JP3754542B2 - Screw tightening method, screw tightening device, attachment and recording medium - Google Patents

Screw tightening method, screw tightening device, attachment and recording medium Download PDF

Info

Publication number
JP3754542B2
JP3754542B2 JP29750797A JP29750797A JP3754542B2 JP 3754542 B2 JP3754542 B2 JP 3754542B2 JP 29750797 A JP29750797 A JP 29750797A JP 29750797 A JP29750797 A JP 29750797A JP 3754542 B2 JP3754542 B2 JP 3754542B2
Authority
JP
Japan
Prior art keywords
torque
tightening
screw
screw member
axial force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29750797A
Other languages
Japanese (ja)
Other versions
JPH11129163A (en
Inventor
敬宜 村上
森  和也
真治 橋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Motor Wheel Co Ltd
Original Assignee
Central Motor Wheel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Motor Wheel Co Ltd filed Critical Central Motor Wheel Co Ltd
Priority to JP29750797A priority Critical patent/JP3754542B2/en
Publication of JPH11129163A publication Critical patent/JPH11129163A/en
Application granted granted Critical
Publication of JP3754542B2 publication Critical patent/JP3754542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、雄ねじ部材と雌ねじ部材とを螺合させた状態で、それら両ねじ部材の一方である非回転ねじ部材の回転を防止し、それら両ねじ部材の他方である回転ねじ部材を回転させることにより、両ねじ部材を被締付物を間に挟んで締め付ける方法および装置に関するものであり、特に、締付力の管理精度の向上に関するものである。
【0002】
【従来の技術】
雄ねじ部材と雌ねじ部材とにより被締付物が締め付けられる場合、被締付物が複数の場合と単数の場合とがある。例えば、雌ねじ穴が形成された部材(これが雌ねじ部材である)に、被締付物の貫通穴を貫通させたボルト(これが雄ねじ部材である)が締め込まれることにより、被締付物が雌ねじ部材に締め付けられる場合には、被締付物は単数になることが多いが、頭付きのボルトとナットとをそれぞれ雄ねじ部材,雌ねじ部材として締付けが行われる場合には、被締付物は複数個となる。なお、植込みボルトが取り付けられた部材に、ナットにより被締付部材が締め付けられる場合には、植込みボルトが取り付けられた部材を雄ねじ部材と考えることとする。この場合には、被締付物が単数になることが多い。締付けに当たっては、雄ねじ部材が回転させられる場合と、雌ねじ部材が回転させられる場合とがあり、反対側のねじ部材は回転しないようにされることが必要である。本明細書においては、回転させられる側のねじ部材を回転ねじ部材、回転しないようにされる側のねじ部材を非回転ねじ部材と称することとする。
【0003】
ねじ部材の締付け時には、本来は雄ねじ部材の軸力である締付力が管理されるべきであるが、締付力を検出することが困難であるため、通常はJIS B 1083の「ねじの締付け通則」に規定されている「トルク法」,「回転角法」,「トルク勾配法」等によって管理されている。これらのうち、「トルク勾配法」による場合には、締付力の管理精度が、雌雄両ねじ部材のねじ面間の摩擦係数(ねじ面間摩擦係数と称する)や回転ねじ部材の座面と被締付物の座面との間の摩擦係数(座面間摩擦係数と称する)の影響を受けることはないが、「トルク法」と「回転角法」とによる場合にはそれら摩擦係数の影響を受ける。従来は、ねじ面間摩擦係数および座面間摩擦係数を予め測定しておき、それらを使用して締付力の管理が行われていたが、両摩擦係数はねじ面や座面の状況により左右される。ねじ面や座面の表面粗さおよび硬度や潤滑状況等の影響を受けるのであり、通常、これらは一定ではないため、締付力のばらつきが大きくなり、締付力管理の信頼性が十分とは言えなかった。
【0004】
なお、ねじの締付時には、回転ねじ部材の座面と被締付物の座面との間にはスプリングワッシャと平ワッシャとの少なくとも一方が配設されるのが普通であり、回転ねじ部材の回転時には回転ねじ部材とワッシャとの間ですべりが生じるのが普通である。したがって、以下においては、ワッシャを被締付物の一部と見なし、ワッシャの座面を被締付物の座面と見なすこととし、ワッシャの存在は無視して説明する。さらに付言すれば、スプリングワッシャが回転ねじ部材と一体的に回転することもあり得、その場合にはスプリングワッシャの被締付物の座面と接触する座面を回転ねじ部材と見なすべきであることになるが、実用上は、その場合でも回転ねじ部材とワッシャとの間ですべっていると考えていても問題はない。
【0005】
【発明が解決しようとする課題,課題解決手段,作用および効果】
本発明は、以上の事情を背景として、締付力管理の信頼性を向上させることを課題としてなされたものである。
そして、本発明によって、下記各態様のねじ締付方法,ねじ締付装置,締付力管理用アタッチメント,締付力管理用記録媒体,摩擦係数関連量取得方法,摩擦係数関連量取得装置等が得られる。各態様は請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。各項に記載の特徴の組合わせの可能性を明示するためである。
(1)雄ねじ部材と雌ねじ部材とを螺合させた状態で、それら両ねじ部材の一方である非回転ねじ部材の回転を防止し、それら両ねじ部材の他方である回転ねじ部材を回転させることにより、両ねじ部材を被締付物を間に挟んで締め付ける方法であって、
前記回転ねじ部材の座面が前記被締付物の座面に接触しない初期段階において、回転ねじ部材に第一軸方向力を加えつつその回転ねじ部材を回転させて回転抵抗トルクを検出し、少なくともその検出した初期段階の回転抵抗トルクである初期段階トルクと前記第一軸方向力とに基づいて締付終了条件を決定し、その締付終了条件が満たされたときに締付けを終了するねじ締付方法(請求項1)。
ここにおいて、「回転ねじ部材の座面」および「被締付物の座面」は、回転ねじ部材と被締付物とが直接接触する場合は文字通りそれらの座面であるが、両者の間にスプリングワッシャと平ワッシャとの少なくとも一方が配設される場合には、特に断らない限り、回転ねじ部材の回転時にすべりが生じる2つの座面(前述のように回転ねじ部材の座面とそれに接触するワッシャの座面であるのが普通である)がそれぞれ「回転ねじ部材の座面」および「被締付物の座面」であると見なすこととする。ただし、ワッシャ(スプリングワッシャは特に)はねじの緩みを防止することを主目的として配設されるものであるのに対し、本発明の方法によりねじの締付けが行われる場合には締付力が適正に管理されるため、ねじの緩みが発生しにくくなり、ワッシャの必要性が低下する。場合によってはワッシャを省略することも可能になる。
上記のようにして検出される初期段階トルクは、両ねじ部材のねじ面間摩擦係数の影響を受ける。両ねじ部材の呼び径(または有効径)およびリード角(またはピッチ)が同じで、回転ねじ部材に加えられる第一軸方向力が同じであれば、ねじ面間の摩擦係数が大きいほど初期段階トルクが大きくなるのである。そして、ねじ面間摩擦係数が大きいほど、同じ締付力を得るために必要な締付トルクが大きくなるため、トルク法で締付力を管理する場合には、初期段階トルクが大きいほど、目標締付トルク(締付を終了させるべき締付トルク)を大きく設定すれば、ねじ面間摩擦係数の影響を軽減することができる。また、回転角法で締付力を管理する場合には、回転角の計測起点となるスナグ点等の始点トルクを、初期段階トルクが大きいほど高く設定することによって、ねじ面間摩擦係数の影響を軽減することができる。なお、実験によれば、回転ねじ部材に加えられる第一軸方向力が大きいほど、ねじ面間摩擦係数の評価精度が向上する。特に、回転ねじ部材と被締付物との座面間にスプリングワッシャが配設される場合には、第一軸方向力がスプリングワッシャを密着状態にするに足る大きさであることが望ましい。
締付終了条件を決定するに当たっては、初期段階トルク自体をねじ面間摩擦係数に関連する摩擦係数関連量の一種として使用して締付終了条件を決定しても、初期段階トルクからねじ面間摩擦係数を推定し、その推定摩擦係数を使用して締付終了条件を決定してもよい。ねじ面間摩擦係数を評価すると言っても、必ずしもねじ面間摩擦係数自体を推定する必要はないのである。
(2)前記第一軸方向力が、前記回転ねじ部材の座面を被締付物の座面に接近させる向きの力である (1)項に記載のねじ締付方法。
回転ねじ部材に、その回転ねじ部材の座面を前記被締付物の座面から離間させる向きの第一軸方向力(引張力と称する)を加えつつ回転ねじ部材の回転抵抗トルクを検出しても、ねじ面間の摩擦係数を評価することはできるが、本態様におけるように、回転ねじ部材
の座面を被締付物の座面に接近させる向きの第一軸方向力(圧縮力と称する)を加えつつ回転ねじ部材の回転抵抗トルクを検出することが望ましい場合が多い。例えば、回転ねじ部材に圧縮力を加えるためには、ねじ締付装置のねじ係合部(レンチ部材と称する)を回転ねじ部材に当接させればよいため、レンチ部材として従来から使用されていたソケット,六角棒等をそのまま使用することができるのに対し、引張力を加えるためには、後に実施形態の項で説明するように、特殊な構造のレンチ部材を使用することが必要になる。また、レンチ部材の構造によっては、回転ねじ部材の形状を通常の形状とは異なる形状にすることが必要なる。さらに、圧縮力を加える場合には、次に説明するように、回転ねじ部材と被締付物との座面間摩擦係数も評価することができるが、引張力を加える場合にはこれを評価することができない。
(3)前記回転ねじ部材の座面が前記被締付物の座面に接触し、かつ、両ねじ部材のねじ面が実質的に接触していない中間段階においても前記回転抵抗トルクを検出し、その検出した中間段階トルクにも基づいて前記締付終了条件を決定する (2)項に記載のねじ締付方法。
本態様におけるように、ねじ面間摩擦係数に加えて座面間摩擦係数も評価し、締付終了条件の決定に加味すれば、締付力の管理精度を一層高めることができる。なお、初期段階において回転ねじ部材に加えられる第一軸方向力と、中間段階において加えられる第二軸方向力との大きさおよび向きは同じとすることが、軸方向力付与装置の構成を簡単にする上で望ましいが、不可欠ではない。軸方向力の大きさと向きとの少なくとも一方を初期段階と中間段階とで変えてもよいのである。初期段階では軸方向力を引張力として、その反力の非回転ねじ部材への伝達を容易にし、中間段階では後述の長さ変化装置による圧縮力とすることにより、反力をねじ締付装置自体に受けさせる態様がその一例である。
回転ねじ部材に軸方向力を加えるために、後述の種々の軸方向力付与装置を使用することができるが、手に持って使用するねじ締付装置によりねじの締付けを行う場合に、そのねじ締付装置の重量によって軸方向力を加えたり、作業者がねじ締付装置に軸方向の力を加えることによって回転ねじ部材に軸方向力を加えたりすることも可能である。同時点の軸方向力と回転抵抗トルクとを用いれば、支障なくねじ面や座面間の摩擦係数を評価することができ、必ずしも軸方向力を一定に保つ必要はないのである。
さらに、1回のねじ締付中に軸方向力を意識的に変化させてもよい。例えば、軸方向力を変化させつつ各大きさの軸方向力に対する回転抵抗トルクを検出し、複数組の軸方向力と回転抵抗トルクとの組合わせの各々についてねじ面や座面間の摩擦係数を評価し、それらの平均値を締付終了条件の決定に使用することができる。また、軸方向力の変化に応じて摩擦係数が変化する場合があり、この場合には、複数の軸方向力に対する摩擦係数関連量を取得し、それらに基づいて外挿法(補外法)あるいは内挿法(補間法)により、所望の軸方向力に対する摩擦係数関連量を取得することもできる。さらに、摩擦係数の評価後は軸方向力を解除あるいは軽減するなど、作業性等に対する考慮から軸方向力を変えることも可能である。
上記のように、軸方向力によって摩擦係数が変わる場合には、初期段階や中間段階に加えられる軸方向力が目標締付力に近いほど締付力の管理精度が向上することになるが、軸方向力の増大は装置の大形化や作業性低下につながることが多いため、両者を勘案して軸方向力を決めることが望ましい。
さらに付言すれば、回転ねじ部材の回転速度も必ずしも一定に保つ必要はない。例えば、初期段階や中間段階では(回転抵抗トルクを検出し得る時間が短い中間段階で特に)、回転速度を小さくして摩擦係数の評価を容易にしたり、逆に、最終段階で減速機の減速比を大きくして回転速度を小さくする代わりに大きな締付トルクが得られるようにしたりすることができる。
(4)前記締付終了条件が、実際の回転抵抗トルクが、少なくとも前記初期段階トルクに基づいて決まる目標締付トルクに等しくなることである (1)ないし (3)項のいずれか1つに記載のねじ締付方法。
本態様は前記「トルク法」による締付力の管理に相当する。
(5)前記締付終了条件が、前記初期段階トルクに基づいて決まる始点トルクに実際の回転抵抗トルクが達した時点からの前記回転ねじ部材の回転角が、前記雄ねじ部材および前記被締付物の弾性係数と目標締付力とに基づいて決まる目標回転角に等しくなることである (1)ないし (3)項のいずれか1つに記載のねじ締付方法。
本態様は前記「回転角法」による締付力の管理に相当する。ただし、上記始点トルクとしては、従来の「回転角法」におけるスナグ点に限定されず、回転ねじ部材と被締付物との座面同士と両ねじ部材のねじ面同士とが共に接触し、締付力が増大する最終段階と、前記中間段階との境界点である中間段階終了時点における回転抵抗トルクや、上記スナグ点よりやや高く設定した回転抵抗トルクを始点トルクとすることも可能である。
本態様のねじ締付方法による締付力の管理精度は始点トルクの設定精度によって大きく左右される。始点トルクは回転角と回転抵抗トルクとが比例関係にあることが確実である範囲の下限値に設定されることが望ましいのであるが、比例域の下限を正確に検出することは比較的困難である。そこで、まず、比例域にあることが保証される締付力の下限値(例えばねじ面同士および座面同士の接触状態が安定状態に到達することが確実な締付力)を決定し、その締付力の下限値と、ねじ面間摩擦係数関連量としての初期段階トルクと座面間摩擦係数関連量としての中間段階トルクとのうち少なくとも前者とに基づいて始点トルクを設定することにより、「回転角法」による締付力管理の精度を向上させようとするのが本態様のねじ締付方法なのである。
(6)前記回転ねじ部材に相対回転不能に係合するレンチ部材を回転可能に保持しているケーシングを、前記被締付物に、レンチ部材から回転ねじ部材への軸方向力の反力を伝達可能な状態で係合させて締付けを行う (1)ないし (5)項のいずれか1つに記載のねじ締付方法。
回転ねじ部材に加えられる軸方向力が引張力である場合には、ケーシングあるいはそれと一体的な部材を被締付物の表面に当接させるのみで、引張力の反力を被締付物を介して非回転ねじ部材に受けさせることができる。それに対し、回転ねじ部材に加えられる軸方向力が圧縮力である場合には、ケーシングあるいはそれと一体的な部材を被締付物に、ケーシングが被締付物から離間しないように係合させることが必要である。しかも、被締付物がケーシングと共にケーシングの側へ移動(これを被締付物の浮上がりと称する)してはならない。被締付物が浮き上がってしまえば、回転ねじ部材に十分な圧縮力を加えることができないからである。被締付物の重量が回転ねじ部材に加えるべき圧縮荷重より大きい場合には、被締付物の上方にケーシングを配置し、そのケーシングを被締付物に、その被締付物に対して相対的に上方へ移動不能に係合させれば、回転ねじ部材に十分な圧縮力を加えても被締付物が浮き上がることはない。しかし、被締付物が重量の小さいものである場合には、例えば、被締付物を次項におけるように仮に締め付けたり、専用の治具や別の重量物で押さえて浮き上がらないようにすることが必要になる。以上は、被締付物を下向きに締め付ける場合を想定して説明したが、上記のように被締付物を仮に締め付けたり、専用の治具で押さえたりすれば、被締付物を横方向に締め付けることもできる。
なお、上記レンチ部材なる用語は、回転ねじ部材に直接係合するソケットや六角棒等狭義のレンチ部材のみならず、インパクトレンチ等ねじ締付装置の角ドライブ等を備えた出力軸をも包含する広義の用語として使用する。レンチ部材をねじ締付装置の出力部材と言い換えることも可能であり、その場合、出力部材が先端に六角穴を備えたソケット部や六角棒部を備えた出力軸であり、直接回転ねじ部材の六角頭部や六角穴に係合する場合は、その出力軸は狭義でのレンチ部材と言い得る。それに対し、出力部材が先端に角ドライブ部等ソケット等の取付部を有するのみの出力軸である場合には、ソケット等を介して間接的に回転ねじ部材に係合し得るのみであって、狭義でのレンチ部材とは言い難い。しかし、回転ねじ部材への間接的な係合も係合であると考えれば、出力軸自体を広義のレンチ部材と考えることができ、また、出力軸にソケット等が取り付けられたものを1つの部材と考えれば、それら出力軸とソケット等とが組み合わされた部材は狭義のレンチ部材と言い得る。
(7)前記被締付物が、前記両ねじ部材の複数対によって締め付けられるものであり、そ
れら複数対のねじ部材のうちの少なくとも1対により仮に被締付物を締め付け、その被締付物に、前記回転ねじ部材に相対回転不能に係合するレンチ部材を回転可能に保持しているケーシングを、レンチ部材から回転ねじ部材への軸方向力の反力を伝達可能な状態で係合させて、前記複数対のねじ部材のうちの少なくとも1対を (2)ないし (5)項のいずれか1つの方法で締め付けた後、前記仮に締め付けておいた両ねじ部材の締付けを一旦緩め、
(2)ないし (5)項のいずれか1つの方法で締め付け直すねじ締付方法。
この方法によれば、専用の治具を使用することなく、軽量の被締付物を下向きは勿論、横方向にも上向きにも締め付けることができる。一般に、被締付物は複数対のねじ部材で締め付けられるため、本態様の締付方法は殆どの場合に採用することができる。なお、1個の部材に複数の雌ねじ穴が形成されている場合には、その1個の部材は複数個の雌ねじ部材が一体的に構成されたものと考えることとする。
(8)雄ねじ部材と雌ねじ部材とを螺合させた状態で、それら両ねじ部材の一方である非回転ねじ部材の回転を防止し、それら両ねじ部材の他方である回転ねじ部材を回転させることにより、両ねじ部材を被締付物を間に挟んで締め付ける装置であって、
前記回転ねじ部材を回転させる回転駆動装置と、
その回転駆動装置による前記回転ねじ部材の回転中であって、かつ、その回転ねじ部材の座面が前記被締付物の座面に接触しない初期段階の少なくとも一時点に、その回転ねじ部材に第一軸方向力を付与する軸方向力付与装置と、
前記回転ねじ部材の回転抵抗トルクを検出するトルク検出装置と、
少なくとも、前記初期段階であって前記軸方向力付与装置により前記第一軸方向力が付与されている状態で前記トルク検出装置により検出された回転抵抗トルクである初期段階トルクと、前記第一軸方向力とに基づいて締付終了条件を決定する締付終了条件決定手段と、
その締付終了条件決定手段によって決定された締付終了条件が満たされた場合に、前記回転駆動装置の停止指令を発する停止指令手段と
を含むことを特徴とするねじ締付装置(請求項2)。
本態様の装置によれば、前記 (1)項に記載のねじ締付方法を実施することができる。軸方向力付与装置は、初期段階を通じて第一軸方向力を加え続けるものでも、離散的に1回以上加えるものでもよい。トルク検出装置は1回のみ回転抵抗トルクを検出するものとすることも可能であるが、複数回検出するものとすれば、信頼性の高い回転抵抗トルクを取得することができる。また、停止指令手段により発せられた停止指令に基づいて、回転駆動装置を自動で停止させる自動停止手段を設ければ、締付力が目標締付力に達したとき締付けが自動的に終了させられるようにすることができて理想的であるが、不可欠ではなく、例えば、停止指令に基づいて鳴動するブザー等の報知器を設け、報知器の報知に応じて作業者が回転駆動装置を停止させるようにすることも可能である。
(9)前記軸方向力付与装置が、前記第一軸方向力を、前記回転ねじ部材の座面を前記被締付物の座面に接近させる向きに付与するものである (8)項に記載のねじ締付装置(請求項3)。
(10)前記軸方向力付与装置が、前記回転ねじ部材の座面が前記被締付物の座面に接触し、かつ、両ねじ部材のねじ面が実質的に接触していない中間段階の少なくとも一時点において第二軸方向力を付与するものであり、前記トルク検出装置が、その少なくとも一時点における回転抵抗トルクである中間段階トルクを検出するものであり、前記締付終了条件決定手段が、その中間段階トルクと前記第二軸方向力とにも基づいて前記締付終了条件を決定するものである (9)項に記載のねじ締付装置(請求項4)。
(11)前記締付終了条件が、実際の回転抵抗トルクが、前記初期段階トルクに基づいて決まる目標締付トルクに等しくなることである (8)ないし(10)項のいずれか1つに記載のねじ締付装置(請求項7)。
(12)前記締付終了条件が、前記初期段階トルクに基づいて決まる始点トルクに実際の回転抵抗トルクが達した時点からの前記回転ねじ部材の回転角が、前記雄ねじ部材および前記被締付物の弾性係数と目標締付力とに基づいて決まる目標回転角に等しくなることで
ある (8)ないし(10)項のいずれか1つに記載のねじ締付装置(請求項8)。
(13)前記中間段階の少なくとも一時点を検出する中間段階検出手段を含む(10)ないし(12)項のいずれか1つに記載のねじ締付装置。
(14)前記中間段階検出手段が、前記トルク検出装置により検出された前記回転抵抗トルクに基づいて前記中間段階の少なくとも一時点を検出するものである(13)項に記載のねじ締付装置。
初期段階と中間段階とでは回転抵抗トルクが異なるのが普通であるため、回転抵抗トルクに基づいて中間段階を検出することができる。例えば、両段階の境界では回転抵抗トルクが急変するため、次項におけるように、その急変に基づいて中間段階の開始時点を検出することができる。ただし、回転抵抗トルクに基づくことは不可欠ではなく、例えば、後に実施形態の項で説明するように、回転ねじ部材の座面が被締付物の座面に当接した瞬間、レンチ部材に対する反力が変動する(回転速度が大きい場合や、スプリングワッシャが使用されない場合特に)ため、この変動に基づいて中間段階の開始時点を検出することができる。
(15)前記中間段階検出手段が、前記初期段階から前記中間段階への移行時における前記回転抵抗トルクの急変を検出することにより中間段階の開始時点を検出する中間段階開始時点検出手段を含む(14)項に記載のねじ締付装置(請求項5)。
(16)前記中間段階検出手段が、
前記トルク検出装置により時々刻々検出される前記回転抵抗トルクを記憶するトルク記憶手段と、
前記回転抵抗トルクが設定トルクに達した後、前記トルク記憶手段に記憶された回転抵抗トルクの群に基づいて前記中間段階の終了時点を決定する中間段階終了時点決定手段とを含む(14)項または(15)項のいずれか1つに記載のねじ締付装置(請求項6)。
中間段階から最終段階への移行時には、回転抵抗トルクの変化が、初期段階から中間段階への移行時に比較して緩やかであるため、中間段階から前記最終段階への移行時を回転抵抗トルクに基づいてリアルタイムで検出することは不可能ではないが、精度よく検出することは難しい。それに対し、時々刻々の回転抵抗トルクをトルク記憶手段に記憶させておき、後にそれら回転抵抗トルクの群に基づいて、中間段階から最終段階への移行時点、すなわち中間段階終了時点を特定することは容易である。ただし、締付力が目標締付力に達する前に、それに対応する目標締付トルク(「トルク法」の場合)あるいは目標回転角(「回転角法」の場合)が決定されていることが必要であるため、中間段階終了時点はできる限り早期に決定されることが望ましい。したがって、上記設定トルクは、中間段階から最終段階への移行を特定し得る範囲で、できる限り小さな値に設定されることが望ましい。中間段階終了時点決定手段は、例えば、回転角に対する回転抵抗トルクの変化勾配を時間の経過方向とは逆向きに調べた場合に、変化勾配が始めて設定勾配(例えば0)以下となる時点を中間段階終了時点に決定するものとしたり、回転抵抗トルクが極小値となる時点を中間段階終了時点に決定するものしたり、中間段階終了時点から時間的にそれぞれ正負両方向に隔たり、それぞれ中間段階と最終段階とに属することが明らかな複数個ずつの回転抵抗トルクにより規定される2本の直線が交差する時点を中間段階終了時点に決定するものとしたりすることができる。
(17)前記締付終了条件決定手段が、前記トルク検出装置により検出された回転抵抗トルクと前記軸方向力付与装置により付与される軸方向力とに基づいて、前記両ねじ部材のねじ面間摩擦係数と、前記回転ねじ部材と前記被締付物との座面間摩擦係数との少なくとも一方を推定する摩擦係数推定手段を含み、その推定した摩擦係数に基づいて前記締付終了条件を決定するものである (8)ないし(16)項のいずれか1つに記載のねじ締付装置(請求項9)。
(18)前記軸方向力付与装置により付与される軸方向力を検出する軸方向力検出装置を含み、かつ、前記摩擦係数推定手段が、その検出された軸方向力と、前記トルク検出装置により検出された回転抵抗トルクとに基づいて前記摩擦係数の少なくとも一方を推定するものである(17)項に記載のねじ締付装置(請求項10)。
軸方向力付与装置により付与される軸方向力が予め定められた一定値であれば、軸方向力検出装置は省略できるが、軸方向力検出装置を設ければ、同時点に検出された軸方向力と回転抵抗トルクとに基づいて摩擦係数を推定することができるため、軸方向力を一定に保つ必要がなくなり、締付作業の自由度が増す効果が得られる。なお、軸方向力付与装置により付与される軸方向力が予め定められた一定値である場合でも、軸方向力検出装置を設ければ摩擦係数の推定精度が向上する効果が得られる。
(19)前記回転駆動装置が、前記回転ねじ部材に相対回転不能に係合するレンチ部材と、そのレンチ部材を回転させる回転駆動源とを含む (8)ないし(18)項のいずれか1つに記載のねじ締付装置。
(20)前記軸方向力付与装置が、
少なくともねじの締付時には、前記両ねじ部材の軸方向において前記非回転ねじ部材と相対移動不能となる反力受部材と、
その反力受部材と前記レンチ部材との間に配設され、それら反力受部材とレンチ部材とを前記両ねじ部材の軸方向に相対移動させる軸方向駆動装置と
を含む(19)項に記載のねじ締付装置(請求項11)。
反力受部材の代表的なものは次項に記載の反力伝達部材であるが、例えば、ねじ部材が締め付けられるべき対象物が床上に設置された支持台に支持される一方、反力受部材が支持台とは別体の支持フレームや天井に固定され、あるいは後に実施形態の項で説明するように油圧シリンダ等の昇降装置を介して支持されている場合には、反力受部材は必ずしも次項に記載の態様で非回転ねじ部材と被締付物とのいずれか一方に係合させる必要はない。
(21)前記反力受部材が、前記非回転ねじ部材と前記被締付物とのいずれか一方に、前記レンチ部材により前記回転ねじ部材に加えられる前記軸方向力の反力を伝達可能に係合する反力伝達部材を含む(20)項に記載のねじ部材締付装置。
(22)前記反力伝達部材が、前記非回転ねじ部材と前記被締付物とのいずれか一方に機械的に係合する機械的係合部を備える(21)項に記載のねじ締付装置。
機械的係合部としては、後に実施形態の項で説明するコレットチャックや、キャリパの非回転ねじ部材への当接部等が採用可能である。
(23)前記反力伝達部材が、前記非回転ねじ部材と前記被締付物とのいずれか一方に負圧により吸着する負圧吸着部を備える(21)項に記載のねじ締付装置。
本態様と次項に記載の態様とによれば、非締付物や非回転ねじ部材の平坦な表面にでも反力伝達部材を離間不能に係合させることができる。
(24)前記反力受部材が、前記非回転ねじ部材と前記被締付物とのいずれか一方に磁気力により吸着する磁気吸着部を備える(21)項に記載のねじ締付装置。
磁気吸着部を永久磁石を備えたものとすることも可能であるが、電磁石を備えるものとすれば、非回転ねじ部材や被締付物に対する吸着,離間の作業を容易に行うことができる。
(25)前記軸方向力付与装置が、
前記レンチ部材と一体的に移動する部材全部の重量とほぼ等しい力でそれら部材全部を吊り上げる荷重バランサと、
その荷重バランサの作用を解除するバランサ解除装置と
を含む(19)項に記載のねじ締付装置。
常には、レンチ部材と一体的に移動する部材全部の重量と荷重バランサの作用力とが釣り合っており、作業者はレンチ部材を容易に移動させて回転ねじ部材に係合させることができる。その係合後、バランサ解除装置に荷重バランサの作用を解除させれば、レンチ部材と一体的に移動する部材全部の重量が回転ねじ部材に圧縮力として加えられる。レンチ部材と一体的に移動する部材全部の重量を大きくすれば、回転ねじ部材に大きな圧縮力を加えることができ、しかもその重量は常には荷重バランサによって受けられるため、作業性が損なわれることを回避できる。
(26)前記軸方向力付与装置が、
当該ねじ締付装置の少なくとも一部と前記レンチ部材との間に設けられ、長さが変化可能である長さ変化装置と、
その長さ変化装置の長さを前記初期段階と前記中間段階との少なくとも一方において少なくとも1回変化させる長さ変化装置制御装置と
を含む(19)項に記載のねじ締付装置。
長さ変化装置の長さが変化させられれば、レンチ部材とねじ締付装置の少なくとも一部(慣性質量部と称する)とが互いに離間させられるが、レンチ部材は回転ねじ部材に係合させられているため移動不能であり、慣性質量部が移動させられる。その結果、この移動の加速度と慣性質量部の質量との積である慣性力が、軸方向力としてレンチ部材を介して回転ねじ部材に加えられる。長さ変化装置の長さが増大させられれば圧縮力が、減少させられれば引張力が回転ねじ部に加えられるのである。上記慣性力は、ねじ締付装置のレンチ部材と一体的に移動する部材全部の重量よりも大きくすることが容易であるため、ねじ締付装置を比較的軽いものとしつつ、大きな軸方向力を回転ねじ部材に加えることができる。なお、軸方向力を大きくするためには、慣性質量部の質量と加速度との少なくとも一方を大きくすればよいのであるが、ねじ面間や座面間の摩擦係数を精度良く評価するためには、慣性力がある程度の時間持続させられることが望ましく、加速度が比較的長い時間大きな値に維持されることが望ましい。しかし、これはそれほど容易なことではないため、慣性質量部の質量ができる限り大きくされることが望ましく、長さ変化装置ができる限りレンチ部材に近い位置に設けられ、ねじ締付装置のできる限り多くの部分が慣性質量部として機能するようにされることが望ましい。
(27)回転駆動源が電動モータである(19)ないし(26)項のいずれか1つに記載のねじ締付装置。
(28)前記トルク検出装置が、前記電動モータの電流に基づいて前記回転抵抗トルクを検出する電流依拠トルク検出装置を含む(27)項に記載のねじ締付装置。
(29)回転駆動源がエアモータである(19)ないし(26)項のいずれか1つに記載のねじ締付装置。
(30)前記回転駆動装置が、前記回転駆動源の回転を前記レンチ部材に伝達しつつそのレンチ部材に衝撃トルクを付与する衝撃トルク付与装置を含む(19)ないし(29)項のいずれか1つに記載のねじ締付装置。
一般に、レンチ部材が一定速度で回転させられる方がねじ面間や座面間の摩擦係数の評価精度が高くなるが、レンチ部材に衝撃トルクが付与され、レンチ部材の回転速度が変動する場合でも、摩擦係数と回転抵抗トルクとの間には一定の関係があり、回転抵抗トルクに基づいて摩擦係数を評価することは可能である。そして、ほぼ一定の締付トルクによるよりも、衝撃トルクによる方が容易に大きな締付力を実現することができる。ただし、初期段階と中間段階とにおける摩擦係数の評価精度を向上させる上からは、レンチ部材に衝撃トルクが加えられないようにすることが望ましく、また、衝撃トルクはそれの目的からして最終段階の後半において付与されれば十分であるから、衝撃トルク付与装置は、初期段階および中間段階には衝撃トルクを付与せず、最終段階に付与するものとすることが望ましい。
(31)前記初期段階トルクに基づいて前記両ねじ部材の螺合異常を検出する螺合異常検出手段を含む (8)ないし(30)項のいずれか1つに記載のねじ締付装置。
両ねじ部材のねじ面間に異物が噛み込まれ、あるいは両ねじ部材のねじ面が正常に螺合されていない等の螺合異常か発生すれば、初期段階トルクが通常より大きくなる。したがって、例えば、ねじの呼び径やピッチ等のデータに基づいて初期段階トルクの許容範囲を設定する許容範囲設定手段と、初期段階トルクがその許容範囲から外れた場合には螺合異常と判定する螺合異常判定手段とを含む螺合異常検出手段を設ければ、螺合異常を早期に発見することができ、さらに、螺合異常判定手段の判定結果に応じて回転駆動装置を停止させる異常停止手段を設ければ、螺合異常の発生にもかかわらず無理に締付けが行われることを良好に回避することができる。
(32)ケーシングと、そのケーシングに回転可能に保持されたレンチ部材と、そのレン
チ部材を回転させる回転駆動源と、前記レンチ部材に軸方向力を付与する軸方向力付与装置とを含み、前記レンチ部材が、前記雄ねじ部材と雌ねじ部材とのうち回転させるべきねじ部材である回転ねじ部材に相対回転不能に係合させられてその回転ねじ部材を回転させることにより、両ねじ部材を被締付物を間に挟んで締め付けるとともに、前記回転ねじ部材の座面が前記被締付物の座面に接触しない初期段階の少なくとも一時点に、その回転ねじ部材に前記軸方向力付与装置により第一軸方向力を付与するねじ締付装置に取り付けて使用されるアタッチメントであって、
前記ケーシングに取り付けられる補助ケーシングと、
その補助ケーシングに回転可能に保持され、後端に前記レンチ部材に相対回転不能に係合する接続部を、先端部に前記回転ねじ部材に相対回転不能に係合するレンチ部をそれぞれ備えた回転伝達部材と、
その回転伝達部材の捩じれトルクを検出するトルク検出装置と、
少なくともそのトルク検出装置に接続される制御装置であって、(a)少なくとも、前記
初期段階の前記軸方向力付与装置により前記第一軸方向力が付与されている時点に前記トルク検出装置により検出された捩じれトルクである初期段階トルクと、前記第一軸方向力とに基づいて締付終了条件を決定する締付終了条件決定手段と、(b)その締付終了条件決
定手段によって決定された締付終了条件が満たされた場合に、前記回転駆動装置の停止指令を発する停止指令手段とを備えたものと
を含むことを特徴とする締付トルク管理用アタッチメント(請求項12)。
本態様のアタッチメントを通常のねじ締付装置に取り付ければ、本発明に係るねじ締付装置を得ることができる。
(33)雄ねじ部材と雌ねじ部材とを螺合させた状態で、それら両ねじ部材の一方である非回転ねじ部材の回転を防止し、それら両ねじ部材の他方である回転ねじ部材を回転させることにより、両ねじ部材を被締付物を間に挟んで締め付ける際に、締付トルクをコンピュータにより管理するための制御プログラムであって、
前記回転ねじ部材の座面が前記被締付物の座面に接触しない初期段階であって前記回転ねじ部材に第一軸方向力が付与されている状態における回転ねじ部材の回転抵抗トルクである初期段階トルクを検出する初期段階トルク検出工程と、
少なくともその初期段階トルク検出工程において検出された初期段階トルクと前記第一軸方向力とに基づいて締付終了条件を決定する締付終了条件決定工程と、
その締付終了条件決定工程において決定された締付終了条件が満たされたときに締付けの終了を指令する締付終了指令工程と
を含む締付トルク管理プログラムが、前記コンピュータにより読み取り可能に記録されたことを特徴とする記録媒体(請求項13)。
(34)雄ねじ部材と雌ねじ部材とを螺合させた状態で、それら両ねじ部材の一方である非回転ねじ部材の回転を防止し、それら両ねじ部材の他方である回転ねじ部材を回転させることにより、両ねじ部材を被締付物を間に挟んで締め付ける際に、両ねじ部間の摩擦係数に関連する摩擦係数関連量を取得する方法であって、
前記回転ねじ部材の座面が前記被締付物の座面に接触しない初期段階において、その回転ねじ部材に第一軸方向力を加えつつその回転ねじ部材を回転させて回転抵抗トルクを検出する工程を含む摩擦係数関連量取得方法。
本摩擦係数関連量取得方法の利用法の一例は、多数の回転ねじ部材の締付作業の最初に、本態様の方法で1個以上適数個の回転ねじ部材について摩擦係数関連量を取得し、その取得した摩擦係数関連量を使用して、従来の「トルク法」によりすべての回転ねじ部材の締付力の管理を行うことである。
(35)雄ねじ部材と雌ねじ部材とを螺合させた状態で、それら両ねじ部材の一方である非回転ねじ部材の回転を防止し、それら両ねじ部材の他方である回転ねじ部材を回転させることにより、両ねじ部材を被締付物を間に挟んで締め付ける際に、両ねじ部間の摩擦係数に関連する摩擦係数関連量を取得する装置であって、
前記回転ねじ部材を回転させる回転駆動装置と、
その回転駆動装置による前記回転ねじ部材の回転中であって、かつ、その回転ねじ部材の座面が被締付物の座面に接触しない初期段階の少なくとも一時点に、その回転ねじ部材に第一軸方向力を付与する軸方向力付与装置と、
その軸方向力付与装置により第一軸方向力が付与されている状態における前記回転ねじ部材の回転抵抗トルクを検出するトルク検出装置と
を含む摩擦係数関連量取得装置。
(36)雄ねじ部材と雌ねじ部材とを螺合させた状態で、それら両ねじ部材の一方である非回転ねじ部材の回転を防止し、それら両ねじ部材の他方である回転ねじ部材を回転させることにより、両ねじ部材を被締付物を間に挟んで締め付ける方法であって、
前記回転ねじ部材の座面が前記被締付部材の座面に接触し、かつ、両ねじ部材のねじ面が実質的に接触していない中間段階において、回転ねじ部材にその回転ねじ部材の座面を被締付物の座面に押し付ける向きでかつ設定値以上の第二軸方向力を加えつつその回転ねじ部材を回転させて回転抵抗トルクを計測し、その回転抵抗トルクの計測結果と前記第二軸方向力とに基づいてスナグ点の回転抵抗トルクであるスナグ点トルクを決定するスナグ点トルク決定工程と、
前記回転ねじ部材の回転抵抗トルクが前記スナグ点トルクに達してからの前記回転ねじ部材の回転角が、締付力が所望の大きさに到達するように決定されている回転角に到達したとき回転ねじ部材の回転を停止させる工程と
を含むねじ締付方法。
本態様は、中間段階において、回転ねじ部材を、回転ねじ部材と被締付物との座面を安定な接触状態に保つに必要でかつ十分な大きさの圧縮力を加えつつ回転させ、回転抵抗トルクを計測すれば、スナグ点を精度良く検出し得ることを利用して、「回転角法」による締付力の管理精度を向上させるものであり、ねじ面間摩擦係数や座面間摩擦係数を評価することによって締付力の管理精度を向上させる前記各態様とは基本的に技術思想を異にするものである。したがって、上記第二軸方向力の設定値は、回転ねじ部材と被締付物との座面の接触状態が安定状態に到達するのに必要かつ十分な大きさに設定される。例えば、回転ねじ部材と被締付物との座面間にスプリングワッシャが配設される場合にはそのスプリングワッシャを密着状態にするに必要でかつ十分な大きさに設定されるのである。また、回転ねじ部材と被締付物との座面間に平ワッシャが配設される場合には、回転ねじ部材の座面と平ワッシャの座面、平ワッシャの座面と被締付物の座面が、それぞれの座面に存在する可能性のある微小突起や座面間に噛み込まれる可能性のある異物が完全につぶれて、最終締付状態と実質的に同じ状態で接触するのに必要でかつ十分な大きさに設定される。
【0006】
【発明の実施の形態】
以下、本発明のいくつかの実施形態であるねじ締付装置および方法を図面に基づいて説明する。図1において、10はねじ締付装置の本体フレームであり、支持台部12が設けられるとともにブラケット14が取り付けられている。ブラケット14にはリニアガイド16を介して昇降部材18が取り付けられ、油圧シリンダ20により昇降させられるようになっている。昇降部材18には、減速機付き電動モータ(以下モータと略称する)22と、検出器24とが取り付けられている。検出器24は、トルク検出部と圧縮力検出部とを備え、トルク検出部は、図2に示すように、モータ22の回転軸に連結された検出軸30を備え、その検出軸30の表面には4個のストレンゲージ32が2個ずつ+45度と−45度傾斜させられて固定され、ブリッジ回路34が形成されている。このブリッジ回路34に2対のスリップリング36により直流電源38が接続されるとともに、別の2対のスリップリング40により電圧検出回路42に接続されている。検出軸30に捩じりトルクが作用させられれば、その捩じりトルクに比例する電圧が電圧検出回路42に現れる。圧縮力検出部は図示を省略するが、4個のストレンゲージのうち2個が検出軸30の軸方向に平行に固定され、残る2個が周方向に平行に固定される点を除いて、トルク検出部と同様の構成を有する。なお、圧縮力は、油圧シリンダ20の油圧を油圧検出器で検出することにより、演算で求めてもよい。検出軸30の先端部にはレンチ部材の一種であるソケット44が取り付けられている。油圧シリンダ20の作動および作動力は、図3に示す電磁方向切換弁46等の作動制御弁および電磁圧力制御弁48等の作動力制御弁により制御される。
【0007】
上記電磁方向切換弁46,電磁圧力制御弁48,モータ22,検出器24等は制御装置50に接続されている。制御装置50は、入力装置52と、処理部としてのマイクロコンピュータ54とを備えており、マイクロコンピュータ54は、ドライバ56,57,58を介して前記モータ22,電磁方向切換弁46,電磁圧力制御弁48を制御するとともに、検出器24のトルク検出部60および圧縮力検出部62から検出結果を読み込む。そのためにマイクロコンピュータ54は、PU66,ROM68,RAM70およびI/Oポート72を備え、ROM68には図4に示す締付トルク制御プログラムを始めとする種々の制御プログラムが格納されている。PU66はRAM70を利用してこれら制御プログラムを実行し、自動で締付力の管理を行う。
【0008】
本ねじ締付装置は、図1に示すように、支持台部12に載置可能な第1部材76と第2部材78とをボルト80等の回転ねじ部材で締め付けるに適したものである。図示の例では第1部材76が非回転ねじ部材、第2部材78が被締付物である。締付作業の開始に先立って、入力装置52から、ボルト80の目標締付力,ねじ呼び径,ねじピッチ,設定トルク等のデータが作業者やホストコンピュータにより入力され、RAM70に格納される。次に、支持台部12上に第1部材76と第2部材78とが載置され、ボルト80が第2部材78のボルト穴を貫通して第1部材76の雌ねじ穴に螺合される。以上で締付けの準備が完了し、ねじ締付装置の入力装置52のスタートボタンが押されれば、ねじの締付けが自動で行われる。
【0009】
まず、ステップ1(以下単にS1で表す。他のステップも同様とする)において、目標締付力F3がRAM70から読み出され、S2において、ボルト80に加えられるべき圧縮力Qが演算される。圧縮力Qは、摩擦係数の評価精度の観点からすれば、目標締付力F3に等しくすることが望ましいのであるが、圧縮力の増大は装置の大形化や作業性の低下につながり易いため、通常、圧縮力Qより小さくされる。圧縮力Qはねじ呼び径dが大きいほど大きくされることが望ましく、目標締付力F3もねじ呼び径dが大きいほど大きくなるため、本実施形態においては、圧縮力Qが目標締付力F3の3〜30%の範囲から予め選定された値に対応する大きさとなるように演算される。続いて、S3において、圧縮力Qを0として締付けが開始される。具体的には、電磁圧力制御弁48が油圧シリンダ20に供給される油圧をごく小さい値に制御する状態とされた上で、電磁方向切換弁46が油圧シリンダ20を伸長させる位置に切り換えられるとともに、モータ22が低速で回転させられるのである。それに伴ってソケット44が低速で回転しつつ下降し、ボルト80の頭部に相対回転不能に係合し、以後はボルト80を回転させる。
【0010】
予め定められた時間の経過後に、S4において、トルク検出部60の出力信号が読み込まれ、S5において、回転抵抗トルクが実質的に0であるか否か、具体的には、微小な設定値以下であるか否かが判定され、判定結果がNOであれば、S6においてモータ22の回転が停止させられ、S7において図示しないブザーが鳴動させられるなどして螺合異常が作業者に報知される。
【0011】
一方、S5の判定結果がYESの場合には、S8において電磁圧力制御弁48が制御され、S2において演算された圧縮力Qが油圧シリンダ20により加えられる。この時点においては、ボルト80は、図5に示すように、雄ねじ部82は雌ねじ穴84に螺合しているが、頭部86の座面88が非締付物としての第2部材78の座面90から離れており、図6に拡大して示すように、ねじ面92,94が互いに押し付けられている。この状態でS9,S10が一定微小時間ごとに繰返し実施され、設定トルクTbに到達するまでの回転抵抗トルクTがRAM70のトルクメモリに格納される。
【0012】
S9,10が繰返し実施されている間に、ボルト80の頭部86の座面88が、図7に示すように被締付物78の座面90に着座し、その後は、図8に示すように、ボルト80のねじ面92が雌ねじ穴84のねじ面94に実質的に接触しない状態となる。中間段階への移行が行われるのである。ここにおいて「実質的に接触しない状態」とは、「ボルト80と雌ねじ穴84の偏心等により一部において両ねじ面92,94が軽く接触することはあり得るが、初期段階におけるように互いに強く押し付けられることはない状態」という意味である。中間段階への移行後、さらにボルト80が所定角度回転させられれば、図9,10に示すように、ボルト80のねじ面92と雌ねじ穴84のねじ面94とが、前記初期段階におけるのとは反対側において接触する状態となる。最終段階への移行が行われるのである。以上のような段階の移行につれて、トルク検出部60によって検出される回転抵抗トルクTは、概ね図11に示すように変化する。
【0013】
回転抵抗トルクTが設定トルクTbに到達したならば、S11において初期段階トルクT1がRAM70の初期段階トルクメモリに格納された後、S12において中間段階トルクT2が決定されてRAM70の中間段階トルクメモリに格納される。初期段階トルクT1は、初期段階にあるうちに取得された複数の回転抵抗トルクTの平均値として求められる。また、中間段階トルクT2は、トルクメモリに格納されている複数の回転抵抗トルクTの極小値として求められる。具体的には、回転抵抗トルクTが設定トルクTbに到達した時点から逆上って、トルクメモリに格納されている複数の回転抵抗トルクTの隣接するもの同士の差が演算され、差が始めて負になったときの回転抵抗トルクTの組のいずれか一方が中間段階トルクとされるのである。
【0014】
続いて、S13において目標締付トルクT3の決定が行われる。この決定は以下の事実に基づいて、後述の(3)式の演算により行われる。
図5,6に示す初期段階においては、ねじ面92,94間の摩擦係数に比例する係数ξと、油圧シリンダ20によってボルト80の頭部に加えられる圧縮力Qとの積である摩擦トルクξ・Qが発生するが、同時に、ねじ面92,94の斜面の効果に基づいてボルト80を締め込む向きの下記トルクTqも発生する。
Tq=ζ・Q
ただし、ζ=(p/2π)
したがって、ボルト80を締込方向に回転させるに必要な締付トルクである初期段階トルクT1は次式で表される。
T1=ξ・Q−ζ・Q・・・・(1)
【0015】
また、図7,8に示す中間段階においては、座面88,90間の摩擦係数に比例する係数ηと、油圧シリンダ20によってボルト80の頭部に加えられる圧縮力Qとの積である摩擦トルクη・Qが発生し、これがボルト80を締込方向に回転させるに必要な締付トルクである中間段階トルクT2と次式で表されるように釣り合うことになる。
T2=η・Q・・・・(2)
【0016】
そして、図9,10に示す最終段階においては、ボルト80が第2部材78を締め付ける締付力をFとすれば、座面88,90間に作用する力はF+Qであり、この力に基づいて座面88,90間に発生する摩擦トルクはη・(F+Q)となる。また、ねじ面92,94間の摩擦係数および斜面の効果と締付力Fとに基づいて発生する回転抵抗トルクはξ・F+ζ・Fとなる。これら摩擦トルクη・(F+Q)および回転抵抗トルクξ・F+ζ・Fが、ボルト80を締付方向に回転させるのに必要な締付トルクTであるから、
T=η・(F+Q)+ξ・F+ζ・F・・・・(3)
【0017】
上記(1)および(2)式から係数ξおよびηを演算することができ、(3)式の圧縮力Qは検出されるものであり、締付力FはS1で設定されており、係数ζはS1で設定されたねじピッチpから演算できるため、(3)式から、所望の締付力F3を得るために必要な締付トルクT3を演算することができる。S13においてはこの演算が行われるのである。それ以後、S14とS15とが繰返し実行され、回転抵抗トルクTが目標締付トルクT3に到達することが待たれ、到達すればS16においてモータ停止指令が発せられる。この指令に応じて、ドライバ56がモータ22を停止させるため、締付けが自動的に終了させられる。
【0018】
このように、本実施形態においては、初期段階における回転抵抗トルクTである初期段階トルクT1に基づいて、ねじ面92,94間の摩擦係数に関連するねじ面間摩擦係数関連量の一種である係数ξが取得され、中間段階における回転抵抗トルクTである中間段階トルクT2に基づいて、座面88,90間の摩擦係数に関連する座面間摩擦係数関連量の一種である係数ηが取得される。そして、それら両係数ξ,ηに基づいて目標締付トルクT3が決定され、最終段階における回転抵抗トルクが目標締付トルクT3に等しくなったとき、締付けが自動的に終了させられる。そのため、例えば、油が付着しているか否か,面粗さの大小等により、ねじ面間摩擦係数および座面間摩擦係数が変化しても、その変化の影響を受けず、常にほぼ一定の締付力でボルト80を締め付けることができる。
【0019】
以上の説明から明らかなように、本実施形態においては、油圧シリンダ20が軸方向力付与装置を構成し、モータ22,ソケット44等が回転駆動装置を構成し、検出器24のトルク検出部60がトルク検出装置を構成している。また、マイクロコンピュータ54の、S11〜S13を実行する部分が締付終了条件決定手段を構成し、S14〜S16を実行する部分が停止指令手段を構成している。
【0020】
本発明の別の実施形態として、中間段階トルクT2が、トルクメモリに格納されている複数の回転抵抗トルクの変化勾配に基づいて決定されるようにすることも可能である。この場合には、図4のフローチャートのS12が図12に示すS12´に変更される。S12´においては、トルクメモリに格納されている複数の回転抵抗トルクの隣接するもの同士の差が、回転抵抗トルクTが設定トルクTbに到達した時点から逆上って順次演算され、その結果得られる複数の変化勾配が、始めて設定勾配以下となったとき、その時点の回転抵抗トルクTが中間段階トルクT2とされる。
【0021】
また、初期段階トルクT1および中間段階トルクT2が図13に示すフローチャートで表されるプログラムの実行によって決定されるようにすることも可能である。図13において、S1〜S8およびS13〜S16は図4における対応する各ステップと同じであり、S21〜S23が異なっている。S21およびS22が繰返し実行されて、回転抵抗トルクTの急変が現れることが待たれる。例えば、相前後する二つの回転抵抗トルクTの差が予め定められている設定トルク差を超えることが待たれるのである。そして、急変が発生したならば、S23において、急変前後の2つの回転抵抗トルクTがそれぞれ初期段階トルクT1および中間段階トルクT2に決定され、初期段階トルクメモリおよび中間段階トルクメモリに格納される。
【0022】
さらに、初期段階トルクT1および中間段階トルクT2が図14に示すフローチャートで表されるプログラムの実行によって決定されるようにすることも可能である。図14のフローチャートにおいてはS31〜S38が一定微小時間ごとに繰返し実行されることにより初期段階トルクT1および中間段階トルクT2が決定される。まず、S31において回転抵抗トルクTが読み込まれてトルクメモリに格納され、S32においてフラグがONにされているか否かが判定される。このフラグは初期段階トルクT1の決定後にS35でONにされるものであり、当初はOFFであるため、S33において回転抵抗トルクTの急変が発生したか否かが判定される。例えば、前記S22と同様に、相前後する二つの回転抵抗トルクTの差が予め定められている設定トルク差を超えたか否かが判定されるのである。判定の結果がNOであればプログラムの実行はS31に戻されるが、YESであれば、初期段階の終了時点あるいは中間段階の開始時点であるとして、S34において、それまでにトルクメモリに格納されている複数の回転抵抗トルクTのうち、初期段階の終了時点に最も近い設定個数の回転抵抗トルクTの平均値が初期段階トルクT1に決定される。その後はS32の判定がYESとなるため、S33〜S35がバイパスされ、S36,S38,S31,S32が繰返し実行されて、回転抵抗トルクの勾配が設定トルク勾配以上になることが待たれ、設定トルク勾配以上になれば、中間段階の終了時点あるいは最終段階の開始時点であるとして、S37において中間段階の終了時点に最も近い設定個数の回転抵抗トルクTの平均値が中間段階トルクT2に決定される。次に、回転抵抗トルクTが設定トルクTbに到達すれば、図4のS13以降が実行される。本実施形態においては、回転抵抗トルクが急変することと、回転抵抗トルク勾配が設定トルク勾配以上になることとが、それぞれ、中間段階の開始時点および終了時点の決定に用いられ、初期段階トルクT1と中間段階トルクT2とが、それぞれ初期段階および中間段階に属することが明らかな設定個数ずつの回転抵抗トルクTに基づいて決定されるため、信頼性の高い初期段階トルクT1および中間段階トルクT2が取得される。
