JP3752616B2 - Cold formed square steel pipe with diaphragm - Google Patents

Cold formed square steel pipe with diaphragm Download PDF

Info

Publication number
JP3752616B2
JP3752616B2 JP2000300629A JP2000300629A JP3752616B2 JP 3752616 B2 JP3752616 B2 JP 3752616B2 JP 2000300629 A JP2000300629 A JP 2000300629A JP 2000300629 A JP2000300629 A JP 2000300629A JP 3752616 B2 JP3752616 B2 JP 3752616B2
Authority
JP
Japan
Prior art keywords
steel pipe
square steel
cold
formed square
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000300629A
Other languages
Japanese (ja)
Other versions
JP2002106112A (en
Inventor
弘海 下川
久哉 加村
茂樹 伊藤
晴仁 岡本
攻 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000300629A priority Critical patent/JP3752616B2/en
Publication of JP2002106112A publication Critical patent/JP2002106112A/en
Application granted granted Critical
Publication of JP3752616B2 publication Critical patent/JP3752616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷間成形角形鋼管の角部および直線部に通しダイヤフラムを溶接接合した、ダイヤフラム付き冷間成形角形鋼管角形鋼管に関するものである。
【0002】
【従来の技術】
鉄骨建築において角形鋼管を柱とし、柱梁接合部を通しダイヤフラム形式とした場合や柱継ぎの場合、鋼管を突き合わせて溶接する作業が生じる。この柱梁接合部に曲げ応力がかかった場合、破壊が鋼管母材側から先に発生するように、溶接金属側の変形抵抗を高めている。すなわち、溶接材料は、鋼管強度より1ランク高い強度をもつ溶接材料を使用する。例えば、400N/mm2 級の冷間成形角形鋼管に対しては、490N/mm2 級の溶接材料を使用し、また、490N/mm2 級の冷間成形角形鋼管に対しては、490N/mm2 級または540N/mm2 級の溶接材料が使用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、冷間プレス成形角形鋼管においては、通常その角部は加工硬化されており、また、冷間ロール成形角形鋼管においては、全体の強度が加工前より上昇し、角部も加工硬化されている。このような硬化部が溶接されると以下の問題点がある。
【0004】
1)冷間プレス成形角形鋼管の場合、角部の変形抵抗が平行部(直線部)の変形抵抗より大きいため、溶接条件・溶接材料によっては角部の溶接金属の変形抵抗が、角部の母材の変形抵抗を下回るアンダーマッチングの状態となる。このため、柱梁接合部に曲げ応力がかかった場合には、溶接金属が先行して塑性変形し、これにより溶接金属に隣接する熱影響部(以下、HAZという)での応力集中または歪集中が助長され破壊を招き易くなる。
【0005】
2)図4は、鋼管平行部と角部の応力−ひずみ関係を示す一例の線図である。角部の耐力は、平行部の耐力に対して1割程度大きく、溶接強度が540N/mm2 級の場合、平行部に対して溶接金属は十分な耐力を有するが、角部に対しては耐力は不十分となる。
【0006】
3)冷間ロール成形角形鋼管で、490N/mm2 級の鋼管に対して540N/mm2 級の溶接材料を使用しても、鋼管強度より溶接金属強度が下回ることが生じる。
【0007】
本発明は、上記の課題を解決する最適なダイヤフラム付き冷間成形角形鋼管を提供することを目的するものである。
【0008】
【課題を解決するための手段】
本発明は、冷間成形角形鋼管の角部および直線部に、該冷間成形角形鋼管と梁とを接合するための通しダイヤフラムを溶接接合した、ダイヤフラム付き冷間成形角形鋼管であって、前記冷間成形角形鋼管の角部に溶接された溶接金属の変形抵抗が、該冷間成形角形鋼管の角部の母材の変形抵抗より大きいことを特徴とするダイヤフラム付き冷間成形角形鋼管である。
【0009】
また、本発明は、前記冷間成形角形鋼管の角部に溶接された溶接金属の変形抵抗が、該冷間成形角形鋼管の直線部に溶接された溶接金属の変形抵抗より大きくしたものであり、更に、前記冷間成形角形鋼管の母材側の溶接止端部またはダイヤフラム側の溶接止端部の一方または両方に補強溶接を施し、溶接熱影響部の肉厚を増大したダイヤフラム付き冷間成形角形鋼管である。
【0010】
更にまた、本発明は、前記補強溶接された溶接金属の変形抵抗が、該補強溶接前の溶接接合部の溶接金属の変形抵抗より大きくしたものであり、また前記変形抵抗が、引張り強さ、降伏応力、または0.2%オフセット耐力のいずれかであることを特徴としたダイヤフラム付き冷間成形角形鋼管である。
【0011】
【発明の実施形態】
実施の形態1
図1は、本発明の実施の形態1に係る、梁部を省略した柱梁接合部の外観図である。図1において、11、12は冷間プレス成形角形鋼管(490N/mm2 級:□450mm×450mm×25mm)、20は通しダイヤフラム(490N/mm2 級:肉厚25mm)、30は溶接金属、111は冷間プレス成形角形鋼管11、12の角部、112は冷間プレス成形角形鋼管11、12の平行部である。
【0012】
冷間プレス成形角形鋼管11および12に挟まれて、通しダイヤフラム20が配置され、この相互部材間を590N/mm2 級の溶接棒により溶接接合されている。なお、比較実験のために490N/mm2 級の溶接棒により溶接接合したものが用意された。
【0013】
図2は、図1における溶接接合部の断面模式図である。図2において、11,12は冷間プレス成形角形鋼管、13は裏当て金、20は通しダイヤフラム、30は溶接金属、40は熱影響部(HAZ)である。HAZは溶接金属30に隣接して存在する。
【0014】
表1は、図1における溶接前の冷間プレス成形角形鋼管11の平行部と角部、および溶接後の溶接金属について行った引張り試験の結果を示す。すなわち、590N/mm2 級の溶接棒を使用することにより、角部においてもオーバーマッチングになっている。
【0015】
【表1】

