermosensitive polymer and 1 to 2 times the total pore volume of the porous material. After mixing, the temperature-sensitive water-absorbing polymer swells by lowering the temperature below the temperature-sensitive point of the temperature-sensitive water-absorbing polymer, and the particle size becomes 4 to 6 times. Become. The intended soil water retention agent can be obtained by physically removing excess water from the thus obtained composite by filtration or the like.
[0010]
The soil water retention agent of the present invention exhibits a high water retention amount at low temperatures, and most of it is discharged as water that can be used by plants above the temperature sensitive point. In other words, when mixed in the soil, it shows an increase in the water retention capacity of the theoretical water absorption capacity of the thermosensitive polymer. In addition, the soil space is not blocked and the soil volume is not changed. Furthermore, since this soil water retention agent also retains and drains the fertilizer components dissolved in water, the effective utilization rate of the fertilizer is also improved. The present invention will be specifically described below with reference to examples.
[0011]
【Example】
Example 1 Manufacturing method of soil water-retaining agent (temperature-sensitive water-absorbing polymer / pearlite composite material) Temperature-sensitive water-absorbing polymer having a particle size of 20 μm or less (polymerized crosslinked body mainly composed of N-isopropylacrylamide; temperature-sensitive point 30 ° C.) 10 g Was dispersed in 40 ° C. warm water 2ι. This was poured into a container containing 1 pearlite perlite (average pore size 100 μm) with stirring, and then the temperature of the system was cooled to 20 ° C. and left for 2 hours. The solid content was collected by filtration and dried to obtain 1 ι of a thermosensitive water-absorbing polymer / pearlite composite material.
[0012]
Example 2 Measurement of water retention amount A cylindrical container with a bottomed cock was filled with the thermosensitive water-absorbing polymer / pearlite composite material prepared in Example 1 up to 300 cc (65 g), and 500 cc of water at 20 ° C. was added thereto for 1 hour. I left it alone. During this time, there was no increase in the surface of the composite material and almost no increase in volume was observed. Next, the bottom cock was opened, the water was drained and left overnight, and the weight was measured to be 240 g. The amount of water retained was 175 g / 300 cc (580 g / ι).
[0013]
Comparative Example 1
The same test as in Example 2 was performed except that pearlite alone was used instead of the temperature-sensitive water-absorbing polymer / pearlite composite material. As a result, the water retention amount was 180 g / 300 cc (383 g / ι).
[0014]
Comparative Example 2
Except that the temperature-sensitive water-absorbing polymer is 3 g of a crosslinked polymer (mainly temperature sensitive point 30 ° C.) 3 g of N-isopropylacrylamide having a particle diameter of 100 to 500 μm, and the porous material is pearlite pearlite (average pore diameter 100 μm) 300 cc, A temperature-sensitive water-absorbing polymer / pearlite composite material was obtained in the same manner as in Example 1. When the same test as in Example 2 was performed using the obtained composite material, it was confirmed that the surface of the composite material rose and the volume increased by 80 cc when absorbed in 500 cc of water at 20 ° C. The weight increase after standing overnight after drainage was 220 g (water retention amount 517 g / ι).
[0015]
Example 3 Mixing test to soil 500 cc (105 g) of the thermosensitive water-absorbing polymer / pearlite composite material obtained in Example 1 was mixed with 500 cc (350 g) of dried black clay. This was put into a container with a bottomed cock, water 1ι was added and allowed to stand for 2 hours, and then the bottomed cock was opened to drain excess water. The total soil weight at this stage was 880 g and the water content was 425 g / ι. At this time, the container did not change at 1000 cc. Next, the environmental temperature was raised to 35 ° C., and the water discharged from the bottom for 5 hours was supplemented, and the weight was determined. The weight of the discharged water was 165 g.
[0016]
Comparative Example 3
Instead of using the black clay of Example 3 mixed with the temperature-sensitive water-absorbing polymer / pearlite composite material, a mixture of 5 g of the temperature-sensitive water-absorbing polymer used in Example 1 in black clay 1ι (700 g) was used. The same test as in Example 3 was performed. The total soil weight was 1050 g and the water retention amount was 350 g / ι. At this point, the soil volume increased to 1120 cc. The amount of discharged water at the elevated temperature was 90 g.
[0017]
Comparative Example 4
A test was conducted in the same manner as in Example 3, except that black clay 1ι (700 g) was used alone in place of the black clay of Example 3 mixed with the thermosensitive water-absorbing polymer / pearlite composite material. The amount of water retained was 260 g / ι and no drainage at elevated temperature was observed.
[0018]
【The invention's effect】
The soil water-retaining agent of the present invention has a large water-holding power and has excellent characteristics for supplying and discharging water in response to temperature changes, but has almost no volume change during supply and drainage, and clogs soil when wet. It is an excellent soil water retention agent that does not have the drawbacks of causing cracks when dry, and can greatly save the water management of soil in the vegetation field.