【0023】
本発明の別の実施形態を図15に示す。本実施形態は、エンジンのシリンダブロック100にシリンダヘッド102を複数本のボルト104により締め付ける場合のように、大形の被締付物の締付けに適したものである。シリンダブロック100とシリンダヘッド102とは図示のように重ねられ、シリンダヘッド102のボルト穴を貫通してボルト104がシリンダブロック100の雌ねじ穴にある程度螺合された状態で、コンベヤ106により、締付けステーションへ搬送されて来る。締付けステーションの上方には、複数のねじ締付装置主体部110を保持した昇降フレーム112が配置され、油圧シリンダ114等の昇降装置を介して天井または位置固定の支持フレームに支持されている。勿論、昇降フレーム112はガイドにより昇降を案内されることが望ましい。ねじ締付装置主体部110の各々は図1に示したねじ締付装置の主体部と類似のものであるが、前記リニアガイド16が昇降フレーム112に取り付けられ、前記油圧シリンダ20がダイヤフラム式の流体圧アクチュエータ116にそれぞれ変更されている点において異なっている。流体圧アクチュエータを作動させるための作動流体は液体でも気体でもよいが、前者によれば流体圧アクチュエータを小形化し得る。シリンダブロック100およびシリンダヘッド102が締付けステーションへ搬送されたならば、それまで上昇位置に保たれていた昇降フレーム112が油圧シリンダ114により下降位置へ下ろされる。この状態では、各ねじ締付装置主体部110のソケット118はボルト104の頭部に近接するのみで、係合はしない。続いて、流体圧アクチュエータ116が低い圧力で作動させられ、各ソケット118が各ボルト104の頭部に係合させられる。この後の各ねじ締付装置主体部110の作動は図1のねじ締付装置と同様であるため、説明を省略する。
【0024】
別の実施形態を図16に示す。本実施形態は、大形の第1部材122に大形の第2部材124をボルト126により締め付ける場合に適している。ねじ締付装置主体部130は、図1のねじ締付装置の主体部と同様に、モータ22と検出器24とを備え、モータ22の嵌合部132が、キャリパ134の嵌合部136にスプライン,キー等により相対回転不能かつ軸方向に相対移動可能に嵌合されている。キャリパ134にはブラケット138を介してエアシリンダ140が取りつけられており、モータ22,検出器24等をキャリパ134に対して軸方向に相対移動させる。エアシリンダ140またはキャリパ134にアイボルト142等のつり下げ部材が取り付けられ、上方に配設された図示しない荷重バランサにより吊り下げ可能とされている。締付けに当たっては、キャリパ134の係合部144が第1部材122の裏側に当接可能な状態で、エアシリンダ140が作動させられ、ソケット145からボルト126に圧縮力が加えられるとともに、その反力がブラケット138,キャリパ134等を介して第1部材122に伝達される。これにより、ボルト126に所望の大きさの圧縮力を加えることができる。ねじ締付装置主体部130の作動は図1のねじ締付装置と同様であるため、説明を省略する。
【0025】
さらに別の実施形態を図17に示す。本実施形態は、軸方向力付与装置を、前記モータ22,検出器24等の重量によってボルト,ナット等の回転ねじ部材に圧縮力を加えるものとしたものである。本軸方向力付与装置は、モータ22等をつり下げるエア式の荷重バランサ146と、その作用を解除する作用解除装置の一種としての電磁方向切換弁148とを含んでいる。モータ22により回転させられるソケット等のレンチ部材がボルトに係合させられるまでは、電磁方向切換弁148が、荷重バランサ146の圧力室150をエア源152に連通させて、荷重バランサ146を作用状態に保ち、モータ等の重量が作業者に負担をかけないようにしているが、レンチ部材のボルトへの係合後、圧力室150を大気に連通させる状態に切り換えられ、モータ22等の重量がボルトに圧縮力として加えられるようにする。
【0026】
前記図16に示したねじ締付装置は、非回転ねじ部材に機械的に係合する機械的係合部として、キャリパ134の係合部144を備えたものであるが、さらに別の機械的係合部を備えたねじ締付装置を図18に示す。この機械的係合部は被締付物に係合するものである。本ねじ締付装置は、図1のねじ締付装置と同様にモータ22と検出器24とを備えたものであるが、それの出力軸160は先端にレンチ部として六角棒部162を備えている。モータ22と検出器24とはケーシング164に、軸方向に相対移動可能かつ相対回転不能に収容されている。ケーシング164とモータ22との間には流体圧シリンダ165が配設され、ケーシング164に対してモータ22,検出器24,出力軸160等を相対的に進退させ得るようになっている。ケーシング164の先端部は小径部166とされており、ここにリング状をなす第1シリンダ168が嵌合されて固定されるとともに、その第1シリンダ168内にリング状の第1ピストン170が配設され、第1シリンダ168の内周面と上記小径部166の外周面とにそれぞれ液密かつ摺動可能に嵌合されている。その結果、第1シリンダ168内の空間が2つの圧力室172,174に区切られている。第1ピストン170と一体的にリング状の第2シリンダ176が形成され、この第2シリンダ176にリング状の第2ピストン178が液密かつ摺動可能に嵌合されている。その結果、第2シリンダ内の空間が2つの圧力室180,182に区切られている。第2シリンダ176の先端にはコレット184が固定され、第2ピストン178には円筒状のテーパ部材186が固定され、テーパ部材186がコレット184の内側に嵌合されている。コレット184は、内周面の一部がテーパ部材186の外周テーパ面188に対応する内周テーパ面190とされるとともに、先端から途中まで形成された複数の軸方向に平行なすり割り溝により先端部が複数の部分に割られている。したがって、テーパ部材186がコレット184に対して相対的に先端側へ移動させられれば、コレット184の先端部の直径が増大させられる。その先端部の外周面には係合突起192が形成されている。
【0027】
常には、圧力室172,182に圧力流体(作動油,圧縮空気等)が供給されて第1ピストン170が前進端位置に保たれる一方、第2ピストン178が後退端位置に保たれている。この状態で、コレット184の先端部が、被締付物200に形成されたざぐり穴202の内周面と、ボルト198の頭部との間に挿入される。続いて、圧力室180に圧力流体が供給されて第2ピストン178が前進させられ、テーパ部材186によりコレット184の直径が増大させられる。それにより、係合突起192がざぐり穴202の内周面に食い込み、コレット184,第2シリンダ176,第1ピストン170,第1シリンダ168等を介して、ケーシング164が被締付物200に係合させられる。コレット184,テーパ部材186およびそれらを駆動する2つの流体圧シリンダにより、機械的係合部が構成されているのである。この機械的係合部の係合を可能にするために、ざぐり穴202は従来のざぐり穴よりやや大径にされることが必要である。なお、ざぐり穴202の内周面に、係合突起192と係合する円環状の係合溝を形成すれば、係合を一層確実にすることができる。上記係合後に、モータ22が回転させられつつ、流体圧シリンダ165によりモータ22,検出器24および出力軸160がケーシング164に対して前進させられ、六角棒部162がボルト198の六角穴に係合させられる。
【0028】
この状態で、流体圧シリンダ165の作動力が増大させられれば、六角棒162によりボルト198に圧縮力が加えられ、その反力はケーシング164,コレット184等を介して被締付物200に伝達される。この際、六角棒162によりボルト198に加えられるべき圧縮力に比較して被締付物200の重量が十分大きければ、被締付物200が非回転ねじ部材である雌ねじ部材204から浮き上がることはない。それに対し、重量が小さければ、被締付物200が雌ねじ部材から浮き上がってしまい、六角棒162によりボルト198に十分な圧縮力を加えることができない。その場合には、被締付物200を雌ねじ部材204に締め付けるための複数本のボルト198のうちの一部のもの(被締付物200が小さければ1本で十分であり、大きければ複数本とすることが望ましい)を、本発明に従わない通常の方法で仮に締付け、その状態で、残りのボルト198を本発明の方法で締め付ければよい。最後に、仮に締め付けておいたボルト198を一旦緩め、本発明の方法で締め付け直せば、被締付物200の雌ねじ部材204への締付け作業が終了する。
【0029】
以上説明した機械的係合部に代えて、図19に示す磁気吸着部210を採用することも可能である。磁気吸着部210は、上記ケーシング164の先端部に電磁石214を設けたものである。電磁石214は、鉄心216にコイル218を巻き付けたもので、コイル218に電流を供給すれば磁化し、電流を絶てば消磁するため、ケーシング164を被締付物200に係合させたり離脱させたりする作業を容易に行い得る。なお、図示の電磁石214は円環状のものであるが、複数の独立した電磁石をケーシング164に固定して磁気吸着部とすることも可能である。また、図19のねじ締付装置においては、前記検出器24が、トルク検出器220と軸方向力検出器222とに分離されている。本実施形態のねじ締付装置は、ボルト198に圧縮力を与えてねじ面間摩擦係数や座面間摩擦係数を評価するためのものであるが、ボルトの頭部とレンチ部材とを、例えば、図27,28に示すような特殊な頭部とレンチ部材とに変えることにより、ボルト198に引張力を与えてねじ面間摩擦係数や座面間摩擦係数を評価するための装置としても使用可能である。
【0030】
上記磁気吸着部210を、図20に示すように、負圧吸着部228に変えることも可能である。負圧吸着部228は、ケーシング164に固定の複数のカップ状の吸着部本体230と、その各開口部に取り付けられた吸盤232等のシール部材とを備えており、吸着部本体230の内部空間が電磁方向切換弁234等の負圧制御装置を経て負圧源236に接続されている。負圧吸着部228は、電磁方向切換弁234の制御により、吸着する作用状態と吸着しない非作用状態とに容易に切り換えることができる。なお、本負圧吸着部228も前記磁気吸着部210も、被締付物200が小さい場合には、直接雌ねじ部材204に吸着させてもよい。また、被締付物200に貫通穴や切欠を設け、それらを通して磁気吸着部210や負圧吸着部228を直接雌ねじ部材204に吸着させてもよい。
【0031】
以上の実施形態はすべて、最初から本発明に係るねじ締付装置として構成されたものであったが、図21に示すように、通常のねじ締付装置としてのインパクトレンチ240に、アタッチメント242を取り付けて本発明に係るねじ締付装置とすることも可能である。インパクトレンチ240は公知のものであるので詳細な説明は省略するが、給気部244 ,モータ部246および打撃部248を備え、給気部244の操作部材250により制御される圧縮空気により、ベーンモータ等のエアモータから成るモータ部246が作動し、出力軸252が回転させられるとともに、打撃部248により出力軸252に回転方向の打撃が加えられるものである。このインパクトレンチ240のケーシング254に、補助ケーシングとしてのアタッチメントケーシング256が取り付けられている。アタッチメントケーシング256内には、図1に示したのと同様な検出器24が設けられており、検出器24の検出軸258の後端の接続部260が、出力軸252先端の係合部としての角ドライブ262と、相対回転不能かつ圧縮力伝達可能に係合させられている。検出軸258の先端部は角ドライブ264とされており、ここにソケットや六角棒を取り付けて、回転ねじ部材を回転させることができる。検出器24には図示は省略するが図1のねじ締付装置と同様な制御装置が接続されており、検出された回転抵抗トルクが目標締付トルクと等しくなったとき、ブザー等の報知器により作業者に報知される。この報知に応じて作業者が操作部材250を解放すれば、モータ部246が停止する。なお、給気部244に接続されるエア供給通路に電磁開閉弁等の制御弁を設けて、回転抵抗トルクが目標締付トルクと等しくなったときエア供給通路が遮断され、締付けが自動的に終了させられるようにすることも可能である。
【0032】
上記ねじ締付装置はインパクトレンチを利用して構成されていたが、打撃部を有しないねじ締付装置に上記アタッチメント242を取り付けても本発明に係るねじ締付装置を得ることができる。逆に、前記各実施形態におけるモータ22をエアモータに変更することも可能であり、さらに打撃部を設けてインパクトレンチとすることも可能である。また、モータ22と出力軸との間に打撃部を設けてインパクトレンチとすることも可能である。ただし、初期段階,中間段階においては打撃部が作用しないようにすることが、ねじ面間摩擦係数および座面間摩擦係数の評価精度を高める上で望ましい。
【0033】
図22にさらに別の実施形態を示す。このねじ締付装置は、モータ部270に減速機272および検出器24が取り付けられるとともに、検出器24の検出軸274とレンチ部材276との間に、長さ変化装置278が設けられたものである。長さ変化装置278は、アクチュエータ部280と変位拡大部282とを備えている。アクチュエータ部280は積層圧電素子284を主体とするものであり、この積層圧電素子284は、出力軸274の一端に形成された大径の支持部286と変位拡大部282の大径ピストン288とに挟まれている。支持部286にはシリンダ290が固定され、これに大径ピストン288が液密かつ摺動可能に嵌合されている。変位拡大部282は、上記大径ピストン288およびシリンダ290と共に小径ピストン292を備えており、これらに囲まれた閉空間293に作動液が充満させられている。そのため、積層圧電素子284の伸長により大径ピストン288がシリンダ290に対して前進させられると、その前進距離より大きな距離だけ小径ピストン292が前進させられる。変位拡大部282は液圧式なのである。なお、小径ピストン292と一体的にボールスプライン軸294が、また、シリンダ290と一体的にボールスプライン穴部296が設けられており、これらボールスプライン軸294とボールスプライン穴部296とが複数のボール298を介してバックラッシュなしで係合することにより、小径ピストン292のシリンダ290に対する相対回転が良好に防止されている。
【0034】
レンチ部材276が回転ねじ部材に係合させられた状態で、積層圧電素子284に電圧が印加されると、積層圧電素子284が伸長して大径ピストン288をシリンダ290に対して相対的に前進させ、小径ピストン294がそれより大きな距離前進させられる。長さ変化装置278の支持部286からボールスプライン軸294までの長さが伸びるのである。この際、レンチ部材276は回転ねじ部材に係合させられているため前進不能であり、代わりにモータ部270,減速機272,検出器24等から成る慣性質量部が後退させられる。その結果、慣性質量部の質量と加速度との積に相当する慣性力がレンチ部材276に加えられることとなる。本実施形態においては、慣性質量部と長さ変化装置278とにより軸方向力付与装置が構成されているのである。
【0035】
上記積層圧電素子284が、初期段階と中間段階とにおいて、短い周期で繰返し伸長させられるようにし、その伸長と同期して検出器24によって回転抵抗トルクが検出されるようにすれば、ねじ面同士や座面同士を慣性質量部の重量より大きな力で押し付けた状態で、ねじ面間摩擦係数や座面間摩擦係数を評価することができる。したがって、ねじ締付装置を軽量化して作業性を向上させつつ、ねじ面間摩擦係数や座面間摩擦係数の評価精度を向上させることができる。
【0036】
積層圧電素子284が初期段階と中間段階とにおいて1回ずつ伸長させられるようにすることも可能である。初期段階は時間的に長いため、初期段階に1回積層圧電素子284が伸長させられるようにすることは容易である。しかし、中間段階は短いため、中間段階に積層圧電素子284が1回伸長させられるようにするためには、中間段階に移行したことを検出し、その検出に応じて積層圧電素子284を1回伸長させることが必要である。この検出は例えば次のようにして行うことができる。長さ変化装置278が作動しない状態でも、回転ねじ部材には慣性質量部の重量は加えられているため、座面同士が当接することによる回転抵抗トルクの急変は、検出器24のトルク検出部の出力信号の急変から検出することができる。また、回転ねじ部材の座面が被締付物の座面に当接した瞬間、回転ねじ部材の軸方向移動、すなわち慣性質量部の軸方向移動が急に停止させられるため、長さ変化装置278に加えられる圧縮力が増大する。この増大を積層圧電素子284により検出することによって中間段階への移行を検出することができる。積層圧電素子284の一部の圧電素子を圧縮力検出専用の素子にするか、あるいは積層圧電素子284全体を通常は圧縮力検出用の素子として機能させ、圧縮力の増大を検出させるのである。そして、中間段階への移行が検出された後、積層圧電素子284に電圧を印加して伸長させ、慣性質量部の慣性力により回転ねじ部材への圧縮力を一時的に増大させ、その時点における回転抵抗トルクの検出値に基づいて座面間摩擦係数を評価すれば、評価精度を高めることができる。なお、上記のように、積層圧電素子284の一部の素子あるいは積層圧電素子284全体を圧縮力検出手段として利用することができるため、検出器24の軸方向力検出部を省略することも可能である。
【0037】
長さ変化装置の別の実施形態を図23に示す。この長さ変化装置300は、油圧シリンダ301を主体とするもので、シリンダ302とピストン303とにより形成された油圧室を備えている。シリンダ302とピストン303とはそれぞれスラスト軸受304を介してモータ軸305と出力軸306とに相対回転可能に受けられており、モータ軸305の回転は歯車機構307により出力軸306に伝達される。モータ軸305と出力軸306との間の軸方向力の伝達はスラスト軸受304と油圧シリンダ301とを介して行われ、回転トルクの伝達は歯車機構307を介して行われる。歯車機構307は、モータ軸305と出力軸306との軸方向の相対移動を許容しつつ回転トルクを伝達する回転伝達装置を構成しているのである。ねじの締付時には、レンチ部材により回転ねじ部材に加えられる反力により出力軸306がモータ軸305側へ押され、油圧シリンダ301は最も収縮した状態にある。長さ変化装置300が最も短い状態にあるのである。そして、長さ変化装置300を伸長させる必要が生じた場合には、制御弁としての電磁方向切換弁308に一定微小時間の間電流が供給され、図示しない外部油圧源から一定量の作動油が供給され、油圧シリンダ301の伸長により長さ変化装置300が一定量伸長させられる。続いて、電磁方向切換弁308への電流の遮断により油圧シリンダ301からの作動油の流出が許容され、長さ変化装置300の長さが元の長さに復帰させられる。
【0038】
以上の各実施形態においては、締付力の管理が「トルク法」によって行われるようになっていたが、「回転角法」によって行われるようにすることも可能である。例えば、図1に示したねじ締付装置のモータ22に、図24に示すようにエンコーダ309を付加し、図25のフローチャートで表されるプログラムにより締付力の管理を行うのである。S23までは図13のフローチャートと同じである。初期段階トルクT1および中間段階トルクT2の決定後、S41において始点トルクTsが決定される。始点トルクTsは前記(3)式に、係数ξ,η,ζと始点軸力Fsとを代入して演算される。始点軸力Fsは例えば目標締付力F3に一定比率を掛けた値とされるが、その一定比率は3〜30%の範囲、望ましくは5〜15%の範囲から選定される。そして、S42,S43において回転抵抗トルクTが始点トルクTsに到達することが待たれ、到達すればS44において次式により目標回転角θ3、すなわち始点トルクTsを作用させた点を起点とした回転ねじ部材の回転角θ3が決定される。
θ3=(F3−Fs)/φ
Fs=(Ts+η・Q)/(η+ξ+ζ)
φ=(p・Kb・Kc)/〔2π・(Kb+Kc)〕
ただし、Kbはボルト系の引張ばね定数、Kcは被締付物系の引張ばね定数
その後、S45において、エンコーダ309の出力信号に基づいてソケット44の実際の回転角θを演算し、S46において実際の回転角θが目標回転角θ3に到達したか否かの判定を行うことが繰返し実行され、実際の回転角θが目標回転角θ3に到達したときS47においてモータ22の停止指令が出される。なお、上記始点トルクTsを決定するための始点締付力Fsは、本実施形態においては、従来の回転角法におけるスナグ点(回転角θと締付力Fとの関係を示すθ−F線図の直線部のうちでなるべく小さい値)とされる。
【0039】
上記実施形態においては、ねじ面間摩擦係数関連量としての係数ξと座面間摩擦係数関連量としての係数ηとに基づいて始点トルクが決定されるようになっていたが、中間段階において、回転ねじ部材を、設定値以上の圧縮力を加えつつ回転させ、その回転中の回転抵抗トルクを計測すれば、回転抵抗トルクが増大し始める時点、すなわち中間段階と最終段階との境界を明瞭に検出することができることを利用して、始点トルクを決定することもできる。例えば、図28に示すように、回転ねじ部材としてのボルト326と被締付物328との座面330,332間にスプリングワッシャ334が配設されている場合には、スプリングワッシャ334を平板状に押しつぶして、それの両座面336,338をそれぞれ座面330,332に密着させるに必要でかつ十分な圧縮力をボルト326に加えつつボルト326を回転させ、回転抵抗トルクTを計測すれば、回転抵抗トルクTは前記図11に示すように変化する。そして、その回転抵抗トルクTがほぼ一定の中間段階トルクT2に保たれている状態から増大する状態への変化が、上記ほどの大きな圧縮力を加えない従来に比較して急激に現れる。そのため、その回転抵抗トルクの増大開始点近傍の点(例えば、回転抵抗トルクが始めて設定トルク勾配を超える点、あるいはその時点より回転抵抗トルクが設定増分だけ増大した点等)であるスナグ点を精度良く決定することができ、「回転角法」による締付力管理の精度を向上させ得る。前記図1,図15,図16,図18等に記載のねじ締付装置は、本実施形態のねじ締付方法を実施するためのねじ締付装置として使用することができる。
なお、初期段階から中間段階への移行時における回転抵抗トルクの急変も検出し、その急変後(あるいはその急変後の一定経過時間内)に回転抵抗トルクが増大した場合に、その時点が中間段階から最終段階への移行時点であるとすれば、一層確実にスナグ点を検出することができる。
【0040】
以上の各実施形態においては、圧縮力を加えた状態で回転ねじ部材を回転させ、ねじ面間摩擦係数の評価が行われるようになっていたが、引張力を加えた状態で回転させ、ねじ面間摩擦係数の評価が行われるようにすることも可能である。例えば、図26に示すように、ボルト310の頭部312に、頭部の頂面から軸方向に延びる軸方向溝314とその軸方向溝314の先端からボルト310の締込み時の回転方向下流側へ延びる周方向溝316とを有するL字形の係合切欠318を形成(軸対称に複数個形成することが望ましい)する一方、図27に示すように、レンチ部材320に、軸方向溝314から進入して周方向溝316に係合可能な形状の係合部322を設け、係合部322を周方向溝316に係合させてボルト310に引張力と締付トルクとを加え得るようにする。そして、ねじ締付装置として、例えば図19に示すように被締付物200に当接する当接部(図19の実施形態においては電磁石214)を備えたものを使用し、流体圧シリンダ165を収縮方向に作動させつつモータ22をボルト310を締め付ける向きに回転させ、トルク検出器220により回転抵抗トルクを検出し、検出した回転抵抗トルクに基づいてねじ面間摩擦係数を評価するのである。
【0041】
前記実施形態においては、軸方向力Qがほぼ0の状態で回転抵抗トルクTを検出し、それがほぼ0でなければ、異物噛込み等の螺合異常が発生したと検出されるようになっていたが、軸方向力Qをほぼ0にすることなく螺合異常が検出されるようにすることも可能である。例えば、図29に示すように、軸方向力QをQe,Qf等複数の値に変化させて回転抵抗トルクTe,Tf等を取得し、これら複数の回転抵抗トルクTe,Tf等から外挿法により軸方向力Qが0のときの回転抵抗トルクTgを演算し、演算した回転抵抗トルクTgの絶対値が0を挟む比較的狭い設定領域内の値であれば、螺合異常がないと判定され、設定領域から外れていれば、螺合異常が生じていると判定されるようにするのである。螺合異常に起因する回転抵抗トルクは軸方向力Qの値の変化によっては変化せず、ほぼ一定の大きさであることが多いため、軸方向力Qe,Qfに対応する回転抵抗トルクTe´,Tf´によって規定される直線が、螺合異常がない場合の回転抵抗トルクTe,Tfによって規定される直線を上方へ平行移動させたものとなり、軸方向力Qが0のときの回転抵抗トルクTg´が0を挟む設定領域から外れるため、螺合異常の発生を検出することができるのである。
【0042】
以上の各実施形態においては、個々のねじ締付装置に専用のマイクロコンピュータが設けられていたが、複数のねじ締付装置の制御装置のコンピュータの部分を共用のパーソナルコンピュータやワークステーションで構成し、締付力が集中的に管理されるようにすることも可能である。また、マイクロコンピュータに代えて、同様な機能を果たす電気回路を採用することも可能である。
その他、当業者の知識に基づいて種々の変形,改良を施した態様で本発明を実施することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態であるねじ締付装置を示す正面図である。
【図2】上記ねじ締付装置におけるトルク検出部を概念的に示す図である。
【図3】上記ねじ締付装置の制御装置を示すブロック図である。
【図4】上記制御装置の制御プログラムの一部を示すフローチャートである。
【図5】上記ねじ締付装置によるねじ締付けの初期段階を示す図である。
【図6】図5の一部を拡大して示す図である。
【図7】上記ねじ締付装置によるねじ締付けの中間段階を示す図である。
【図8】図7の一部を拡大して示す図である。
【図9】上記ねじ締付装置によるねじ締付けの最終段階を示す図である。
【図10】図9の一部を拡大して示す図である。
【図11】前記ねじ締付装置によるねじ締付時における回転抵抗トルクの変化を示すグラフである。
【図12】本発明の別の実施形態であるねじ締付装置の制御プログラムのフローチャートのうち図4のフローチャートと異なる部分のみを示す図である。
【図13】本発明のさらに別の実施形態であるねじ締付装置の制御プログラムの一部を示すフローチャートである。
【図14】本発明のさらに別の実施形態であるねじ締付装置の制御プログラムのフローチャートのうち図13のフローチャートと異なる部分のみを示す図である。
【図15】本発明のさらに別の実施形態であるねじ締付装置を示す正面図(一部断面)である。
【図16】本発明のさらに別の実施形態であるねじ締付装置を示す正面図(一部断面)である。
【図17】本発明のさらに別の実施形態であるねじ締付装置の軸方向力付与装置のみを示す正面断面図である。
【図18】本発明のさらに別の実施形態であるねじ締付装置を示す正面断面図である。
【図19】本発明のさらに別の実施形態であるねじ締付装置を示す正面断面図である。
【図20】本発明のさらに別の実施形態であるねじ締付装置を示す正面断面図である。
【図21】本発明のさらに別の実施形態であるねじ締付装置を示す正面断面図である。
【図22】本発明のさらに別の実施形態であるねじ締付装置を示す正面図(一部断面)である。
【図23】本発明のさらに別の実施形態であるねじ締付装置における長さ変化装置を概念的に示す正面図(一部断面)である。
【図24】本発明のさらに別の実施形態であるねじ締付装置を示す正面図である。
【図25】本発明のさらに別の実施形態であるねじ締付装置の制御プログラムを示すフローチャートである。
【図26】本発明のさらに別の実施形態であるねじ締付装置により締め付けられるボルトを示す正面図である。
【図27】上記ボルトが締め付けられる状態を示す正面断面図である。
【図28】本発明に係るねじ締付方法によって締め付けられるボルトとスプリングワッシャとを示す正面図である。
【図29】本発明のさらに別の実施形態であるねじ締付装置による螺合異常の検出を説明するグラフである。
【符号の説明】
10:本体フレーム 12:支持台部 16:リニアガイド 18:昇降部材 20:油圧シリンダ 22:減速機付き電動モータ 24:検出器
50:制御装置 76:第1部材 78:第2部材 80:ボルト
88,90:座面 92,94:ねじ面 110:ねじ締付装置主体部
112:昇降フレーム 114:油圧シリンダ 116:流体圧アクチュエータ 118:ソケット 130:ねじ締付装置主体部 134:キャリパ 140:エアシリンダ 146:荷重バランサ 148:電磁方向切換弁 152:エア源 162:六角棒部 164:ケーシング 165:流体圧シリンダ 184:コレット 186:テーパ部材 192:係合突起 202:ざぐり穴 210:磁気吸着部 228:負圧吸着部 240:インパクトレンチ 242:アタッチメント 256:アタッチメントケーシング 258:検出軸 260:接続部 262,264:角ドライブ 270:モータ部 272:減速機 274:出力軸
276:レンチ部材 278:長さ変化装置 280:アクチュエータ部
282:変位拡大部 284:積層圧電素子 309:エンコーダ
318:係合切欠 320:レンチ部材 322:係合部
[0001]
BACKGROUND OF THE INVENTION
The present invention prevents the rotation of the non-rotating screw member that is one of the two screw members and rotates the rotating screw member that is the other of the two screw members in a state where the male screw member and the female screw member are screwed together. Thus, the present invention relates to a method and an apparatus for fastening both screw members with an object to be fastened in between, and in particular, to improvement of management accuracy of fastening force.
[0002]
[Prior art]
When the object to be tightened is tightened by the male screw member and the female screw member, there are a case where there are a plurality of objects to be tightened and a case where there is a single object. For example, when a bolt (this is a male screw member) passing through a through-hole of an object to be tightened is tightened into a member in which an internal thread hole is formed (this is an internal thread member), the object to be tightened becomes an internal thread. When tightened to a member, the number of objects to be tightened is often singular. However, when tightening is performed using a headed bolt and nut as male and female screw members, respectively, multiple objects are to be tightened. It becomes a piece. In addition, when a to-be-tightened member is fastened with a nut to the member to which the stud bolt is attached, the member to which the stud bolt is attached is considered as a male screw member. In this case, the number of objects to be tightened is often singular. In tightening, the male screw member may be rotated and the female screw member may be rotated, and the screw member on the opposite side needs to be prevented from rotating. In this specification, the screw member on the side to be rotated is referred to as a rotating screw member, and the screw member on the side to be prevented from rotating is referred to as a non-rotating screw member.
[0003]
When tightening the screw member, the tightening force that is the axial force of the male screw member should be managed. However, since it is difficult to detect the tightening force, the “screw tightening” of JIS B 1083 is usually used. It is managed by the “torque method”, “rotation angle method”, “torque gradient method”, etc. defined in “General Rules”. Among these, in the case of the “torque gradient method”, the tightening force management accuracy is such that the friction coefficient between the screw surfaces of the male and female screw members (referred to as the friction coefficient between the screw surfaces) and the bearing surface of the rotary screw member. Although it is not affected by the coefficient of friction with the bearing surface of the object to be tightened (referred to as the coefficient of friction between the bearing surfaces), when the “torque method” and “rotation angle method” are used, the friction coefficient to be influenced. Conventionally, the coefficient of friction between the screw surfaces and the coefficient of friction between the bearing surfaces have been measured in advance, and the tightening force has been managed using them. It depends. It is affected by the surface roughness and hardness of the threaded surface and the bearing surface, and the lubrication status. Since these are usually not constant, the variation in the tightening force becomes large and the reliability of the tightening force management is sufficient. I could not say.
[0004]
At the time of screw tightening, at least one of a spring washer and a flat washer is usually disposed between the seat surface of the rotating screw member and the seat surface of the object to be tightened. Normally, slip occurs between the rotating screw member and the washer during the rotation of. Therefore, in the following description, the washer is regarded as a part of the object to be tightened, the seat surface of the washer is regarded as the seat surface of the object to be tightened, and the presence of the washer will be ignored. In addition, the spring washer may rotate integrally with the rotating screw member, and in this case, the seating surface that contacts the seating surface of the spring washer to be tightened should be regarded as the rotating screw member. However, in practice, there is no problem even if it is assumed that the sliding is between the rotating screw member and the washer.
[0005]
[Problems to be Solved by the Invention, Problem Solving Means, Functions and Effects]
In view of the above circumstances, the present invention has been made with the object of improving the reliability of tightening force management.
According to the present invention, there are provided a screw tightening method, a screw tightening device, an attachment for tightening force management, a recording medium for tightening force management, a friction coefficient related amount acquisition method, a friction coefficient related amount acquisition device, etc. can get. As with the claims, each aspect is divided into sections, each section is numbered, and is described in a form that cites the numbers of other sections as necessary. This is to clarify the possibility of combining the features described in each section.
(1) In a state where the male screw member and the female screw member are screwed together, the rotation of the non-rotating screw member which is one of the two screw members is prevented, and the rotating screw member which is the other of the two screw members is rotated. The method of tightening both screw members with the object to be fastened in between,
In an initial stage in which the seat surface of the rotating screw member does not contact the seat surface of the object to be tightened, the rotating screw member is rotated while applying a first axial force to the rotating screw member, and a rotational resistance torque is detected. A screw that determines a tightening end condition based on at least the detected initial stage torque that is the initial stage rotational resistance torque and the first axial force, and that ends the tightening when the tightening end condition is satisfied Tightening method (Claim 1).
Here, “the seating surface of the rotating screw member” and “the seating surface of the object to be tightened” are literally their seating surfaces when the rotating screw member and the object to be tightened are in direct contact with each other. If at least one of a spring washer and a flat washer is provided, two seat surfaces that cause slip when the rotating screw member rotates (the seat surface of the rotating screw member and the seat surface of the rotating screw member as described above), unless otherwise specified. It is assumed that the bearing surface of the washer that comes into contact is the “seat surface of the rotating screw member” and “the seat surface of the object to be fastened”, respectively. However, a washer (especially a spring washer) is provided mainly for the purpose of preventing loosening of the screw, whereas when the screw is tightened by the method of the present invention, the tightening force is not increased. Proper management makes it difficult for screws to loosen, reducing the need for washers. In some cases, the washer can be omitted.
The initial stage torque detected as described above is affected by the coefficient of friction between the screw surfaces of both screw members. If the nominal diameter (or effective diameter) and lead angle (or pitch) of both screw members are the same and the first axial force applied to the rotating screw member is the same, the larger the coefficient of friction between the screw faces, the earlier the stage The torque increases. And, the larger the friction coefficient between screw surfaces, the larger the tightening torque required to obtain the same tightening force. Therefore, when managing the tightening force using the torque method, the larger the initial stage torque, the higher the target If the tightening torque (tightening torque at which tightening should be finished) is set large, the influence of the friction coefficient between screw surfaces can be reduced. When the tightening force is managed by the rotation angle method, the effect of the coefficient of friction between screw surfaces is increased by setting the starting point torque, such as the snag point, which is the starting point for measuring the rotation angle, as the initial stage torque increases. Can be reduced. According to the experiment, the evaluation accuracy of the coefficient of friction between the screw surfaces improves as the first axial force applied to the rotating screw member increases. In particular, when a spring washer is provided between the seating surfaces of the rotating screw member and the article to be fastened, it is desirable that the first axial force is large enough to bring the spring washer into close contact.
In determining the tightening end condition, the initial stage torque itself is used as a kind of friction coefficient related quantity related to the friction coefficient between the screw faces, and the tightening end condition is determined from the initial stage torque. The friction coefficient may be estimated, and the tightening end condition may be determined using the estimated friction coefficient. Even if the coefficient of friction between screw surfaces is evaluated, it is not always necessary to estimate the coefficient of friction between screw surfaces.
(2) The screw tightening method according to item (1), wherein the first axial force is a force in a direction in which the seat surface of the rotating screw member approaches the seat surface of the article to be tightened.
Rotational resistance torque of the rotary screw member is detected while applying a first axial force (referred to as tensile force) in a direction to separate the seat surface of the rotary screw member from the seat surface of the object to be fastened. However, although the coefficient of friction between the screw surfaces can be evaluated, as in this embodiment, the rotating screw member