Figure 0003752616
【0016】
図3は、累積塑性変形倍率を測定するための試験装置の概要を示す説明図である。1は試験機、10は試験体、2はH鋼梁である。H鋼梁2は通しダイヤフラム20を介して角形鋼管11、12と溶接接合されている。
【0017】
図4は累積塑性変形倍率の算定を説明するための変位−荷重の関係を示す説明図である。縦軸Pは荷重、横軸δは荷重Pに対する変位を示す。
図4において、H型鋼の全断面が降伏する時(全塑性モーメントMpの時)の弾性変形を降伏変形δyとして、例えばi回目の載荷が図中A点から開始され、一方向荷重によりB点まで変形し、その後、除荷されてC点の塑性変形が残ったとき、A点からC点まで距離を残存変形量δi(塑性変形量の絶対値)として、この残存変形量δiを降伏変形δyで除した値をi回目の塑性変形倍率δi/δyとする。
【0018】
更に、i+1回目の載荷として図中C点から開始され、i回目とは逆の方句の荷重によりD点まで変形し、その後、除荷されてE点の塑性変形が残ったとき、C点からE点まで距離距離を残存変形量δi+1(塑性変形量の絶対値)とし、この残存変形量δi+1を降伏変形δyで除した値を塑性変形倍率(δi+1/δyとする。そして、この塑性変形倍率を1回目から所定の回数jまで累積したものをj回目の累積塑性変形倍率ηとした。
【0019】
表2は、前記図3に記載した試験装置により行った、柱梁接合部の累積塑性変形倍率ηを示す。すなわち、比較試験の490N/mm2 級の溶接棒を使用した場合は、累積塑性変形倍率ηが18であるのに対し、本発明の590N/mm2 級の溶接棒を使用した場合は52となり、オーバーマッチングにしたことにより耐変形能力が確保されている。
【0020】
【表2】
Figure 0003752616
【0021】
実施の形態2
図5は、実施の形態1の図1において、HAZ40の上に更に補強溶接ビード50を盛った、本発明の実施の形態2における溶接接合部の断面説明図である。図1において、当初HAZ部の厚さが0mmであったものが、5mmに増加している。
【0022】
表3は、累積塑性変形倍率ηを用いて、前記補強溶接ビードの効果を示す線図である。補強溶接ビード50が無い場合(590N/mm2 級の溶接棒を使用した場合)累積塑性変形倍率ηが52であるのに対し、590N/mm2 級の溶接棒を使用した補強溶接ビード50がある場合には64となり、大幅に変形能力が改善されていることがわかる。
【0023】
【表3】
Figure 0003752616
【0024】
【発明の効果】
以上のように、本発明は、冷間成形角形鋼管の溶接において、母材と溶接金属の関係をオーバマッチングにすることにより、変形性能を十分保証するダイヤフラム付き冷間成形角形鋼管を提供することができる。更に、溶接止端部に補強溶接ビードを盛り肉厚を増すことにより、更に強度低下を防止したダイヤフラム付き冷間成形角形鋼管を提供することができる。即ち、
【0025】
1)冷間成形角形鋼管の角部に溶接された溶接金属の変形抵抗が、該冷間成形角形鋼管の角部の母材の変形抵抗より大きくすることにより、変形能力が改善されたダイヤフラム付き冷間成形角形鋼管を提供することができ、
【0026】
2)また、冷間成形角形鋼管の角部に溶接された溶接金属の変形抵抗が、該冷間成形角形鋼管の平行部に溶接された溶接金属の変形抵抗より大きくすることにより、変形性能が十分保証できるダイヤフラム付き冷間成形角形鋼管を提供することができ、
【0027】
3)冷間成形角形鋼管の母材側の溶接止端部またはダイヤフラム側の溶接止端部の一方または両方に補強溶接を施し、溶接熱影響部の肉厚を増大すことにより、変形性能を十分保証すると共に、更に強度低下の少ないダイヤフラム付き冷間成形角形鋼管を提供し得る。
【0028】
4)更に、前記補強溶接された溶接金属の変形抵抗が、該補強溶接前の溶接接合部の溶接金属の変形抵抗より大きくすることにより、安定した変形性能を保証し、しかも強度低下の少ないダイヤフラム付き冷間成形角形鋼管を提供し得る。
【0029】
5)また、前記変形抵抗を、引張り強さ、降伏応力、または0.2%オフセット耐力のいずれかに設定することにより、より安定した変形性能を保証し、クラック発生防止効果の優れたダイヤフラム付き冷間成形角形鋼管を提供することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1に係る、梁部を省略した柱梁接合部の外観図である。
【図2】 図1における溶接接合部の断面模式図である。
【図3】 累積塑性変形倍率を測定するための試験装置の概要を示す説明図である。
【図4】 累積塑性変形倍率の算定を説明するための変位−荷重の関係を示す線図である。
【図5】 本発明の実施の形態2における溶接接合部の断面説明図である。
【符号の説明】
1 試験機、2 H鋼梁、10 試験体、11 角形鋼管柱、12 角形鋼管柱、13 裏当て金、20 通しダイヤフラム、30 溶接金属、40 熱影響部(HAZ)、50 補強溶接ビード、111 角形鋼管角部、112 角形鋼管平行部。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cold-formed square steel pipe with a diaphragm and a square steel pipe in which a diaphragm is welded and joined to the corner and straight part of the cold-formed square steel pipe.
[0002]
[Prior art]
In the case of a steel building, a square steel pipe is used as a column and a beam is joined through a column beam joint. When bending stress is applied to the column beam joint, the deformation resistance on the weld metal side is increased so that the fracture occurs first from the steel pipe base material side. That is, a welding material having a strength higher by one rank than the steel pipe strength is used. For example, for a 400 N / mm 2 grade cold-formed square steel pipe, a 490 N / mm 2 grade weld material is used, and for a 490 N / mm 2 grade cold-formed square steel pipe, 490 N / mm 2 A welding material of mm 2 class or 540 N / mm 2 class is used.
[0003]
[Problems to be solved by the invention]
However, in cold-pressed square steel pipes, the corners are usually work-hardened. In cold-rolled square steel pipes, the overall strength is higher than before, and the corners are work-hardened. Yes. When such a hardened part is welded, there are the following problems.
[0004]