Claims (3)

収縮時の粒径が多孔材の空孔の径より小さい感温吸水性ポリマー粉末を、感温吸水性ポリマーの感温点以上の温度で多孔材と水に混合し、次いで温度を感温点以下に下げて感温吸水性ポリマーを膨潤させた後、余剰水を除去することにより得られる感温性吸水性ポリマーと多孔材の複合材料からなる土壌保水剤。The temperature-sensitive water-absorbing polymer powder whose particle size upon shrinkage is smaller than the pore size of the porous material is mixed with the porous material and water at a temperature equal to or higher than the temperature-sensitive point of the temperature-sensitive water-absorbing polymer, and then the temperature is the temperature-sensitive point. A soil water-retaining agent comprising a composite material of a temperature-sensitive water-absorbing polymer and a porous material, which is obtained by lowering the temperature-sensitive water-absorbing polymer to a lower level and then removing excess water. 感温吸水性ポリマーがN−イソプロピルアクリルアミドを主成分とする重合架橋体である請求項1記載の土壌保水剤。The soil water-retaining agent according to claim 1, wherein the temperature-sensitive water-absorbing polymer is a polymerized crosslinked body mainly composed of N-isopropylacrylamide. 多孔材が真珠岩パーライトである請求項1記載の土壌保水剤。The soil water retention agent according to claim 1, wherein the porous material is pearlite pearlite.
JP14781696A 1996-05-20 1996-05-20 Soil water retention agent Expired - Fee Related JP3754755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14781696A JP3754755B2 (en) 1996-05-20 1996-05-20 Soil water retention agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14781696A JP3754755B2 (en) 1996-05-20 1996-05-20 Soil water retention agent

Publications (2)

Publication Number Publication Date
JPH09302339A JPH09302339A (en) 1997-11-25
JP3754755B2 true JP3754755B2 (en) 2006-03-15

Family

ID=15438879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14781696A Expired - Fee Related JP3754755B2 (en) 1996-05-20 1996-05-20 Soil water retention agent

Country Status (1)

Country Link
JP (1) JP3754755B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11457624B2 (en) 2016-11-02 2022-10-04 Corbet Scientific, Llc Adjuvant compositions for plant treatment chemicals
US11666048B2 (en) 2017-02-24 2023-06-06 Corbet Scientific, Llc Treatment for plants in conjunction with harvesting

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051637A (en) * 2000-08-11 2002-02-19 Kohjin Co Ltd Planting bed
JP4911418B2 (en) * 2009-07-17 2012-04-04 藤田 豊博 Nursery and planting system using nursery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11457624B2 (en) 2016-11-02 2022-10-04 Corbet Scientific, Llc Adjuvant compositions for plant treatment chemicals
US11666048B2 (en) 2017-02-24 2023-06-06 Corbet Scientific, Llc Treatment for plants in conjunction with harvesting

Also Published As

Publication number Publication date
JPH09302339A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
CN102229804B (en) Clay-based compound sand consolidating material
US4707176A (en) Plant growth media containing rice hull ash
CN104150580B (en) The stagnant filler storing control techniques of a kind of urban road rainwater ecological
JP2001169658A (en) Formed product of artificial soil for greening building and panel for greening wall surface
CN108776095B (en) Device and method for measuring sponge infiltration rate for construction of sponge urban green land
JP3754755B2 (en) Soil water retention agent
Osman et al. Physical properties of soil
CN209367938U (en) A kind of wet pool bank band of step based on external source prevention and cure of pollution and water body in-situ reparation
GB2127005A (en) Growing medium comprising water absorbent polymer
John Towards improved application of super absorbent polymers in agriculture and hydrology: A cross-disciplinary approach
CN108203152A (en) A kind of filler for high efficient block biology gaseous-waste holdup system
CN108341437A (en) A kind of biology gaseous-waste holdup system
CN110106762A (en) A kind of artificial water storage stone and preparation method thereof
JP2003138510A (en) Water holding elastic paved body, method of constructing the paved body, and water holding elastic pavement block
Chatzoudis et al. Soil salts reduce hydration of polymeric gels and affect moisture characteristics of soil
JPS5924034A (en) Greens-planting work for slope
JP3802667B2 (en) Plant cultivation material and container using the same
JP4860074B2 (en) Artificial soil molded body for greening and soil molded article containing the same
JP4502312B2 (en) Water storage deck
JPH07110937B2 (en) Manufacturing method of artificial snow
JP2006306697A (en) Porous hardened body having water-retaining and releasing function
JPH07218072A (en) Manufacture of ice sheet and/or artificial snow
CN108163963A (en) A kind of filler for biological gaseous-waste holdup system
JP3409173B2 (en) Container bag with plant growth base material
CN108558122A (en) A kind of high efficient block biology gaseous-waste holdup system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20091222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20101222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20111222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20121222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20121222

LAPS Cancellation because of no payment of annual fees