In many cases, it is desirable to detect the rotational resistance torque of the rotating screw member while applying a first axial force (referred to as a compressive force) in a direction that causes the seat surface to approach the seat surface of the object to be tightened. For example, in order to apply a compressive force to a rotating screw member, a screw engaging portion (referred to as a wrench member) of a screw tightening device may be brought into contact with the rotating screw member. Sockets, hexagonal bars, etc. can be used as they are, but in order to apply a tensile force, it is necessary to use a wrench member having a special structure as will be described later in the section of the embodiment. . Further, depending on the structure of the wrench member, the shape of the rotating screw member needs to be different from the normal shape. Furthermore, when a compressive force is applied, the friction coefficient between the seating surfaces of the rotating screw member and the object to be tightened can be evaluated as described below, but this is evaluated when a tensile force is applied. Can not do it.
(3) The rotational resistance torque is detected even in an intermediate stage where the seating surface of the rotating screw member is in contact with the seating surface of the object to be fastened and the screw surfaces of both screw members are not substantially in contact. The screw tightening method according to item (2), wherein the tightening end condition is determined based on the detected intermediate stage torque.
As in this aspect, if the coefficient of friction between the seating surfaces is evaluated in addition to the coefficient of friction between the screw surfaces, and it is taken into consideration in determining the tightening end condition, the management accuracy of the tightening force can be further enhanced. The configuration of the axial force applying device is simplified by making the magnitude and direction of the first axial force applied to the rotating screw member in the initial stage and the second axial force applied in the intermediate stage the same. Desirable but not essential. At least one of the magnitude and direction of the axial force may be changed between the initial stage and the intermediate stage. In the initial stage, the axial force is used as the tensile force, and the reaction force is easily transmitted to the non-rotating screw member. An example is a mode of being received by itself.
In order to apply an axial force to the rotating screw member, various axial force applying devices described later can be used. However, when a screw is tightened by a screw tightening device that is held in hand, the screw It is also possible to apply an axial force depending on the weight of the tightening device, or to apply an axial force to the rotating screw member by an operator applying an axial force to the screw tightening device. If the axial force and the rotational resistance torque at the same time are used, the coefficient of friction between the thread surface and the seating surface can be evaluated without hindrance, and the axial force does not necessarily have to be kept constant.
Further, the axial force may be intentionally changed during one screw tightening. For example, the rotational resistance torque for each magnitude of axial force is detected while changing the axial force, and the coefficient of friction between the threaded surface and the seating surface for each of a plurality of combinations of axial force and rotational resistance torque. And the average value can be used to determine the tightening end condition. Also, the friction coefficient may change according to changes in the axial force. In this case, the friction coefficient-related quantities for a plurality of axial forces are acquired, and extrapolation (extrapolation) based on them. Alternatively, the friction coefficient related quantity for the desired axial force can be acquired by interpolation (interpolation). Furthermore, after evaluating the friction coefficient, it is possible to change the axial force in consideration of workability and the like, such as releasing or reducing the axial force.
As described above, when the friction coefficient varies depending on the axial force, the closer the axial force applied to the initial stage and the intermediate stage is to the target tightening force, the more accurate the tightening force management is. Since an increase in the axial force often leads to an increase in the size of the apparatus and a decrease in workability, it is desirable to determine the axial force in consideration of both.
In addition, it is not always necessary to keep the rotational speed of the rotating screw member constant. For example, in the initial stage or the intermediate stage (especially in the intermediate stage where the time during which the rotational resistance torque can be detected is short), the rotational speed can be reduced to facilitate the evaluation of the friction coefficient, or conversely, the speed reduction of the speed reducer Instead of increasing the ratio and decreasing the rotational speed, a large tightening torque can be obtained.
(4) The tightening end condition is that the actual rotational resistance torque is equal to a target tightening torque determined based on at least the initial stage torque, according to any one of (1) to (3) The described screw tightening method.
This aspect corresponds to management of the tightening force by the “torque method”.
(5) The rotation angle of the rotating screw member from when the actual rotation resistance torque reaches the starting point torque determined based on the initial stage torque as the tightening end condition is determined by the male screw member and the object to be tightened. The screw tightening method according to any one of (1) to (3), which is equal to a target rotation angle determined on the basis of an elastic coefficient and a target tightening force.
This aspect corresponds to management of the tightening force by the “rotation angle method”. However, the starting point torque is not limited to the snag point in the conventional “rotation angle method”, and the bearing surfaces of the rotating screw member and the object to be tightened and the screw surfaces of both screw members are in contact with each other. It is also possible to use the rotational resistance torque at the end of the intermediate stage, which is the boundary point between the final stage where the tightening force increases and the intermediate stage, or the rotational resistance torque set slightly higher than the snag point as the starting torque. .
The management accuracy of the tightening force by the screw tightening method of this aspect greatly depends on the setting accuracy of the starting point torque. Although it is desirable to set the starting point torque to the lower limit of a range in which the rotation angle and the rotational resistance torque are certain to be in a proportional relationship, it is relatively difficult to accurately detect the lower limit of the proportional range. is there. Therefore, first, a lower limit value of the tightening force that is guaranteed to be in the proportional range (for example, a tightening force that ensures that the contact state between the screw surfaces and between the bearing surfaces reaches a stable state) is determined. By setting the starting point torque based on at least the former of the lower limit value of the tightening force and the initial stage torque as the friction coefficient related amount between the screw surfaces and the intermediate stage torque as the friction coefficient related amount between the bearing surfaces, The screw tightening method of this aspect is to improve the accuracy of tightening force management by the “rotation angle method”.
(6) A casing that rotatably holds a wrench member that engages with the rotary screw member in a relatively non-rotatable manner is applied to the object to be tightened, and a reaction force of an axial force from the wrench member to the rotary screw member is applied. The screw tightening method according to any one of (1) to (5), wherein the tightening is performed by engaging in a transmittable state.
If the axial force applied to the rotating screw member is a tensile force, the reaction force of the tensile force can be reduced by simply bringing the casing or an integral member into contact with the surface of the object to be tightened. Via the non-rotating screw member. On the other hand, when the axial force applied to the rotating screw member is a compressive force, the casing or an integral member is engaged with the object to be tightened so that the casing is not separated from the object to be tightened. is required. In addition, the object to be tightened must not move to the casing side together with the casing (this is called lifting of the object to be tightened). This is because a sufficient compressive force cannot be applied to the rotating screw member once the object to be tightened is lifted. If the weight of the object to be tightened is greater than the compressive load to be applied to the rotating screw member, place the casing above the object to be tightened and place the casing on the object to be tightened against the object to be tightened. If it is engaged so as not to move relatively upward, the object to be fastened will not be lifted even if a sufficient compression force is applied to the rotating screw member. However, if the object to be tightened is light in weight, for example, temporarily tighten the object to be tightened as in the next section, or hold it with a special jig or another heavy object so that it does not rise. Is required. The above has been described assuming that the object to be tightened is tightened downward, but if the object to be tightened is temporarily tightened or pressed with a dedicated jig as described above, the object to be tightened is It can also be tightened.
Note that the term wrench member includes not only a narrow wrench member such as a socket or a hexagonal bar that directly engages with a rotating screw member, but also an output shaft that includes an angular drive of a screw tightening device such as an impact wrench. Used as a broad term. It is also possible to paraphrase the wrench member as the output member of the screw tightening device. In this case, the output member is an output shaft having a socket part or a hexagonal bar part having a hexagonal hole at the tip, and a direct rotation screw member. When engaging with a hexagonal head or a hexagonal hole, the output shaft can be said to be a wrench member in a narrow sense. On the other hand, when the output member is an output shaft only having a mounting part such as a socket such as a square drive part at the tip, it can only indirectly engage with the rotating screw member via the socket, It is hard to say that it is a wrench member in a narrow sense. However, if the indirect engagement with the rotating screw member is also considered to be engagement, the output shaft itself can be considered as a wrench member in a broad sense, and one in which a socket or the like is attached to the output shaft is one. When considered as a member, a member in which these output shafts and sockets are combined can be said to be a wrench member in a narrow sense.
(7) The object to be tightened is tightened by a plurality of pairs of the screw members.
A to-be-tightened object is temporarily tightened by at least one of the plurality of pairs of screw members, and a wrench member engaged with the rotating screw member in a relatively non-rotatable manner is rotatably held on the to-be-fastened object. The casing is engaged in a state in which the reaction force of the axial force from the wrench member to the rotating screw member can be transmitted, and at least one of the plurality of pairs of screw members is (2) to (5) After tightening by any one of the methods, once tightened the screw members that were temporarily tightened,
Screw tightening method to retighten by any one of the methods of (2) to (5).
According to this method, it is possible to fasten a lightweight article to be fastened in a lateral direction or an upward direction without using a dedicated jig. In general, since the object to be tightened is tightened by a plurality of pairs of screw members, the tightening method of this aspect can be employed in most cases. When a plurality of female screw holes are formed in one member, it is assumed that the single member is formed by integrally forming a plurality of female screw members.
(8) In a state where the male screw member and the female screw member are screwed together, the rotation of the non-rotating screw member which is one of the two screw members is prevented, and the rotating screw member which is the other of the two screw members is rotated. Is a device for tightening both screw members with an object to be fastened in between,
A rotary drive device for rotating the rotary screw member;
The rotary screw member is being rotated at least at an initial point when the rotary screw member is rotating by the rotary drive device and the seat surface of the rotary screw member does not contact the seat surface of the article to be tightened. An axial force applying device for applying a first axial force;
A torque detector for detecting a rotational resistance torque of the rotary screw member;
At least an initial stage torque that is a rotational resistance torque detected by the torque detection device in the initial stage and in a state where the first axial force is applied by the axial force application device, and the first shaft A tightening end condition determining means for determining a tightening end condition based on the directional force;
Stop command means for issuing a stop command for the rotary drive device when the tightening end condition determined by the tightening end condition determining means is satisfied;
A screw fastening device comprising: (Claim 2).
According to the apparatus of this aspect, the screw tightening method described in the above item (1) can be performed. The axial force applying device may continue to apply the first axial force throughout the initial stage, or may be applied discretely one or more times. The torque detecting device can detect the rotational resistance torque only once. However, if it is detected a plurality of times, the rotational resistance torque with high reliability can be acquired. Further, if automatic stop means for automatically stopping the rotation drive device is provided based on the stop command issued by the stop command means, the tightening is automatically terminated when the tightening force reaches the target tightening force. Ideal, but not indispensable. For example, an alarm such as a buzzer that rings based on a stop command is provided, and the operator stops the rotation drive device in response to the alarm notification. It is also possible to make it.
(9) In the item (8), the axial force applying device applies the first axial force in a direction in which the seat surface of the rotating screw member approaches the seat surface of the article to be tightened. The screw fastening apparatus according to claim 3.
(10) The axial force applying device may be an intermediate stage in which the seat surface of the rotating screw member is in contact with the seat surface of the article to be tightened and the screw surfaces of both screw members are not substantially in contact with each other. A second axial force is applied at least at a temporary point, and the torque detecting device detects an intermediate stage torque that is a rotational resistance torque at least at the temporary point, and the tightening end condition determining means includes: The screw tightening device according to (9), wherein the tightening end condition is determined based on the intermediate stage torque and the second axial force.
(11) The tightening end condition is that an actual rotation resistance torque is equal to a target tightening torque determined based on the initial stage torque. A screw tightening device (claim 7).
(12) The rotation angle of the rotating screw member from when the actual rotation resistance torque reaches the starting point torque determined based on the initial stage torque as the tightening end condition is determined by the male screw member and the article to be tightened. To be equal to the target rotation angle determined on the basis of the elastic modulus and target tightening force
The screw fastening device according to any one of (8) to (10) (claim 8).
(13) The screw tightening device according to any one of (10) to (12), including an intermediate stage detecting means for detecting at least a temporary point of the intermediate stage.
(14) The screw tightening device according to (13), wherein the intermediate stage detecting means detects at least a temporary point of the intermediate stage based on the rotation resistance torque detected by the torque detector.
Since the rotational resistance torque is usually different between the initial stage and the intermediate stage, the intermediate stage can be detected based on the rotational resistance torque. For example, since the rotational resistance torque changes suddenly at the boundary between the two stages, the start time of the intermediate stage can be detected based on the sudden change as in the next section. However, it is not essential to be based on the rotational resistance torque. For example, as described later in the section of the embodiment, at the moment when the seat surface of the rotating screw member abuts on the seat surface of the object to be fastened, Since the force fluctuates (particularly when the rotational speed is high or when the spring washer is not used), the start point of the intermediate stage can be detected based on this fluctuation.
(15) The intermediate stage detection means includes intermediate stage start time detection means for detecting a start time of the intermediate stage by detecting a sudden change in the rotational resistance torque at the time of transition from the initial stage to the intermediate stage ( The screw fastening device according to item 14) (claim 5).
(16) The intermediate stage detecting means
Torque storage means for storing the rotation resistance torque detected moment by moment by the torque detection device;
(14) an intermediate stage end time determination unit that determines an end point of the intermediate stage based on a group of rotation resistance torques stored in the torque storage unit after the rotation resistance torque reaches a set torque; Or the screw fastening apparatus as described in any one of (15) term (Claim 6).
At the time of transition from the intermediate stage to the final stage, the change in the rotational resistance torque is more gradual than at the transition from the initial stage to the intermediate stage, so the transition from the intermediate stage to the final stage is based on the rotational resistance torque. It is not impossible to detect in real time, but it is difficult to detect accurately. On the other hand, it is possible to store the rotational resistance torque every moment in the torque storage means, and later specify the transition point from the intermediate stage to the final stage, that is, the end stage of the intermediate stage, based on the group of the rotational resistance torques. Easy. However, before the tightening force reaches the target tightening force, the corresponding target tightening torque (in the case of the “torque method”) or the target rotation angle (in the case of the “rotation angle method”) is determined. Because it is necessary, it is desirable to determine the end point of the intermediate stage as early as possible. Therefore, it is desirable that the set torque is set as small as possible within a range in which the transition from the intermediate stage to the final stage can be specified. The intermediate stage end time determination means, for example, when the change gradient of the rotational resistance torque with respect to the rotation angle is examined in the direction opposite to the elapsed direction of time, the time point when the change gradient starts to become a set gradient (for example, 0) or less in the middle It is determined at the end of the stage, the point at which the rotational resistance torque reaches the minimum value is determined as the end of the intermediate stage, or is separated in both positive and negative directions in time from the end of the intermediate stage. The time point at which two straight lines defined by a plurality of rotational resistance torques apparently belonging to the stage intersect may be determined as the end point of the intermediate stage.
(17) The tightening end condition determining means may determine the distance between the thread surfaces of the screw members based on the rotational resistance torque detected by the torque detector and the axial force applied by the axial force applying device. Friction coefficient estimating means for estimating at least one of a friction coefficient and a friction coefficient between seating surfaces of the rotary screw member and the object to be tightened, and determining the tightening end condition based on the estimated friction coefficient The screw fastening device according to any one of items (8) to (16) (claim 9).
(18) An axial force detecting device that detects an axial force applied by the axial force applying device, and the friction coefficient estimating means includes the detected axial force and the torque detecting device. The screw tightening device according to (17), wherein at least one of the friction coefficients is estimated based on the detected rotational resistance torque.
If the axial force applied by the axial force application device is a predetermined constant value, the axial force detection device can be omitted, but if an axial force detection device is provided, the axis detected at the same point Since the friction coefficient can be estimated based on the directional force and the rotational resistance torque, it is not necessary to keep the axial force constant, and the effect of increasing the degree of freedom in tightening work can be obtained. Even when the axial force applied by the axial force applying device is a predetermined constant value, the effect of improving the estimation accuracy of the friction coefficient can be obtained by providing the axial force detecting device.
(19) The rotary drive device includes a wrench member that engages with the rotary screw member so as not to rotate relative to the rotary screw member, and a rotary drive source that rotates the wrench member. Any one of (8) to (18) The screw fastening device described in 1.
(20) The axial force applying device is
A reaction force receiving member that cannot move relative to the non-rotating screw member in the axial direction of the screw members at least when tightening the screws;
An axial drive device disposed between the reaction force receiving member and the wrench member and relatively moving the reaction force reception member and the wrench member in the axial direction of the screw members;
A screw tightening device according to item (19), comprising:
A typical reaction force receiving member is the reaction force transmitting member described in the next section. For example, an object on which a screw member is to be tightened is supported by a support base installed on the floor, while the reaction force receiving member. Is fixed to a support frame or ceiling separate from the support base, or is supported via a lifting device such as a hydraulic cylinder as described later in the embodiment section, the reaction force receiving member is not necessarily It is not necessary to engage with either the non-rotating screw member or the object to be tightened in the mode described in the next item.