1) In the case of cold-pressed square steel pipes, the deformation resistance of the corners is greater than the deformation resistance of the parallel part (straight line part). Under-matching is below the deformation resistance of the base metal. For this reason, when bending stress is applied to the beam-column joint, the weld metal is plastically deformed in advance, thereby stress concentration or strain concentration in the heat affected zone (hereinafter referred to as HAZ) adjacent to the weld metal. Is promoted and easily destroyed.
[0005]
2) FIG. 4 is a diagram of an example showing a stress-strain relationship between a steel pipe parallel part and a corner part. The proof strength of the corner is about 10% larger than the proof strength of the parallel portion. When the weld strength is 540 N / mm 2 class, the weld metal has sufficient proof strength with respect to the parallel portion. Yield strength is insufficient.
[0006]
3) by cold roll forming RHS, the use of 540N / mm 2 class welding material to 490 N / mm 2 grade steel, resulting that the weld metal strength than the steel pipe strength is below.
[0007]
An object of the present invention is to provide an optimal cold-formed square steel pipe with a diaphragm that solves the above-described problems.
[0008]
[Means for Solving the Problems]
The present invention is a cold-formed square steel pipe with a diaphragm, wherein a through-diaphragm for joining the cold-formed square steel pipe and a beam is welded to the corners and straight portions of the cold-formed square steel pipe, A cold-formed square steel pipe with a diaphragm, characterized in that the deformation resistance of the weld metal welded to the corner of the cold-formed square steel pipe is larger than the deformation resistance of the base material of the corner of the cold-formed square steel pipe .
[0009]
In the present invention, the deformation resistance of the weld metal welded to the corner portion of the cold-formed square steel pipe is larger than the deformation resistance of the weld metal welded to the straight portion of the cold-formed square steel pipe. Further, cold welding with a diaphragm in which reinforcement welding is applied to one or both of the weld toe on the base metal side or the weld toe on the diaphragm side of the cold-formed square steel pipe, and the thickness of the heat affected zone is increased. It is a formed square steel pipe.
[0010]
Furthermore, the present invention is such that the deformation resistance of the weld metal subjected to reinforcement welding is greater than the deformation resistance of the weld metal before the reinforcement welding, and the deformation resistance is a tensile strength, It is a cold-formed square steel pipe with a diaphragm characterized by being either yield stress or 0.2% offset proof stress.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
FIG. 1 is an external view of a beam-column joint part in which a beam part is omitted according to Embodiment 1 of the present invention. In FIG. 1, 11 and 12 are cold-pressed square steel pipes (490 N / mm 2 class: □ 450 mm × 450 mm × 25 mm), 20 is a through diaphragm (490 N / mm 2 class: wall thickness 25 mm), 30 is a weld metal, Reference numeral 111 denotes a corner portion of the cold press-formed square steel pipes 11 and 12, and 112 denotes a parallel portion of the cold press-formed square steel pipes 11 and 12.
[0012]
A through diaphragm 20 is disposed between the cold-press-formed square steel pipes 11 and 12, and the mutual members are welded together with a 590 N / mm 2 class welding rod. In addition, what was weld-joined with a 490 N / mm 2 class welding rod was prepared for a comparative experiment.
[0013]
FIG. 2 is a schematic cross-sectional view of the weld joint in FIG. In FIG. 2, 11 and 12 are cold press-formed square steel pipes, 13 is a backing metal, 20 is a through diaphragm, 30 is a weld metal, and 40 is a heat affected zone (HAZ). HAZ exists adjacent to the weld metal 30.
[0014]
Table 1 shows the results of a tensile test performed on the parallel and corner portions of the cold press-formed square steel pipe 11 before welding in FIG. 1 and the weld metal after welding. That is, by using a 590 N / mm 2 class welding rod, over-matching is also performed at the corners.
[0015]
[Table 1]
Figure 0003752616
[0016]
FIG. 3 is an explanatory diagram showing an outline of a test apparatus for measuring the cumulative plastic deformation magnification. 1 is a testing machine, 10 is a test body, and 2 is an H steel beam. The H steel beam 2 is welded and joined to the square steel pipes 11 and 12 via the through diaphragm 20.
[0017]
FIG. 4 is an explanatory view showing a displacement-load relationship for explaining calculation of the cumulative plastic deformation magnification. The vertical axis P represents the load, and the horizontal axis δ represents the displacement with respect to the load P.
In FIG. 4, when the entire cross section of the H-shaped steel yields (when the total plastic moment Mp), the elastic deformation is assumed to be the yield deformation δy, for example, the i-th loading is started from the point A in the figure, and the point B is caused by the unidirectional load. When the plastic deformation at point C remains after unloading, the distance from point A to point C is the residual deformation amount δi (absolute value of the plastic deformation amount), and this residual deformation amount δi is used as the yield deformation. The value divided by δy is the i-th plastic deformation magnification δi / δy.
[0018]
Furthermore, when the load is started from point C in the figure as the i + 1th loading, and deformed to the point D by the load of the phrase opposite to the i-th loading, and then unloaded and the plastic deformation at the point E remains, the point C The distance from point E to point E is the residual deformation amount δi + 1 (absolute value of the plastic deformation amount), and the value obtained by dividing the residual deformation amount δi + 1 by the yield deformation δy is the plastic deformation magnification (δi + 1 / δy). Then, the cumulative plastic deformation magnification η obtained by accumulating the plastic deformation magnification from the first time to a predetermined number of times j is defined as j-th cumulative plastic deformation magnification η.
[0019]
Table 2 shows the cumulative plastic deformation magnification η of the beam-column joint, which was performed by the test apparatus described in FIG. That is, when the 490 N / mm 2 class welding rod of the comparative test is used, the cumulative plastic deformation ratio η is 18, whereas when the 590 N / mm 2 class welding rod of the present invention is used, it becomes 52. The deformation resistance is ensured by the overmatching.
[0020]
[Table 2]
Figure 0003752616
[0021]
Embodiment 2
FIG. 5 is a cross-sectional explanatory view of the welded joint portion according to the second embodiment of the present invention in which a reinforcing weld bead 50 is further provided on the HAZ 40 in FIG. 1 of the first embodiment. In FIG. 1, the initial thickness of the HAZ portion was 0 mm, which has increased to 5 mm.
[0022]