(21) The reaction force receiving member can transmit a reaction force of the axial force applied to the rotating screw member by the wrench member to one of the non-rotating screw member and the tightened object. The screw member fastening device according to item (20), including a reaction force transmitting member to be engaged.
(22) The screw tightening according to (21), wherein the reaction force transmission member includes a mechanical engagement portion that mechanically engages either the non-rotating screw member or the tightened object. apparatus.
As the mechanical engagement portion, a collet chuck described later in the section of the embodiment, a contact portion of the caliper with the non-rotating screw member, or the like can be employed.
(23) The screw tightening device according to (21), wherein the reaction force transmission member includes a negative pressure adsorbing portion that adsorbs to one of the non-rotating screw member and the article to be tightened by negative pressure.
According to this aspect and the aspect described in the next section, the reaction force transmission member can be engaged with the flat surface of the non-clamped object or the non-rotating screw member so as not to be separated.
(24) The screw tightening device according to (21), wherein the reaction force receiving member includes a magnetic attracting portion that attracts to one of the non-rotating screw member and the tightened object by a magnetic force.
Although it is possible to provide the magnetic attracting portion with a permanent magnet, if it is equipped with an electromagnet, the work of attracting and separating the non-rotating screw member and the object to be fastened can be easily performed.
(25) The axial force applying device is
A load balancer that lifts all the members with a force substantially equal to the weight of all the members that move integrally with the wrench member;
A balancer releasing device for releasing the action of the load balancer;
The screw fastening apparatus according to item (19), including:
At all times, the weight of all the members that move integrally with the wrench member and the acting force of the load balancer are balanced, and the operator can easily move the wrench member to engage the rotating screw member. If the load balancer is released by the balancer releasing device after the engagement, the weight of all the members that move integrally with the wrench member is applied to the rotating screw member as a compressive force. If the weight of all the members that move integrally with the wrench member is increased, a large compressive force can be applied to the rotating screw member, and the weight is always received by the load balancer. Can be avoided.
(26) The axial force applying device is
A length changing device provided between at least a part of the screw tightening device and the wrench member, the length changing device;
A length changer control device for changing the length of the length changer at least once in at least one of the initial stage and the intermediate stage;
The screw fastening apparatus according to item (19), including:
If the length of the length changing device is changed, the wrench member and at least a part of the screw tightening device (referred to as inertia mass part) are separated from each other, but the wrench member is engaged with the rotating screw member. Therefore, it cannot move and the inertial mass part is moved. As a result, an inertial force, which is the product of the acceleration of the movement and the mass of the inertial mass portion, is applied to the rotating screw member as an axial force via the wrench member. If the length of the length changing device is increased, the compressive force is applied to the rotating screw portion, and if the length changing device is decreased, the tensile force is applied to the rotating screw portion. Since the inertia force can be easily made larger than the weight of all the members that move integrally with the wrench member of the screw tightening device, a large axial force can be applied while making the screw tightening device relatively light. It can be added to the rotating screw member. In order to increase the axial force, it is only necessary to increase at least one of the mass and acceleration of the inertial mass part, but in order to accurately evaluate the coefficient of friction between the thread surfaces and between the seat surfaces. The inertial force is preferably maintained for a certain period of time, and the acceleration is preferably maintained at a large value for a relatively long time. However, since this is not so easy, it is desirable that the mass of the inertial mass portion be as large as possible. The length changing device is provided as close to the wrench member as possible, and the screw fastening device can be as much as possible. It is desirable that many parts be made to function as inertial mass parts.
(27) The screw tightening device according to any one of (19) to (26), wherein the rotational drive source is an electric motor.
(28) The screw tightening device according to (27), wherein the torque detection device includes a current-based torque detection device that detects the rotation resistance torque based on a current of the electric motor.
(29) The screw tightening device according to any one of (19) to (26), wherein the rotational drive source is an air motor.
(30) Any one of (19) to (29), wherein the rotational drive device includes an impact torque imparting device that imparts impact torque to the wrench member while transmitting the rotation of the rotational drive source to the wrench member. The screw fastening device described in 1.
In general, when the wrench member is rotated at a constant speed, the evaluation accuracy of the coefficient of friction between the screw surfaces and between the seat surfaces becomes higher, but even when impact torque is applied to the wrench member and the rotational speed of the wrench member fluctuates. There is a certain relationship between the friction coefficient and the rotational resistance torque, and it is possible to evaluate the friction coefficient based on the rotational resistance torque. A larger tightening force can be realized more easily by the impact torque than by the substantially constant tightening torque. However, in order to improve the evaluation accuracy of the coefficient of friction in the initial stage and the intermediate stage, it is desirable to prevent the impact torque from being applied to the wrench member. Therefore, it is desirable that the impact torque applying device does not apply impact torque to the initial stage and the intermediate stage but applies it to the final stage.
(31) The screw tightening device according to any one of (8) to (30), further including a screwing abnormality detecting unit that detects a screwing abnormality of the two screw members based on the initial stage torque.
If a foreign matter is caught between the screw surfaces of both screw members, or if a screwing abnormality occurs such that the screw surfaces of both screw members are not properly screwed, the initial stage torque becomes larger than usual. Accordingly, for example, an allowable range setting means for setting an allowable range of the initial stage torque based on data such as the nominal diameter and pitch of the screw, and when the initial stage torque deviates from the allowable range, it is determined that there is a screwing abnormality. If a screwing abnormality detecting unit including a screwing abnormality determining unit is provided, a screwing abnormality can be detected at an early stage, and an abnormality that stops the rotation driving device according to the determination result of the screwing abnormality determining unit. If the stop means is provided, it is possible to satisfactorily avoid that the tightening is forcibly performed despite the occurrence of the screwing abnormality.
(32) A casing, a wrench member rotatably held in the casing, and a lens
A rotational drive source for rotating the member, and an axial force applying device for applying an axial force to the wrench member, wherein the wrench member is a screw member to be rotated among the male screw member and the female screw member. The rotating screw member is engaged with the rotating screw member so as not to rotate relative to the rotating screw member, and the rotating screw member is rotated so that both screw members are clamped with an object to be tightened between them, and the seating surface of the rotating screw member is tightened. An attachment that is used by being attached to a screw tightening device that applies a first axial force to the rotating screw member by the axial force applying device at least at a temporary point in the initial stage where the attachment surface does not contact. ,
An auxiliary casing attached to the casing;
Rotation that is rotatably supported by the auxiliary casing, has a connecting portion that engages with the wrench member in a relatively non-rotatable manner at the rear end, and a wrench portion that engages in a relatively non-rotatable manner with the rotating screw member at the front end portion. A transmission member;
A torque detection device for detecting torsional torque of the rotation transmission member;
A control device connected to at least the torque detection device, wherein (a) at least
Based on the initial stage torque that is the torsional torque detected by the torque detector at the time when the first axial force is applied by the axial force applying apparatus in the initial stage and the first axial force. Tightening condition determining means for determining the tightening condition, and (b) determining the tightening condition.
A stop command means for issuing a stop command for the rotary drive device when the tightening end condition determined by the fixing means is satisfied;
An attachment for tightening torque management, comprising:
If the attachment of this aspect is attached to a normal screw fastening device, the screw fastening device according to the present invention can be obtained.
(33) In a state where the male screw member and the female screw member are screwed together, the rotation of the non-rotating screw member which is one of the two screw members is prevented, and the rotating screw member which is the other of the two screw members is rotated. According to the control program for managing the tightening torque by a computer when tightening both screw members with the object to be tightened in between,
This is the rotational resistance torque of the rotating screw member in the initial stage in which the seating surface of the rotating screw member does not contact the seating surface of the object to be fastened and the first axial force is applied to the rotating screw member. An initial stage torque detection step for detecting the initial stage torque;
A tightening end condition determining step for determining a tightening end condition based on at least the initial stage torque detected in the initial stage torque detecting step and the first axial force;
A tightening end instruction step for instructing the end of tightening when the tightening end condition determined in the tightening end condition determining step is satisfied;
And a tightening torque management program recorded in a readable manner by the computer (claim 13).
(34) In a state where the male screw member and the female screw member are screwed together, the rotation of the non-rotating screw member which is one of the two screw members is prevented, and the rotating screw member which is the other of the two screw members is rotated. By this, when tightening both screw members with the object to be fastened in between, the friction coefficient related quantity related to the friction coefficient between both screw parts is obtained,
In an initial stage where the seat surface of the rotating screw member does not contact the seat surface of the object to be tightened, the rotating screw member is rotated while applying a first axial force to the rotating screw member, and the rotational resistance torque is detected. A friction coefficient related quantity acquisition method including a process.
An example of how to use this friction coefficient related quantity acquisition method is to acquire the friction coefficient related quantity for one or more appropriate number of rotary screw members by the method of this mode at the beginning of the tightening work of a large number of rotary screw members. Using the acquired friction coefficient related quantity, the conventional “torque method” is used to manage the tightening force of all the rotating screw members.
(35) In a state where the male screw member and the female screw member are screwed together, the rotation of the non-rotating screw member which is one of the two screw members is prevented, and the rotating screw member which is the other of the two screw members is rotated. By this, when tightening both screw members with the object to be fastened in between, the apparatus obtains a friction coefficient related quantity related to the friction coefficient between both screw parts,
A rotary drive device for rotating the rotary screw member;
When the rotary screw member is rotating by the rotary drive device and the seat surface of the rotary screw member is not in contact with the seat surface of the article to be fastened, the rotary screw member is An axial force applying device for applying a uniaxial force;
A torque detecting device for detecting a rotational resistance torque of the rotating screw member in a state where the first axial force is applied by the axial force applying device;
Friction coefficient related quantity acquisition device including
(36) In a state where the male screw member and the female screw member are screwed together, the rotation of the non-rotating screw member which is one of the two screw members is prevented, and the rotating screw member which is the other of the two screw members is rotated. The method of tightening both screw members with the object to be fastened in between,
In the intermediate stage where the seating surface of the rotating screw member is in contact with the seating surface of the member to be fastened and the screw surfaces of both screw members are not substantially in contact, the seating of the rotating screw member is placed on the rotating screw member. The rotational resistance torque is measured by rotating the rotating screw member while applying a second axial force equal to or greater than the set value in the direction in which the surface is pressed against the seat surface of the object to be tightened, and the measurement result of the rotational resistance torque A snag point torque determining step of determining a snag point torque that is a rotational resistance torque of the snag point based on the second axial force;
When the rotation angle of the rotation screw member after the rotation resistance torque of the rotation screw member reaches the snag point torque reaches a rotation angle determined so that the tightening force reaches a desired magnitude A step of stopping the rotation of the rotating screw member;
Screw tightening method including.
In this aspect, in the intermediate stage, the rotating screw member is rotated while applying a sufficient and sufficient compressive force to keep the seating surface between the rotating screw member and the object to be fastened in a stable contact state. By measuring the resistance torque, it is possible to detect the snug point with high accuracy and improve the accuracy of tightening force management by the “rotation angle method”. The technical idea is basically different from each of the above-described aspects in which the management accuracy of the tightening force is improved by evaluating the coefficient. Therefore, the set value of the second axial force is set to a magnitude that is necessary and sufficient for the contact state of the seating surface between the rotating screw member and the article to be tightened to reach a stable state. For example, when a spring washer is provided between the seating surfaces of the rotating screw member and the article to be tightened, the spring washer is set to a size that is necessary and sufficient to bring the spring washer into close contact. When a flat washer is provided between the seating surfaces of the rotating screw member and the object to be tightened, the seating surface of the rotating screw member and the seating surface of the flat washer, the seating surface of the flat washer and the object to be tightened The seating surfaces of each of the seating surfaces are crushed completely by minute projections that may be present on each seating surface and foreign matter that may be caught between the seating surfaces, and contact in substantially the same state as the final tightening state. Is set to a size that is necessary and sufficient.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, a screw tightening apparatus and method according to some embodiments of the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 10 denotes a main body frame of the screw tightening device, which is provided with a support base 12 and a bracket 14 attached thereto. A lifting member 18 is attached to the bracket 14 via a linear guide 16 and can be lifted and lowered by a hydraulic cylinder 20. An electric motor with a reduction gear (hereinafter abbreviated as a motor) 22 and a detector 24 are attached to the elevating member 18. The detector 24 includes a torque detection unit and a compression force detection unit. The torque detection unit includes a detection shaft 30 connected to the rotation shaft of the motor 22 as shown in FIG. The four strain gauges 32 are fixed at an inclination of +45 degrees and −45 degrees, and a bridge circuit 34 is formed. A DC power supply 38 is connected to the bridge circuit 34 by two pairs of slip rings 36, and is connected to a voltage detection circuit 42 by another two pairs of slip rings 40. If a torsional torque is applied to the detection shaft 30, a voltage proportional to the torsional torque appears in the voltage detection circuit 42. Although the illustration of the compressive force detector is omitted, two of the four strain gauges are fixed parallel to the axial direction of the detection shaft 30, and the remaining two are fixed parallel to the circumferential direction, It has the same configuration as the torque detector. The compression force may be obtained by calculation by detecting the hydraulic pressure of the hydraulic cylinder 20 with a hydraulic pressure detector. A socket 44, which is a kind of wrench member, is attached to the tip of the detection shaft 30. The operation and operation force of the hydraulic cylinder 20 are controlled by an operation control valve such as the electromagnetic direction switching valve 46 and an operation force control valve such as the electromagnetic pressure control valve 48 shown in FIG.
[0007]
The electromagnetic direction switching valve 46, the electromagnetic pressure control valve 48, the motor 22, the detector 24, and the like are connected to a control device 50. The control device 50 includes an input device 52 and a microcomputer 54 as a processing unit, and the microcomputer 54 is connected to the motor 22, the electromagnetic direction switching valve 46, and the electromagnetic pressure control via drivers 56, 57, and 58. While controlling the valve 48, the detection result is read from the torque detector 60 and the compression force detector 62 of the detector 24. For this purpose, the microcomputer 54 includes a PU 66, a ROM 68, a RAM 70, and an I / O port 72. The ROM 68 stores various control programs including a tightening torque control program shown in FIG. The PU 66 uses the RAM 70 to execute these control programs, and automatically manages the tightening force.
[0008]
As shown in FIG. 1, the present screw tightening device is suitable for tightening a first member 76 and a second member 78 that can be placed on the support base 12 with a rotating screw member such as a bolt 80. In the illustrated example, the first member 76 is a non-rotating screw member, and the second member 78 is an object to be tightened. Prior to the start of the tightening operation, data such as the target tightening force, screw nominal diameter, screw pitch, and set torque of the bolt 80 are input from the input device 52 by the operator or host computer and stored in the RAM 70. Next, the first member 76 and the second member 78 are placed on the support base 12, and the bolt 80 passes through the bolt hole of the second member 78 and is screwed into the female screw hole of the first member 76. . When the preparation for tightening is completed and the start button of the input device 52 of the screw tightening device is pressed, the screw is automatically tightened.
[0009]
First, in step 1 (hereinafter simply represented by S1, the same applies to other steps), the target tightening force F3 is read from the RAM 70, and the compression force Q to be applied to the bolt 80 is calculated in S2. The compression force Q is preferably equal to the target tightening force F3 from the viewpoint of the evaluation accuracy of the friction coefficient, but an increase in the compression force tends to lead to an increase in the size of the apparatus and a decrease in workability. Usually, it is made smaller than the compressive force Q. The compression force Q is desirably increased as the screw nominal diameter d is increased, and the target tightening force F3 is also increased as the screw nominal diameter d is increased. Therefore, in this embodiment, the compression force Q is the target tightening force F3. It is calculated so that it may become the magnitude | size corresponding to the value selected beforehand from 3 to 30% of range. Subsequently, in S3, the compression force Q is set to 0 and tightening is started. Specifically, the electromagnetic pressure control valve 48 is set to a state in which the hydraulic pressure supplied to the hydraulic cylinder 20 is controlled to a very small value, and the electromagnetic direction switching valve 46 is switched to a position where the hydraulic cylinder 20 is extended. The motor 22 is rotated at a low speed. Accordingly, the socket 44 descends while rotating at a low speed, engages with the head of the bolt 80 so as not to be relatively rotatable, and thereafter the bolt 80 is rotated.
[0010]
After elapse of a predetermined time, in S4, the output signal of the torque detector 60 is read. In S5, whether or not the rotational resistance torque is substantially 0, specifically, a small set value or less. If the determination result is NO, the rotation of the motor 22 is stopped in S6, and a buzzer (not shown) is sounded in S7 to notify the operator of the screwing abnormality. .
[0011]
On the other hand, if the determination result in S5 is YES, the electromagnetic pressure control valve 48 is controlled in S8, and the compression force Q calculated in S2 is applied by the hydraulic cylinder 20. At this time, as shown in FIG. 5, the male screw portion 82 is screwed into the female screw hole 84 in the bolt 80, but the seat surface 88 of the head 86 is an unfastened object of the second member 78. The thread surfaces 92 and 94 are pressed against each other as shown in an enlarged view in FIG. In this state, S9 and S10 are repeatedly performed every predetermined minute time, and the rotational resistance torque T until reaching the set torque Tb is stored in the torque memory of the RAM 70.