Table 3 is a diagram showing the effect of the reinforcing weld bead using the cumulative plastic deformation magnification η. When there is no reinforcing weld bead 50 (when a 590 N / mm 2 class welding rod is used), the cumulative plastic deformation magnification η is 52, whereas the reinforced welding bead 50 using a 590 N / mm 2 class welding rod is used. In some cases, the value is 64, which shows that the deformation capability is greatly improved.
[0023]
[Table 3]
Figure 0003752616
[0024]
【The invention's effect】
As described above, the present invention provides a cold-formed square steel pipe with a diaphragm that sufficiently guarantees deformation performance by over-matching the relationship between a base metal and a weld metal in welding of a cold-formed square steel pipe. Can do. Further, by increasing the thickness of the reinforcing weld bead at the weld toe, it is possible to provide a cold-formed square steel pipe with a diaphragm that prevents further strength reduction. That is,
[0025]
1) With a diaphragm whose deformation capacity is improved by making the deformation resistance of the weld metal welded to the corner of the cold-formed square steel pipe larger than the deformation resistance of the base metal at the corner of the cold-formed square steel pipe Can provide cold formed square steel pipe,
[0026]
2) In addition, the deformation resistance of the weld metal welded to the corner of the cold-formed square steel pipe is made larger than the deformation resistance of the weld metal welded to the parallel part of the cold-formed square steel pipe, so that the deformation performance is improved. We can provide a cold-formed square steel pipe with a diaphragm that can be sufficiently guaranteed,
[0027]
3) Reinforcement welding is applied to one or both of the weld toe part on the base metal side or the weld toe part on the diaphragm side of the cold-formed square steel pipe to increase the thickness of the weld heat affected zone, thereby improving the deformation performance. It is possible to provide a cold-formed square steel pipe with a diaphragm that is sufficiently guaranteed and further less deteriorated in strength.
[0028]
4) Further, by making the deformation resistance of the weld metal welded by reinforcement welding larger than the deformation resistance of the weld metal of the welded joint before the reinforcement welding, a diaphragm that guarantees stable deformation performance and has less strength reduction. A cold-formed square steel pipe can be provided.
[0029]
5) In addition, by setting the deformation resistance to one of tensile strength, yield stress, or 0.2% offset proof stress, a more stable deformation performance is guaranteed and a diaphragm with an excellent crack prevention effect is attached. A cold-formed square steel pipe can be provided.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an external view of a beam-to-column connection part in which a beam part is omitted according to Embodiment 1 of the present invention.
FIG. 2 is a schematic cross-sectional view of a weld joint in FIG.
FIG. 3 is an explanatory diagram showing an outline of a test apparatus for measuring cumulative plastic deformation magnification.
FIG. 4 is a diagram showing a displacement-load relationship for explaining calculation of cumulative plastic deformation magnification.
FIG. 5 is an explanatory cross-sectional view of a welded joint according to Embodiment 2 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Test machine, 2 H steel beam, 10 test body, 11 square steel pipe pillar, 12 square steel pipe pillar, 13 backing metal, 20 through diaphragm, 30 weld metal, 40 heat affected zone (HAZ), 50 reinforced weld bead, 111 Square steel pipe corners, 112 Square steel pipe parallel parts.

Claims (4)

冷間成形角形鋼管の角部および平行部に、該冷間成形角形鋼管と梁とを接合するための通しダイヤフラムを溶接接合したダイヤフラム付き冷間成形角形鋼管であって、前記 冷間成形角形鋼管の角部に溶接された溶接金属の変形抵抗が、該冷間成形角形鋼管の角部の母材の変形抵抗より大きく、且つ該冷間成形角形鋼管の平行部に溶接された溶接金属の変形抵抗より大きいことを特徴とするダイヤフラム付き冷間成形角形鋼管。  A cold-formed square steel pipe with a diaphragm, wherein a through-diaphragm for joining the cold-formed square steel pipe and a beam is welded and joined to a corner and a parallel part of the cold-formed square steel pipe, the cold-formed square steel pipe The deformation resistance of the weld metal welded to the corner portion of the cold-formed square steel pipe is larger than the deformation resistance of the base material of the corner portion of the cold-formed square steel pipe, and the deformation of the weld metal welded to the parallel portion of the cold-formed square steel pipe A cold-formed square steel pipe with a diaphragm characterized by being larger than the resistance. 前記冷間成形角形鋼管の母材側の溶接止端部またはダイヤフラム側の溶接止端部の一方または両方に補強溶接を施し、溶接熱影響部の肉厚を増大したことを特徴とする請求項1に記載のダイヤフラム付き冷間成形角形鋼管。  The welded heat-affected zone is increased in thickness by applying reinforcement welding to one or both of the weld toe on the base metal side or the weld toe on the diaphragm side of the cold-formed square steel pipe. A cold-formed square steel pipe with a diaphragm according to 1. 前記補強溶接された溶接金属の変形抵抗が、該補強溶接前の溶接接合部の溶接金属の変形抵抗より大きいことを特徴とする請求項2に記載のダイヤフラム付き冷間成形角形鋼管。  The cold-formed square steel pipe with a diaphragm according to claim 2, wherein the deformation resistance of the weld metal that has been subjected to reinforcement welding is greater than the deformation resistance of the weld metal at the weld joint before the reinforcement welding. 前記変形抵抗が、引張り強さ、降伏応力、または0.2%オフセット耐力のいずれかであることを特徴とする請求項1または3のいずれか1項に記載のダイヤフラム付き冷間成形角形鋼管。  The cold-formed square steel pipe with a diaphragm according to any one of claims 1 and 3, wherein the deformation resistance is any one of tensile strength, yield stress, and 0.2% offset proof stress.
JP2000300629A 2000-09-29 2000-09-29 Cold formed square steel pipe with diaphragm Expired - Lifetime JP3752616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000300629A JP3752616B2 (en) 2000-09-29 2000-09-29 Cold formed square steel pipe with diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000300629A JP3752616B2 (en) 2000-09-29 2000-09-29 Cold formed square steel pipe with diaphragm