[0012]
While S9 and S10 are repeatedly performed, the seating surface 88 of the head portion 86 of the bolt 80 is seated on the seating surface 90 of the tightened object 78 as shown in FIG. 7, and thereafter, as shown in FIG. As described above, the threaded surface 92 of the bolt 80 is not substantially in contact with the threaded surface 94 of the female threaded hole 84. Transition to an intermediate stage takes place. In this case, “the state of not substantially contacting” means that “the screw surfaces 92 and 94 may be slightly in contact with each other due to the eccentricity of the bolt 80 and the female screw hole 84, but as in the initial stage, It means "not pressed". If the bolt 80 is further rotated by a predetermined angle after the transition to the intermediate stage, as shown in FIGS. 9 and 10, the threaded surface 92 of the bolt 80 and the threaded surface 94 of the female threaded hole 84 are in the initial stage. Are in contact on the opposite side. The transition to the final stage takes place. As the above-described stage shifts, the rotational resistance torque T detected by the torque detector 60 changes as shown in FIG.
[0013]
If the rotational resistance torque T reaches the set torque Tb, the initial stage torque T1 is stored in the initial stage torque memory of the RAM 70 in S11, and then the intermediate stage torque T2 is determined in S12 and stored in the intermediate stage torque memory of the RAM 70. Stored. The initial stage torque T1 is obtained as an average value of a plurality of rotational resistance torques T acquired during the initial stage. The intermediate stage torque T2 is obtained as a minimum value of the plurality of rotational resistance torques T stored in the torque memory. More specifically, the difference between adjacent rotation resistance torques T stored in the torque memory is calculated from the time when the rotation resistance torque T reaches the set torque Tb. One of the set of rotational resistance torques T when it becomes negative is set as an intermediate stage torque.
[0014]
Subsequently, the target tightening torque T3 is determined in S13. This determination is performed by the calculation of the later-described equation (3) based on the following facts.
5 and 6, the friction torque ξ that is the product of a coefficient ξ that is proportional to the friction coefficient between the thread surfaces 92 and 94 and the compression force Q that is applied to the head of the bolt 80 by the hydraulic cylinder 20. -Although Q generate | occur | produces, the following torque Tq of the direction which tightens the volt | bolt 80 based on the effect of the slope of the screw surfaces 92 and 94 is also generated simultaneously.
Tq = ζ · Q
Where ζ = (p / 2π)
Therefore, the initial stage torque T1, which is a tightening torque required to rotate the bolt 80 in the tightening direction, is expressed by the following equation.
T1 = ξ · Q−ζ · Q (1)
[0015]
7 and 8, the friction is a product of a coefficient η proportional to the friction coefficient between the seating surfaces 88 and 90 and the compressive force Q applied to the head of the bolt 80 by the hydraulic cylinder 20. Torque η · Q is generated, and this is balanced with an intermediate stage torque T2, which is a tightening torque required to rotate the bolt 80 in the tightening direction, as expressed by the following equation.
T2 = η · Q (2)
[0016]
In the final stage shown in FIGS. 9 and 10, if F is the tightening force with which the bolt 80 tightens the second member 78, the force acting between the seating surfaces 88 and 90 is F + Q, which is based on this force. The friction torque generated between the seating surfaces 88 and 90 is η · (F + Q). Further, the rotational resistance torque generated based on the friction coefficient between the thread surfaces 92 and 94, the effect of the inclined surface, and the tightening force F is ξ · F + ζ · F. Since the friction torque η · (F + Q) and the rotational resistance torque ξ · F + ζ · F are the tightening torque T necessary to rotate the bolt 80 in the tightening direction,
T = η · (F + Q) + ξ · F + ζ · F (3)
[0017]
The coefficients ξ and η can be calculated from the above expressions (1) and (2), the compression force Q in the expression (3) is detected, the tightening force F is set in S1, and the coefficient Since ζ can be calculated from the screw pitch p set in S1, the tightening torque T3 required to obtain a desired tightening force F3 can be calculated from the equation (3). In S13, this calculation is performed. Thereafter, S14 and S15 are repeatedly executed to wait for the rotational resistance torque T to reach the target tightening torque T3, and if it reaches, a motor stop command is issued in S16. In response to this command, the driver 56 stops the motor 22 and the tightening is automatically terminated.
[0018]
As described above, in the present embodiment, based on the initial stage torque T1, which is the rotational resistance torque T in the initial stage, it is a kind of the inter-thread surface friction coefficient related quantity related to the friction coefficient between the thread surfaces 92 and 94. The coefficient ξ is acquired, and the coefficient η, which is a kind of the friction coefficient between the seating surfaces related to the friction coefficient between the seating surfaces 88 and 90, is acquired based on the intermediate stage torque T2 that is the rotational resistance torque T in the intermediate stage. Is done. Then, the target tightening torque T3 is determined based on both the coefficients ξ and η, and when the rotation resistance torque in the final stage becomes equal to the target tightening torque T3, the tightening is automatically terminated. Therefore, for example, even if the friction coefficient between the screw faces and the friction coefficient between the seating faces change depending on whether oil is attached or not, and the roughness of the surface, it is not affected by the change, and is always almost constant. The bolt 80 can be tightened with a tightening force.
[0019]
As is apparent from the above description, in the present embodiment, the hydraulic cylinder 20 constitutes an axial force applying device, the motor 22, the socket 44, etc. constitute a rotational drive device, and the torque detector 60 of the detector 24. Constitutes a torque detector. Moreover, the part which performs S11-S13 of the microcomputer 54 comprises the fastening completion | finish condition determination means, and the part which performs S14-S16 comprises the stop command means.
[0020]
As another embodiment of the present invention, the intermediate stage torque T2 may be determined based on a change gradient of a plurality of rotational resistance torques stored in the torque memory. In this case, S12 in the flowchart of FIG. 4 is changed to S12 ′ shown in FIG. In S12 ′, the difference between adjacent ones of the plurality of rotational resistance torques stored in the torque memory is sequentially calculated backward from the time when the rotational resistance torque T reaches the set torque Tb. When the plurality of change gradients to be obtained first become equal to or less than the set gradient, the rotational resistance torque T at that time is set as the intermediate stage torque T2.
[0021]
It is also possible to determine the initial stage torque T1 and the intermediate stage torque T2 by executing the program represented by the flowchart shown in FIG. In FIG. 13, S1 to S8 and S13 to S16 are the same as the corresponding steps in FIG. 4, and S21 to S23 are different. S21 and S22 are repeatedly executed, and a sudden change in the rotational resistance torque T appears. For example, it is awaited that the difference between the two rotational resistance torques T that follow each other exceeds a preset torque difference. If a sudden change occurs, the two rotational resistance torques T before and after the sudden change are determined as the initial stage torque T1 and the intermediate stage torque T2, respectively, and stored in the initial stage torque memory and the intermediate stage torque memory in S23.
[0022]
Furthermore, the initial stage torque T1 and the intermediate stage torque T2 can be determined by executing the program represented by the flowchart shown in FIG. In the flowchart of FIG. 14, the initial stage torque T1 and the intermediate stage torque T2 are determined by repeatedly executing S31 to S38 every predetermined minute time. First, the rotational resistance torque T is read in S31 and stored in the torque memory, and it is determined whether or not the flag is turned on in S32. This flag is turned ON in S35 after the determination of the initial stage torque T1, and is initially OFF, so in S33, it is determined whether or not a sudden change in the rotational resistance torque T has occurred. For example, as in S22, it is determined whether or not the difference between the two successive rotational resistance torques T exceeds a predetermined set torque difference. If the determination result is NO, the execution of the program is returned to S31. If YES, the program is stored in the torque memory so far in S34 as the end of the initial stage or the start of the intermediate stage. Among the plurality of rotational resistance torques T, the average value of the set number of rotational resistance torques T closest to the end point of the initial stage is determined as the initial stage torque T1. After that, since the determination of S32 is YES, S33 to S35 are bypassed, S36, S38, S31, and S32 are repeatedly executed, and it is waited for the gradient of the rotational resistance torque to be equal to or greater than the set torque gradient. If it is greater than or equal to the gradient, it is determined that it is the end time of the intermediate stage or the start time of the final stage, and in S37, the average value of the set number of rotational resistance torques T closest to the end time of the intermediate stage is determined as the intermediate stage torque T2. . Next, if the rotational resistance torque T reaches the set torque Tb, S13 and subsequent steps in FIG. 4 are executed. In the present embodiment, the sudden change in the rotational resistance torque and the fact that the rotational resistance torque gradient is equal to or greater than the set torque gradient are used to determine the start time and end time of the intermediate stage, respectively, and the initial stage torque T1. And the intermediate stage torque T2 are determined on the basis of the set number of rotation resistance torques T that are apparent to belong to the initial stage and the intermediate stage, respectively. Therefore, the highly reliable initial stage torque T1 and intermediate stage torque T2 are To be acquired.
[0023]
Another embodiment of the present invention is shown in FIG. This embodiment is suitable for fastening a large-sized object to be fastened, as in the case where a cylinder head 102 is fastened to a cylinder block 100 of an engine by a plurality of bolts 104. The cylinder block 100 and the cylinder head 102 are overlapped as shown in the drawing, and the bolts 104 pass through the bolt holes of the cylinder head 102 and are screwed to the female screw holes of the cylinder block 100 to some extent. It is conveyed to. Above the tightening station, an elevating frame 112 holding a plurality of screw tightening device main bodies 110 is disposed and supported by a ceiling or a fixed support frame via an elevating device such as a hydraulic cylinder 114. Of course, it is desirable that the elevating frame 112 is guided up and down by a guide. Each of the screw tightening device main portions 110 is similar to the main portion of the screw tightening device shown in FIG. 1 except that the linear guide 16 is attached to the lifting frame 112 and the hydraulic cylinder 20 is a diaphragm type. The difference is that the fluid pressure actuator 116 is changed. The working fluid for operating the fluid pressure actuator may be liquid or gas, but according to the former, the fluid pressure actuator can be miniaturized. When the cylinder block 100 and the cylinder head 102 are conveyed to the tightening station, the lifting frame 112 that has been kept in the raised position is lowered to the lowered position by the hydraulic cylinder 114. In this state, the socket 118 of each screw fastening device main body 110 is only close to the head of the bolt 104 and is not engaged. Subsequently, the fluid pressure actuator 116 is actuated at a low pressure, and each socket 118 is engaged with the head of each bolt 104. The subsequent operation of each screw fastening device main body 110 is the same as that of the screw fastening device of FIG.
[0024]
Another embodiment is shown in FIG. This embodiment is suitable for the case where the large second member 124 is fastened to the large first member 122 by the bolt 126. The screw tightening device main body 130 includes the motor 22 and the detector 24, similarly to the main body of the screw tightening device of FIG. 1, and the fitting portion 132 of the motor 22 is connected to the fitting portion 136 of the caliper 134. It is fitted with a spline, a key or the like so that it cannot be rotated relative to the shaft but can move in the axial direction. An air cylinder 140 is attached to the caliper 134 via a bracket 138, and the motor 22, the detector 24, and the like are moved relative to the caliper 134 in the axial direction. A suspension member such as an eyebolt 142 is attached to the air cylinder 140 or the caliper 134 and can be suspended by a load balancer (not shown) disposed above. In tightening, the air cylinder 140 is operated with the engaging portion 144 of the caliper 134 being in contact with the back side of the first member 122, and a compressive force is applied from the socket 145 to the bolt 126, and the reaction force Is transmitted to the first member 122 via the bracket 138, the caliper 134, and the like. Thereby, a compressive force of a desired magnitude can be applied to the bolt 126. The operation of the screw tightening device main body 130 is the same as that of the screw tightening device of FIG.
[0025]
Yet another embodiment is shown in FIG. In the present embodiment, the axial force applying device applies a compressive force to rotating screw members such as bolts and nuts by the weight of the motor 22, the detector 24, and the like. The axial force applying device includes an air-type load balancer 146 that suspends the motor 22 and the like, and an electromagnetic direction switching valve 148 as a kind of action releasing device that releases the action. Until a wrench member such as a socket rotated by the motor 22 is engaged with the bolt, the electromagnetic direction switching valve 148 causes the pressure chamber 150 of the load balancer 146 to communicate with the air source 152, and the load balancer 146 is in an operating state. The weight of the motor and the like is not burdened on the operator, but after the wrench member is engaged with the bolt, the pressure chamber 150 is switched to a state where the pressure chamber 150 is communicated with the atmosphere. Be applied as a compression force to the bolt.
[0026]
The screw tightening device shown in FIG. 16 includes an engaging portion 144 of a caliper 134 as a mechanical engaging portion that mechanically engages with a non-rotating screw member. FIG. 18 shows a screw tightening device having an engaging portion. This mechanical engagement part engages with the article to be tightened. This screw tightening device is provided with a motor 22 and a detector 24 in the same manner as the screw tightening device of FIG. 1, but its output shaft 160 has a hexagonal bar portion 162 as a wrench at the tip. Yes. The motor 22 and the detector 24 are accommodated in the casing 164 so as to be relatively movable in the axial direction and not to be relatively rotatable. A fluid pressure cylinder 165 is disposed between the casing 164 and the motor 22 so that the motor 22, the detector 24, the output shaft 160, and the like can be moved forward and backward relative to the casing 164. The tip of the casing 164 is a small diameter portion 166, and a ring-shaped first cylinder 168 is fitted and fixed therein, and a ring-shaped first piston 170 is disposed in the first cylinder 168. Provided, and are fitted fluidly and slidably on the inner peripheral surface of the first cylinder 168 and the outer peripheral surface of the small-diameter portion 166, respectively. As a result, the space in the first cylinder 168 is divided into two pressure chambers 172 and 174. A ring-shaped second cylinder 176 is formed integrally with the first piston 170, and the ring-shaped second piston 178 is fitted into the second cylinder 176 so as to be liquid-tight and slidable. As a result, the space in the second cylinder is divided into two pressure chambers 180 and 182. A collet 184 is fixed to the tip of the second cylinder 176, a cylindrical taper member 186 is fixed to the second piston 178, and the taper member 186 is fitted inside the collet 184. The collet 184 has an inner peripheral tapered surface 190 corresponding to the outer peripheral tapered surface 188 of the tapered member 186, and a plurality of axially parallel slits formed from the tip to the middle. The tip is divided into a plurality of parts. Therefore, if the taper member 186 is moved to the tip side relative to the collet 184, the diameter of the tip portion of the collet 184 is increased. An engaging protrusion 192 is formed on the outer peripheral surface of the tip portion.
[0027]
Normally, pressure fluid (hydraulic oil, compressed air, etc.) is supplied to the pressure chambers 172 and 182 so that the first piston 170 is kept at the forward end position, while the second piston 178 is kept at the backward end position. . In this state, the tip of the collet 184 is inserted between the inner peripheral surface of the counterbore 202 formed in the article to be tightened 200 and the head of the bolt 198. Subsequently, the pressure fluid is supplied to the pressure chamber 180 to advance the second piston 178, and the diameter of the collet 184 is increased by the taper member 186. As a result, the engagement protrusion 192 bites into the inner peripheral surface of the counterbore 202, and the casing 164 is engaged with the article to be tightened 200 via the collet 184, the second cylinder 176, the first piston 170, the first cylinder 168, and the like. Can be combined. The collet 184, the taper member 186, and the two hydraulic cylinders that drive them constitute a mechanical engagement portion. In order to enable the engagement of the mechanical engagement portion, the counterbore 202 needs to be slightly larger in diameter than the conventional counterbore. If an annular engagement groove that engages with the engagement protrusion 192 is formed on the inner peripheral surface of the counterbore 202, the engagement can be further ensured. After the engagement, while the motor 22 is rotated, the fluid pressure cylinder 165 advances the motor 22, the detector 24 and the output shaft 160 relative to the casing 164, and the hexagonal bar portion 162 is engaged with the hexagonal hole of the bolt 198. Can be combined.
[0028]
In this state, if the operating force of the fluid pressure cylinder 165 is increased, a compressive force is applied to the bolt 198 by the hexagonal bar 162, and the reaction force is transmitted to the object to be tightened 200 via the casing 164, the collet 184, and the like. Is done. At this time, if the weight of the object to be tightened 200 is sufficiently large compared to the compression force to be applied to the bolt 198 by the hexagonal bar 162, the object to be tightened 200 is lifted from the female screw member 204 which is a non-rotating screw member. Absent. On the other hand, if the weight is small, the article to be fastened 200 is lifted from the female screw member, and a sufficient compressive force cannot be applied to the bolt 198 by the hexagonal bar 162. In that case, a part of a plurality of bolts 198 for fastening the article to be fastened 200 to the female screw member 204 (one piece is sufficient if the piece to be fastened 200 is small, and a plurality of bolts are large. Is preferably temporarily tightened by an ordinary method not according to the present invention, and the remaining bolts 198 may be tightened by the method of the present invention in that state. Finally, once the bolt 198 that has been tightened is once loosened and retightened by the method of the present invention, the operation of tightening the object 200 to the female screw member 204 is completed.
[0029]
Instead of the mechanical engagement portion described above, a magnetic attraction portion 210 shown in FIG. 19 can be adopted. The magnetic attraction unit 210 is provided with an electromagnet 214 at the tip of the casing 164. The electromagnet 214 is obtained by winding a coil 218 around an iron core 216. The electromagnet 214 is magnetized when a current is supplied to the coil 218 and demagnetized when the current is cut off. Can be easily performed. Although the illustrated electromagnet 214 is annular, a plurality of independent electromagnets can be fixed to the casing 164 to form a magnetic attracting portion. In the screw tightening device of FIG. 19, the detector 24 is separated into a torque detector 220 and an axial force detector 222. The screw tightening device of the present embodiment is for applying a compressive force to the bolt 198 to evaluate the friction coefficient between the screw surfaces and the friction coefficient between the seating surfaces. 27, 28 By changing to a special head and a wrench member as shown in FIGS. 27 and 28, a tensile force is applied to the bolt 198 to be used as an apparatus for evaluating the friction coefficient between the screw surfaces and the friction coefficient between the bearing surfaces. Is possible.
[0030]
As shown in FIG. 20, the magnetic adsorption unit 210 can be changed to a negative pressure adsorption unit 228. The negative pressure adsorbing part 228 includes a plurality of cup-shaped adsorbing part main bodies 230 fixed to the casing 164 and a sealing member such as a suction cup 232 attached to each opening thereof. Is connected to a negative pressure source 236 through a negative pressure control device such as an electromagnetic direction switching valve 234. The negative pressure adsorbing unit 228 can be easily switched between an adsorbing operating state and a non-adsorbing non-operating state by controlling the electromagnetic direction switching valve 234. It should be noted that both the negative pressure adsorbing portion 228 and the magnetic adsorbing portion 210 may be directly adsorbed to the female screw member 204 when the article to be tightened 200 is small. Moreover, a through-hole or a notch may be provided in the article to be tightened 200, and the magnetic attracting part 210 and the negative pressure attracting part 228 may be directly attracted to the female screw member 204 through them.
[0031]
All of the above embodiments were configured as the screw tightening device according to the present invention from the beginning. However, as shown in FIG. 21, an attachment 242 is attached to an impact wrench 240 as a normal screw tightening device. It is also possible to attach the screw tightening device according to the present invention. The impact wrench 240 is a known one and will not be described in detail. However, the impact wrench 240 includes an air supply unit 244, a motor unit 246, and a striking unit 248. The motor unit 246 composed of an air motor such as the above operates to rotate the output shaft 252, and the striking unit 248 strikes the output shaft 252 in the rotational direction. An attachment casing 256 as an auxiliary casing is attached to the casing 254 of the impact wrench 240. In the attachment casing 256, the detector 24 similar to that shown in FIG. 1 is provided, and the connection portion 260 at the rear end of the detection shaft 258 of the detector 24 serves as an engagement portion at the front end of the output shaft 252. The angular drive 262 is engaged with the angular drive 262 such that the relative rotation is impossible and the compression force can be transmitted. The tip end of the detection shaft 258 is a corner drive 264, and a rotary screw member can be rotated by attaching a socket or a hexagonal bar thereto. Although not shown, the detector 24 is connected to a control device similar to the screw tightening device of FIG. 1, and when the detected rotational resistance torque becomes equal to the target tightening torque, an alarm device such as a buzzer. Is notified to the operator. When the operator releases the operation member 250 in response to this notification, the motor unit 246 stops. A control valve such as an electromagnetic on-off valve is provided in the air supply passage connected to the air supply unit 244. When the rotation resistance torque becomes equal to the target tightening torque, the air supply passage is shut off, and the tightening is automatically performed. It is also possible to be terminated.
[0032]
Although the screw tightening device has been configured using an impact wrench, the screw tightening device according to the present invention can be obtained even if the attachment 242 is attached to a screw tightening device having no striking portion. Conversely, the motor 22 in each of the above embodiments can be changed to an air motor, and an impact wrench can be provided by providing a striking portion. Further, it is possible to provide an impact wrench by providing a striking portion between the motor 22 and the output shaft. However, in order to increase the evaluation accuracy of the friction coefficient between the screw surfaces and the friction coefficient between the bearing surfaces, it is desirable that the striking portion does not act in the initial stage and the intermediate stage.
[0033]
FIG. 22 shows still another embodiment. In this screw tightening device, a speed reducer 272 and a detector 24 are attached to a motor unit 270, and a length changing device 278 is provided between a detection shaft 274 of the detector 24 and a wrench member 276. is there. The length changing device 278 includes an actuator unit 280 and a displacement enlarging unit 282. The actuator unit 280 is mainly composed of a laminated piezoelectric element 284, and this laminated piezoelectric element 284 is connected to a large-diameter support portion 286 formed at one end of the output shaft 274 and a large-diameter piston 288 of the displacement expanding portion 282. It is sandwiched. A cylinder 290 is fixed to the support portion 286, and a large-diameter piston 288 is fitted into the cylinder 290 so as to be liquid-tight and slidable. The displacement enlarging unit 282 includes a small-diameter piston 292 together with the large-diameter piston 288 and the cylinder 290, and a closed space 293 surrounded by these is filled with hydraulic fluid. Therefore, when the large-diameter piston 288 is advanced relative to the cylinder 290 due to the extension of the laminated piezoelectric element 284, the small-diameter piston 292 is advanced by a distance larger than the advance distance. The displacement expanding portion 282 is a hydraulic type. A ball spline shaft 294 is provided integrally with the small diameter piston 292, and a ball spline hole 296 is provided integrally with the cylinder 290. The ball spline shaft 294 and the ball spline hole 296 are formed of a plurality of balls. By engaging through 298 without backlash, the relative rotation of the small diameter piston 292 with respect to the cylinder 290 is well prevented.
[0034]
When a voltage is applied to the laminated piezoelectric element 284 with the wrench member 276 engaged with the rotating screw member, the laminated piezoelectric element 284 expands to advance the large-diameter piston 288 relative to the cylinder 290. The small diameter piston 294 is advanced a greater distance. This is because the length from the support portion 286 of the length changing device 278 to the ball spline shaft 294 extends. At this time, since the wrench member 276 is engaged with the rotating screw member, the wrench member 276 cannot move forward. Instead, the inertia mass portion including the motor portion 270, the speed reducer 272, the detector 24, and the like is retracted. As a result, an inertial force corresponding to the product of the mass of the inertial mass portion and the acceleration is applied to the wrench member 276. In the present embodiment, the inertial mass portion and the length changing device 278 constitute an axial force applying device.
[0035]
If the laminated piezoelectric element 284 is repeatedly extended at a short cycle in the initial stage and the intermediate stage, and the rotational resistance torque is detected by the detector 24 in synchronization with the extension, the screw surfaces are connected to each other. In addition, the coefficient of friction between the thread surfaces and the coefficient of friction between the seat surfaces can be evaluated in a state where the bearing surfaces are pressed with a force larger than the weight of the inertial mass portion. Therefore, it is possible to improve the evaluation accuracy of the coefficient of friction between the screw surfaces and the coefficient of friction between the seating surfaces while reducing the weight of the screw tightening device and improving the workability.
[0036]
It is also possible for the laminated piezoelectric element 284 to be extended once in the initial stage and in the intermediate stage. Since the initial stage is long in time, it is easy to make the laminated piezoelectric element 284 extend once in the initial stage. However, since the intermediate stage is short, in order to allow the laminated piezoelectric element 284 to be extended once in the intermediate stage, it is detected that the transition to the intermediate stage has occurred, and the laminated piezoelectric element 284 is moved once in response to the detection. It is necessary to elongate. This detection can be performed as follows, for example. Even when the length changing device 278 is not operated, the weight of the inertial mass portion is added to the rotating screw member. Therefore, a sudden change in the rotational resistance torque due to the contact between the seating surfaces is caused by the torque detecting portion of the detector 24. Can be detected from a sudden change in the output signal. Further, at the moment when the seat surface of the rotating screw member comes into contact with the seat surface of the object to be fastened, the axial movement of the rotating screw member, that is, the axial movement of the inertial mass portion is suddenly stopped. The compressive force applied to 278 increases. By detecting this increase by the laminated piezoelectric element 284, the transition to the intermediate stage can be detected. A part of the piezoelectric elements of the laminated piezoelectric element 284 is dedicated to compressive force detection, or the entire laminated piezoelectric element 284 is normally functioned as an element for detecting compressive force to detect an increase in compressive force. Then, after the transition to the intermediate stage is detected, a voltage is applied to the laminated piezoelectric element 284 to expand it, and the compressive force to the rotating screw member is temporarily increased by the inertial force of the inertial mass portion, If the friction coefficient between the seating surfaces is evaluated based on the detected value of the rotational resistance torque, the evaluation accuracy can be improved. As described above, a part of the laminated piezoelectric element 284 or the whole laminated piezoelectric element 284 can be used as the compressive force detecting means, and therefore the axial force detecting unit of the detector 24 can be omitted. It is.
[0037]
Another embodiment of the length changing device is shown in FIG. The length changing device 300 is mainly composed of a hydraulic cylinder 301 and includes a hydraulic chamber formed by a cylinder 302 and a piston 303. The cylinder 302 and the piston 303 are respectively received by a motor shaft 305 and an output shaft 306 via a thrust bearing 304 so as to be rotatable relative to each other. The rotation of the motor shaft 305 is transmitted to the output shaft 306 by a gear mechanism 307. Transmission of axial force between the motor shaft 305 and the output shaft 306 is performed via the thrust bearing 304 and the hydraulic cylinder 301, and transmission of rotational torque is performed via the gear mechanism 307. The gear mechanism 307 constitutes a rotation transmission device that transmits rotational torque while allowing relative movement in the axial direction between the motor shaft 305 and the output shaft 306. When the screw is tightened, the output shaft 306 is pushed toward the motor shaft 305 by the reaction force applied to the rotating screw member by the wrench member, and the hydraulic cylinder 301 is in the most contracted state. The length changing device 300 is in the shortest state. When the length changing device 300 needs to be extended, a current is supplied to the electromagnetic direction switching valve 308 as a control valve for a certain minute time, and a certain amount of hydraulic oil is supplied from an external hydraulic power source (not shown). The length changing device 300 is extended by a certain amount by the extension of the hydraulic cylinder 301. Subsequently, the flow of hydraulic oil from the hydraulic cylinder 301 is permitted by cutting off the current to the electromagnetic direction switching valve 308, and the length of the length changing device 300 is returned to the original length.
[0038]
In each of the embodiments described above, the tightening force is managed by the “torque method”, but may be performed by the “rotation angle method”. For example, an encoder 309 is added as shown in FIG. 24 to the motor 22 of the screw fastening apparatus shown in FIG. 1, and the tightening force is managed by the program shown in the flowchart of FIG. Steps up to S23 are the same as those in the flowchart of FIG. After the initial stage torque T1 and the intermediate stage torque T2 are determined, the starting point torque Ts is determined in S41. The starting point torque Ts is calculated by substituting the coefficients ξ, η, ζ and the starting point axial force Fs into the equation (3). The starting point axial force Fs is, for example, a value obtained by multiplying the target tightening force F3 by a certain ratio, and the certain ratio is selected from a range of 3 to 30%, preferably 5 to 15%. Then, in S42 and S43, it is waited that the rotational resistance torque T reaches the starting point torque Ts. If it reaches, the rotating screw starting from the point where the target rotational angle θ3, that is, the starting point torque Ts is applied, is obtained in S44 by the following equation. The rotation angle θ3 of the member is determined.
θ3 = (F3−Fs) / φ
Fs = (Ts + η · Q) / (η + ξ + ζ)
φ = (p · Kb · Kc) / [2π · (Kb + Kc)]
Where Kb is the tension spring constant of the bolt system, and Kc is the tension spring constant of the system to be tightened
Thereafter, in S45, the actual rotation angle θ of the socket 44 is calculated based on the output signal of the encoder 309, and it is repeatedly determined in S46 whether or not the actual rotation angle θ has reached the target rotation angle θ3. When the actual rotation angle θ reaches the target rotation angle θ3, a stop command for the motor 22 is issued in S47. In this embodiment, the starting point tightening force Fs for determining the starting point torque Ts is a snag point in the conventional rotation angle method (θ-F line indicating the relationship between the rotation angle θ and the tightening force F). It is assumed that the value is as small as possible in the straight line portion of the figure).
[0039]
In the above embodiment, the starting point torque is determined based on the coefficient ξ as the friction coefficient related amount between the screw surfaces and the coefficient η as the friction coefficient related amount between the bearing surfaces. By rotating the rotating screw member while applying a compressive force equal to or greater than the set value and measuring the rotational resistance torque during the rotation, the point where the rotational resistance torque begins to increase, that is, the boundary between the intermediate stage and the final stage can be clearly defined. The starting point torque can also be determined by using the fact that it can be detected. For example, as shown in FIG. 28, when the spring washer 334 is disposed between the seating surfaces 330 and 332 of the bolt 326 as the rotating screw member and the article to be tightened 328, the spring washer 334 is formed into a flat plate shape. If the rotation resistance torque T is measured by rotating the bolt 326 while applying a sufficient compressive force to the bolt 326 to apply both of the seating surfaces 336 and 338 to the seating surfaces 330 and 332, respectively. The rotational resistance torque T changes as shown in FIG. Then, the change from the state in which the rotational resistance torque T is maintained at the substantially constant intermediate torque T2 to the state in which the rotational resistance torque T increases increases more rapidly than in the conventional case where a large compressive force is not applied. Therefore, the snag point that is a point near the starting point of the increase of the rotational resistance torque (for example, the point at which the rotational resistance torque first exceeds the set torque gradient, or the point at which the rotational resistance torque has increased by the set increment) is accurate. It can be determined well and the accuracy of tightening force management by the “rotation angle method” can be improved. The screw tightening device described in FIG. 1, FIG. 15, FIG. 16, FIG. 18 and the like can be used as a screw tightening device for performing the screw tightening method of the present embodiment.
A sudden change in the rotational resistance torque during the transition from the initial stage to the intermediate stage is also detected, and if the rotational resistance torque increases after the sudden change (or within a certain period of time after the sudden change), that point is the intermediate stage. If it is the time of transition from to the final stage, the snag point can be detected more reliably.
[0040]
In each of the above embodiments, the rotating screw member is rotated in a state where a compressive force is applied and the friction coefficient between screw surfaces is evaluated. It is also possible to evaluate the coefficient of friction between the surfaces. For example, as shown in FIG. 26, the head 312 of the bolt 310 has an axial groove 314 extending in the axial direction from the top surface of the head and a downstream in the rotational direction when the bolt 310 is tightened from the tip of the axial groove 314. An L-shaped engagement notch 318 having a circumferential groove 316 extending to the side is formed (preferably, a plurality of axially symmetrical notches 318 are formed). On the other hand, as shown in FIG. An engaging portion 322 having a shape that can be engaged with the circumferential groove 316 is provided, and the engaging portion 322 is engaged with the circumferential groove 316 so that a tensile force and a tightening torque can be applied to the bolt 310. To. Then, as the screw tightening device, for example, as shown in FIG. 19, a device having a contact portion (electromagnet 214 in the embodiment of FIG. 19) that contacts the object to be tightened 200 is used, and the fluid pressure cylinder 165 is used. The motor 22 is rotated in the direction in which the bolt 310 is tightened while operating in the contraction direction, the rotational resistance torque is detected by the torque detector 220, and the friction coefficient between the screw surfaces is evaluated based on the detected rotational resistance torque.
[0041]
In the above-described embodiment, the rotational resistance torque T is detected in a state where the axial force Q is substantially zero, and if it is not substantially zero, it is detected that a screwing abnormality such as a foreign object biting has occurred. However, it is also possible to detect the screwing abnormality without making the axial force Q substantially zero. For example, as shown in FIG. 29, the axial force Q is changed to a plurality of values such as Qe and Qf to obtain rotational resistance torques Te and Tf and the like, and extrapolation is performed from the plurality of rotational resistance torques Te and Tf. To calculate the rotational resistance torque Tg when the axial force Q is 0, and if the absolute value of the calculated rotational resistance torque Tg is a value within a relatively narrow setting region across 0, it is determined that there is no screwing abnormality. If it is out of the set area, it is determined that a screwing abnormality has occurred. Since the rotational resistance torque resulting from the screwing abnormality does not change depending on the change in the value of the axial force Q, and is often almost constant, the rotational resistance torque Te ′ corresponding to the axial forces Qe and Qf. , Tf ′ is obtained by translating the straight line defined by the rotational resistance torques Te, Tf when there is no screwing abnormality upward, and the rotational resistance torque when the axial force Q is zero. Since Tg ′ deviates from the setting region that sandwiches 0, the occurrence of screwing abnormality can be detected.
[0042]
In each of the embodiments described above, a dedicated microcomputer is provided for each screw tightening device. However, the computer portion of the control device for a plurality of screw tightening devices is configured by a shared personal computer or workstation. It is also possible to manage the tightening force in a centralized manner. It is also possible to employ an electric circuit that performs the same function instead of the microcomputer.
In addition, the present invention can be implemented in various modifications and improvements based on the knowledge of those skilled in the art.
[Brief description of the drawings]
FIG. 1 is a front view showing a screw tightening apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram conceptually showing a torque detector in the screw tightening device.
FIG. 3 is a block diagram showing a control device of the screw tightening device.
FIG. 4 is a flowchart showing a part of a control program of the control device.
FIG. 5 is a diagram showing an initial stage of screw tightening by the screw tightening device.
6 is an enlarged view of a part of FIG.
FIG. 7 is a diagram showing an intermediate stage of screw tightening by the screw tightening device.
8 is an enlarged view of a part of FIG.
FIG. 9 is a diagram showing a final stage of screw tightening by the screw tightening apparatus.
10 is an enlarged view of a part of FIG. 9;
FIG. 11 is a graph showing changes in rotational resistance torque during screw tightening by the screw tightening device.
12 is a diagram showing only a part different from the flowchart of FIG. 4 in the flowchart of the control program of the screw tightening apparatus which is another embodiment of the present invention.
FIG. 13 is a flowchart showing a part of a control program for a screw tightening apparatus according to still another embodiment of the present invention.
FIG. 14 is a diagram showing only a part different from the flowchart of FIG. 13 in the flowchart of the control program of the screw tightening apparatus which is still another embodiment of the present invention.
FIG. 15 is a front view (partially cross-sectional view) showing a screw fastening device according to still another embodiment of the present invention.
FIG. 16 is a front view (partially cross-sectional view) showing a screw tightening device according to still another embodiment of the present invention.
FIG. 17 is a front sectional view showing only an axial force applying device of a screw tightening device which is still another embodiment of the present invention.
FIG. 18 is a front sectional view showing a screw tightening device according to still another embodiment of the present invention.
FIG. 19 is a front sectional view showing a screw tightening device according to still another embodiment of the present invention.
FIG. 20 is a front sectional view showing a screw tightening device according to still another embodiment of the present invention.
FIG. 21 is a front sectional view showing a screw tightening device according to still another embodiment of the present invention.
FIG. 22 is a front view (partially cross-sectional view) showing a screw tightening device according to still another embodiment of the present invention.
FIG. 23 is a front view (partially cross-sectional view) conceptually showing a length changing device in a screw fastening device according to still another embodiment of the present invention.
FIG. 24 is a front view showing a screw tightening device according to still another embodiment of the present invention.
FIG. 25 is a flowchart showing a control program for a screw tightening apparatus according to still another embodiment of the present invention.
FIG. 26 is a front view showing a bolt tightened by a screw tightening device according to still another embodiment of the present invention.
FIG. 27 is a front sectional view showing a state in which the bolt is tightened.
FIG. 28 is a front view showing a bolt and a spring washer tightened by the screw tightening method according to the present invention.
FIG. 29 is a graph for explaining detection of screwing abnormality by a screw tightening device according to still another embodiment of the present invention.
[Explanation of symbols]
10: Main body frame 12: Support base 16: Linear guide 18: Lifting member 20: Hydraulic cylinder 22: Electric motor with reduction gear 24: Detector
50: Control device 76: First member 78: Second member 80: Bolt
88, 90: Seat surface 92, 94: Screw surface 110: Screw tightening device main part
112: Lifting frame 114: Hydraulic cylinder 116: Fluid pressure actuator 118: Socket 130: Screw tightening device main part 134: Caliper 140: Air cylinder 146: Load balancer 148: Electromagnetic direction switching valve 152: Air source 162: Hexagonal bar 164: Casing 165: Fluid pressure cylinder 184: Collet 186: Taper member 192: Engagement protrusion 202: Counterbore 210: Magnetic adsorption part 228: Negative pressure adsorption part 240: Impact wrench 242: Attachment 256: Attachment casing 258: Detection shaft 260: Connection unit 262, 264: Square drive 270: Motor unit 272: Reducer 274: Output shaft
276: Wrench member 278: Length changing device 280: Actuator section
282: Displacement expansion part 284: Multilayer piezoelectric element 309: Encoder
318: engagement notch 320: wrench member 322: engagement portion