Publications (2)

Publication Number Publication Date
JP2002106112A JP2002106112A (en) 2002-04-10
JP3752616B2 true JP3752616B2 (en) 2006-03-08

Family

ID=18782285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000300629A Expired - Lifetime JP3752616B2 (en) 2000-09-29 2000-09-29 Cold formed square steel pipe with diaphragm

Country Status (1)

Country Link
JP (1) JP3752616B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6453109B2 (en) * 2015-02-26 2019-01-16 新日鐵住金株式会社 Through-diaphragm welded joint structure and method for manufacturing through-diaphragm welded joint structure
CN111941013B (en) * 2020-08-20 2022-01-04 桁鼎钢结构技术(上海)有限公司 Bamboo joint steel column, manufacturing process and auxiliary manufacturing device

Also Published As

Publication number Publication date
JP2002106112A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
Ricles et al. Development of improved welded moment connections for earthquake-resistant design
JP4490853B2 (en) Brace structure using shape memory alloy
JP3752616B2 (en) Cold formed square steel pipe with diaphragm
Bruneau et al. Ultimate behavior of heavy steel section welded splices and design implications
JP6544337B2 (en) Cold formed square steel pipe and beam-to-column connection
JP2001271451A (en) Thickness increased steel beam and its manufacture
JP3890516B2 (en) Earthquake-resistant column / beam joint structure
JP4350121B2 (en) Reinforced welded column beam joint fixing structure
AU2004228071B2 (en) Welded connections
JP3797080B2 (en) H-shaped steel with excellent earthquake resistance and steel structure using the same
Nagao et al. Performance of beamcolumn connections in steel structures
JP4457234B2 (en) Structural steel and steel structures
JP4984908B2 (en) Reinforced structure of concrete beam with opening, method for manufacturing concrete beam with opening, beam structure, steel pipe for opening reinforcement
Teh et al. Strength of arc-welded T-joints between equal width cold-formed RHS
US8074420B2 (en) Method of forming joints of non-cylindrical tubing
JPH09168822A (en) Steel tube having threaded joint and its manufacture
JP3389910B2 (en) Beam-column joint
JP7116269B1 (en) Non-diaphragm brace structure
JP7226590B2 (en) Steel beams, beam-to-column joint structures and structures having them
JP7063427B1 (en) Structural members
KR102649590B1 (en) brace material
JPH08281486A (en) Method for welding joint part of steel column and beam and backing strip
JP2004238673A (en) Steel tube member having excellent fatigue strength, and working method therefor
JPH0356232B2 (en)
JP3943926B2 (en) Hollow structural member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3752616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8