Claims (13)

雄ねじ部材と雌ねじ部材とを螺合させた状態で、それら両ねじ部材の一方である非回転ねじ部材の回転を防止し、それら両ねじ部材の他方である回転ねじ部材を回転させることにより、両ねじ部材を被締付物を間に挟んで締め付ける方法であって、
前記回転ねじ部材の座面が前記被締付物の座面に接触しない初期段階において、回転ねじ部材に第一軸方向力を加えつつその回転ねじ部材を回転させて回転抵抗トルクを検出し、少なくともその検出した初期段階の回転抵抗トルクである初期段階トルクと前記第一軸方向力とに基づいて締付終了条件を決定し、その締付終了条件が満たされたときに締付けを終了することを特徴とするねじ締付方法。
In a state where the male screw member and the female screw member are screwed together, the rotation of the non-rotating screw member, which is one of the two screw members, is prevented, and the rotating screw member, which is the other of the two screw members, is rotated. A method of tightening a screw member with an object to be fastened in between,
In an initial stage in which the seat surface of the rotating screw member does not contact the seat surface of the object to be tightened, the rotating screw member is rotated while applying a first axial force to the rotating screw member, and a rotational resistance torque is detected. A tightening end condition is determined based on at least the detected initial stage torque that is the initial stage rotational resistance torque and the first axial force, and the tightening is terminated when the tightening end condition is satisfied. A screw tightening method characterized by the above.
雄ねじ部材と雌ねじ部材とを螺合させた状態で、それら両ねじ部材の一方である非回転ねじ部材の回転を防止し、それら両ねじ部材の他方である回転ねじ部材を回転させることにより、両ねじ部材を被締付物を間に挟んで締め付ける装置であって、
前記回転ねじ部材を回転させる回転駆動装置と、
その回転駆動装置による前記回転ねじ部材の回転中であって、かつ、その回転ねじ部材の座面が前記被締付物の座面に接触しない初期段階の少なくとも一時点に、その回転ねじ部材に第一軸方向力を付与する軸方向力付与装置と、
前記回転ねじ部材の回転抵抗トルクを検出するトルク検出装置と、
少なくとも、前記初期段階であって前記軸方向力付与装置により前記第一軸方向力が付与されている状態で前記トルク検出装置により検出された回転抵抗トルクである初期段階トルクと、前記第一軸方向力とに基づいて締付終了条件を決定する締付終了条件決定手段と、
その締付終了条件決定手段によって決定された締付終了条件が満たされた場合に、前記回転駆動装置の停止指令を発する停止指令手段と
を含むことを特徴とするねじ締付装置。
In a state where the male screw member and the female screw member are screwed together, the rotation of the non-rotating screw member which is one of the two screw members is prevented, and both the screw members are rotated by rotating the rotating screw member which is the other of the both screw members. A device for fastening a screw member with an object to be fastened in between,
A rotary drive device for rotating the rotary screw member;
The rotary screw member is being rotated at least at an initial point when the rotary screw member is rotating by the rotary drive device and the seat surface of the rotary screw member does not contact the seat surface of the article to be tightened. An axial force applying device for applying a first axial force;
A torque detector for detecting a rotational resistance torque of the rotary screw member;
At least an initial stage torque that is a rotational resistance torque detected by the torque detection device in the initial stage and in a state where the first axial force is applied by the axial force application device, and the first shaft A tightening end condition determining means for determining a tightening end condition based on the directional force;
A screw tightening device comprising stop command means for issuing a stop command for the rotary drive device when the tightening end condition determined by the tightening end condition determining means is satisfied.
前記軸方向力付与装置が、前記第一軸方向力を、前記回転ねじ部材の座面を前記被締付物の座面に接近させる向きに付与するものであることを特徴とする請求項2に記載のねじ締付装置。  3. The axial force applying device applies the first axial force in a direction in which a seat surface of the rotating screw member approaches a seat surface of the object to be tightened. The screw fastening device described in 1. 前記軸方向力付与装置が、前記回転ねじ部材の座面が前記被締付物の座面に接触し、かつ、両ねじ部材のねじ面が実質的に接触していない中間段階の少なくとも一時点において第二軸方向力を付与するものであり、前記トルク検出装置が、その少なくとも一時点における回転抵抗トルクである中間段階トルクを検出するものであり、前記
締付終了条件決定手段が、その中間段階トルクと前記第二軸方向力とにも基づいて前記締付終了条件を決定するものであることを特徴とする請求項3に記載のねじ締付装置。
The axial force imparting device has at least a temporary point at which the seat surface of the rotating screw member is in contact with the seat surface of the article to be fastened and the screw surfaces of both screw members are not substantially in contact with each other. The second axial force is applied, and the torque detecting device detects an intermediate stage torque that is a rotational resistance torque at least at a temporary point, and the tightening end condition determining means The screw tightening device according to claim 3, wherein the tightening end condition is determined based on a step torque and the second axial force.
前記中間段階の少なくとも一時点を検出する中間段階検出手段を含み、その中間段階検出手段が、前記トルク検出装置により検出された回転抵抗トルクの前記初期段階から前記中間段階への移行時における急変を検出することにより中間段階の開始時点を検出する中間段階開始時点検出手段を含む請求項4に記載のねじ締付装置。  Intermediate stage detection means for detecting at least a temporary point of the intermediate stage, and the intermediate stage detection means detects a sudden change of the rotational resistance torque detected by the torque detection device at the time of transition from the initial stage to the intermediate stage. 5. The screw tightening device according to claim 4, further comprising an intermediate stage start point detecting means for detecting a start point of the intermediate stage by detecting. 前記中間段階の少なくとも一時点を検出する中間段階検出手段を含み、その中間段階検出手段が、
前記トルク検出装置により時々刻々検出される前記回転抵抗トルクを記憶するトルク記憶手段と、
前記回転抵抗トルクが設定トルクに達した後、前記トルク記憶手段に記憶された回転抵抗トルクの群に基づいて前記中間段階の終了時点を決定する中間段階終了時点決定手段とを含む請求項4または5に記載のねじ締付装置。
An intermediate stage detecting means for detecting at least a temporary point of the intermediate stage, the intermediate stage detecting means,
Torque storage means for storing the rotation resistance torque detected moment by moment by the torque detection device;
5. An intermediate stage end time determination unit that determines an end point of the intermediate stage based on a group of rotation resistance torques stored in the torque storage unit after the rotation resistance torque reaches a set torque. 5. A screw tightening device according to 5.
前記締付終了条件が、実際の回転抵抗トルクが、少なくとも前記初期段階トルクと前記第一軸方向力とに基づいて決まる目標締付トルクに等しくなることである請求項2ないし6のいずれかに記載のねじ締付装置7. The tightening end condition is that the actual rotational resistance torque is equal to a target tightening torque determined based on at least the initial stage torque and the first axial force. Screw tightening device as described. 前記締付終了条件が、少なくとも前記初期段階トルクと前記第一軸方向力とに基づいて決まる始点トルクに実際の回転抵抗トルクが達した時点からの前記回転ねじ部材の回転角が、前記雄ねじ部材および前記被締付物の弾性係数と目標締付力とに基づいて決まる目標回転角に等しくなることである請求項2ないし6のいずれかに記載のねじ締付装置The rotation angle of the rotating screw member from the time when the actual rotation resistance torque reaches the starting point torque determined based on at least the initial stage torque and the first axial force as the tightening end condition is the male screw member The screw tightening device according to any one of claims 2 to 6, wherein the screw tightening device is equal to a target rotation angle determined based on an elastic coefficient of the object to be tightened and a target tightening force. 前記締付終了条件決定手段が、前記トルク検出装置により検出された回転抵抗トルクと前記軸方向力付与装置により付与される軸方向力とに基づいて、前記両ねじ部材のねじ面間摩擦係数と、前記回転ねじ部材と前記被締付物との座面間摩擦係数との少なくとも一方を推定する摩擦係数推定手段を含み、その推定した摩擦係数に基づいて前記締付終了条件を決定するものである請求項2ないし8のいずれかに記載のねじ締付装置。  Based on the rotational resistance torque detected by the torque detecting device and the axial force applied by the axial force applying device, the tightening end condition determining means determines the friction coefficient between the screw surfaces of the screw members. Including a friction coefficient estimating means for estimating at least one of the friction coefficient between the bearing surfaces of the rotating screw member and the object to be tightened, and determining the tightening end condition based on the estimated friction coefficient. The screw fastening apparatus according to any one of claims 2 to 8. 前記軸方向力付与装置により付与される軸方向力を検出する軸方向力検出装置を含み、かつ、前記摩擦係数推定手段が、その検出された軸方向力と、前記トルク検出装置により検出された回転抵抗トルクとに基づいて前記摩擦係数の少なくとも一方を推定するものである請求項9項に記載のねじ締付装置。  An axial force detecting device for detecting an axial force applied by the axial force applying device, and the friction coefficient estimating means is detected by the detected axial force and the torque detecting device. The screw fastening apparatus according to claim 9, wherein at least one of the friction coefficients is estimated based on a rotational resistance torque. 前記回転駆動装置が、
前記回転ねじ部材に相対回転不能に係合するレンチ部材と、
そのレンチ部材を回転させる回転駆動源と
を含み、前記軸方向力付与装置が、
少なくともねじの締付時には、前記両ねじ部材の軸方向において前記非回転ねじ部材と相対移動不能となる反力受部材と、
その反力受部材と前記レンチ部材との間に配設され、それら反力受部材とレンチ部材とを前記両ねじ部材の軸方向に相対移動させる軸方向駆動装置と
を含む請求項2ないし10のいずれかに記載のねじ締付装置。
The rotational drive device is
A wrench member engaged with the rotary screw member in a relatively non-rotatable manner;
A rotational drive source for rotating the wrench member, the axial force applying device,
A reaction force receiving member that cannot move relative to the non-rotating screw member in the axial direction of the screw members at least when tightening the screws;
11. An axial drive device that is disposed between the reaction force receiving member and the wrench member and moves the reaction force reception member and the wrench member relative to each other in the axial direction of the screw members. The screw fastening apparatus in any one of.
ケーシングと、そのケーシングに回転可能に保持されたレンチ部材と、そのレンチ部材を回転させる回転駆動源と、前記レンチ部材に軸方向力を付与する軸方向力付与装置とを含み、前記レンチ部材が、前記雄ねじ部材と雌ねじ部材とのうち回転させるべきねじ部材である回転ねじ部材に相対回転不能に係合させられてその回転ねじ部材を回転させることにより、両ねじ部材を被締付物を間に挟んで締め付けるとともに、前記回転ねじ部材の座面が前記被締付物の座面に接触しない初期段階の少なくとも一時点に、その回転ねじ部材に前記軸方向力付与装置により第一軸方向力を付与するねじ締付装置に取り付けて使用されるアタッチメントであって、
前記ケーシングに取り付けられる補助ケーシングと、
その補助ケーシングに回転可能に保持され、後端に前記レンチ部材に相対回転不能に係
合する接続部を、先端部に前記回転ねじ部材に相対回転不能に係合するレンチ部をそれぞれ備えた回転伝達部材と、
その回転伝達部材の捩じれトルクを検出するトルク検出装置と、
少なくともそのトルク検出装置に接続される制御装置であって、(a)少なくとも、前記
初期段階の前記軸方向力付与装置により前記第一軸方向力が付与されている時点に前記トルク検出装置により検出された捩じれトルクである初期段階トルクと、前記第一軸方向力とに基づいて締付終了条件を決定する締付終了条件決定手段と、(b)その締付終了条件決
定手段によって決定された締付終了条件が満たされた場合に、前記回転駆動装置の停止指令を発する停止指令手段とを備えたものと
を含むことを特徴とする締付トルク管理用アタッチメント。
A casing, a wrench member rotatably held in the casing, a rotation drive source that rotates the wrench member, and an axial force applying device that applies an axial force to the wrench member, The rotary screw member, which is a screw member to be rotated among the male screw member and the female screw member, is engaged with the rotary screw member so as not to rotate relative to each other, thereby rotating the rotary screw member so that the two screw members are sandwiched between the objects to be tightened. And at least a temporary point in the initial stage where the seating surface of the rotating screw member does not contact the seating surface of the object to be fastened, the first axial force is applied to the rotating screw member by the axial force applying device. An attachment that is used by being attached to a screw tightening device that provides
An auxiliary casing attached to the casing;
Rotation that is rotatably supported by the auxiliary casing, has a connecting portion that engages with the wrench member in a relatively non-rotatable manner at the rear end, and a wrench portion that engages in a relatively non-rotatable manner with the rotating screw member at the front end portion. A transmission member;
A torque detection device for detecting torsional torque of the rotation transmission member;
A control device connected to at least the torque detection device, and (a) detected by the torque detection device at least when the first axial force is applied by the axial force application device in the initial stage. Tightening end condition determining means for determining a tightening end condition based on the initial stage torque that is the torsional torque and the first axial force, and (b) determined by the tightening end condition determining means A fastening torque management attachment comprising: a stop command means for issuing a stop command for the rotary drive device when a tightening end condition is satisfied.
雄ねじ部材と雌ねじ部材とを螺合させた状態で、それら両ねじ部材の一方である非回転ねじ部材の回転を防止し、それら両ねじ部材の他方である回転ねじ部材を回転させることにより、両ねじ部材を被締付物を間に挟んで締め付ける際に、締付トルクをコンピュータにより管理するための制御プログラムであって、
前記回転ねじ部材の座面が前記被締付物の座面に接触しない初期段階であって前記回転ねじ部材に第一軸方向力が付与されている状態における回転ねじ部材の回転抵抗トルクである初期段階トルクを検出する初期段階トルク検出工程と、
少なくともその初期段階トルク検出工程において検出された初期段階トルクと前記第一軸方向力とに基づいて締付終了条件を決定する締付終了条件決定工程と、
その締付終了条件決定工程において決定された締付終了条件が満たされたときに締付けの終了を指令する締付終了指令工程と
を含む締付トルク管理プログラムが、前記コンピュータにより読み取り可能に記録されたことを特徴とする記録媒体。
In a state where the male screw member and the female screw member are screwed together, the rotation of the non-rotating screw member, which is one of the two screw members, is prevented, and the rotating screw member, which is the other of the two screw members, is rotated. A control program for managing a tightening torque by a computer when tightening a screw member with an object to be tightened in between,
This is the rotational resistance torque of the rotating screw member in the initial stage in which the seating surface of the rotating screw member does not contact the seating surface of the object to be fastened and the first axial force is applied to the rotating screw member. An initial stage torque detection step for detecting the initial stage torque;
A tightening end condition determining step for determining a tightening end condition based on at least the initial stage torque detected in the initial stage torque detecting step and the first axial force;
A tightening torque management program including a tightening end command step for instructing the end of tightening when the tightening end condition determined in the tightening end condition determining step is satisfied is recorded so as to be readable by the computer. A recording medium characterized by the above.
JP29750797A 1997-10-29 1997-10-29 Screw tightening method, screw tightening device, attachment and recording medium Expired - Fee Related JP3754542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29750797A JP3754542B2 (en) 1997-10-29 1997-10-29 Screw tightening method, screw tightening device, attachment and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29750797A JP3754542B2 (en) 1997-10-29 1997-10-29 Screw tightening method, screw tightening device, attachment and recording medium

Publications (2)

Publication Number Publication Date
JPH11129163A JPH11129163A (en) 1999-05-18
JP3754542B2 true JP3754542B2 (en) 2006-03-15

Family

ID=17847417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29750797A Expired - Fee Related JP3754542B2 (en) 1997-10-29 1997-10-29 Screw tightening method, screw tightening device, attachment and recording medium

Country Status (1)

Country Link
JP (1) JP3754542B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005084880A1 (en) 2004-03-08 2005-09-15 Honda Motor Co., Ltd. Method and device for fastening fastening member
JP4786961B2 (en) * 2005-08-03 2011-10-05 株式会社リコー Magnet roller assembly device
JP4688772B2 (en) * 2006-10-12 2011-05-25 倉敷化工株式会社 Automatic tightening device
CN103878573B (en) * 2012-12-21 2016-03-23 中国科学院沈阳自动化研究所 Hydraulic pressure anti-torsion mechanism
EP2826596A3 (en) 2013-07-19 2015-07-22 Panasonic Intellectual Property Management Co., Ltd. Impact rotation tool and impact rotation tool attachment
JP5964521B2 (en) * 2013-12-27 2016-08-03 株式会社 エニイワイヤ Torque management system for electric drivers
CN104526336B (en) * 2015-01-07 2017-11-10 常州聚诚科技有限公司 A kind of nut automatic locking machine
CN106736473A (en) * 2016-12-25 2017-05-31 东至绿洲环保化工有限公司 Revolving body fastening apparatus
CN108458825A (en) * 2018-02-28 2018-08-28 易克威系统株式会社 The axial force and friction torque measuring device of screw and the measurement method for utilizing the device
CN109128793A (en) * 2018-10-31 2019-01-04 宁海建新自动化设备有限公司 Automobile axle assembly equipment
CN111823178A (en) * 2020-08-19 2020-10-27 国网河南省电力公司新安县供电公司 Electric power overhauls uses telescopic screw tightening device
CN113478214A (en) * 2021-07-13 2021-10-08 大连理工大学 Small-size bolt pre-tightening process and device based on axial pre-load

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810194B2 (en) * 1975-10-13 1983-02-24 サンヨウキコウ カブシキガイシヤ Boruto Shimetsuke Hohou
JPS601987Y2 (en) * 1981-03-31 1985-01-19 芝浦メカトロニクス株式会社 Attachment for bolt tightening machine
JPS5890474A (en) * 1981-11-18 1983-05-30 芝浦メカトロニクス株式会社 Clamping method select type bolt clamping device
JPS6399180A (en) * 1986-10-15 1988-04-30 マツダ株式会社 Clamping torque controller
JPH04275839A (en) * 1991-03-04 1992-10-01 Matsushita Electric Ind Co Ltd Screw fastening method
JPH0715274U (en) * 1993-08-25 1995-03-14 計測エンジニアリング株式会社 Screw tightening torque detector
JP2688810B2 (en) * 1995-06-09 1997-12-10 岡山県新技術振興財団 Screw tightening method and screw tightening device used for implementing this method

Also Published As

Publication number Publication date
JPH11129163A (en) 1999-05-18

Similar Documents

Publication Publication Date Title
US6144891A (en) Wrenching method and apparatus, wrenching attachment, and medium storing wrenching torque control program
JP3754542B2 (en) Screw tightening method, screw tightening device, attachment and recording medium
US6354580B1 (en) Electric clamp apparatus
JP6267697B2 (en) Blind riveting device and method
US8201315B2 (en) Method for controlling tensile stress of a shank, such as a screw or dowel pin, and device for carrying out said method
JP5205614B2 (en) Apparatus and method for making a screw connection between a first part and at least one further part
JP5700271B2 (en) Improvement of valve actuator
CN101419106B (en) Differential screwed loader main cone pretightening force measuring set and method
JP4330340B2 (en) Electromechanical brake crimping device
JPH02107833A (en) Electromagnetic brake
US20090145699A1 (en) Braking device for a robot drive and method of detecting a braking state
TWI295346B (en) Washer and fastener provided with a washer
US4333220A (en) Method and apparatus for tightening an assembly including a pre-load indicating fastener
US6247387B1 (en) Fastening apparatus
JP4119365B2 (en) Control method for intermittently operating screw tightening tools
CN113242940B (en) Bearing assembly
BR112018008980B1 (en) SCREW DEVICE AND METHOD FOR SCREWING A SCREW TO A WALL
US6840726B2 (en) Tensioning apparatus and method
US20220274217A1 (en) Fastening device
CN113557107B (en) Bolt tensioning tool
US20060249294A1 (en) Device for tightening threaded fastener joints
JP4549032B2 (en) Chuck drive device and drive method
JP2002502716A (en) How to tighten screws
JPH0715699Y2 (en) Automatic screw tightener
JP2003172111A (en) Inspection device of variable valve timing device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees