JP3752105B2 - Crushing and granulating device and generated soil treatment device - Google Patents

Crushing and granulating device and generated soil treatment device Download PDF

Info

Publication number
JP3752105B2
JP3752105B2 JP13351499A JP13351499A JP3752105B2 JP 3752105 B2 JP3752105 B2 JP 3752105B2 JP 13351499 A JP13351499 A JP 13351499A JP 13351499 A JP13351499 A JP 13351499A JP 3752105 B2 JP3752105 B2 JP 3752105B2
Authority
JP
Japan
Prior art keywords
generated
rotating
generated soil
crushing
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13351499A
Other languages
Japanese (ja)
Other versions
JP2000319927A (en
Inventor
究 有川
博幸 片山
淳二 中山
明 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13351499A priority Critical patent/JP3752105B2/en
Publication of JP2000319927A publication Critical patent/JP2000319927A/en
Application granted granted Critical
Publication of JP3752105B2 publication Critical patent/JP3752105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste

Description

【0001】
【発明の属する技術分野】
本発明は、建設土木工事で発生する建設発生土や掘削工事で発生する水分量の多い建設汚泥などの発生土を粒状化する解砕造粒装置及びこの解砕造粒装置を用いて発生土を処理する発生土処理装置に関する。
【0002】
【従来の技術】
図12に従来の発生土処理の工程の概略を示す。
【0003】
従来の発生土処理において、図12に示すように、一次処理系001では、建設現場、例えば、シールド掘削機によるトンネル掘削作業現場で発生した発生土002を分級機003によって砂礫成分(粒径>74μm)004を分別し、ポンプ005によって二次処理系011に搬送する。この二次処理系011では、砂礫成分004が分別された発生土006に対して凝集剤添加装置012によって凝集剤013を添加し、脱水機014によって脱水処理することで、粘土シルト成分(粒径≦74μm)の脱水ケーキ015が生成される。そして、一次処理系001で分別された砂礫成分004は埋め戻し材などとして再利用され、二次処理系011で生成された脱水ケーキ015は産業廃棄物として処理場に搬送し、廃棄処分される。
【0004】
【発明が解決しようとする課題】
上述したように従来の発生土処理装置では、一次処理系001での砂礫成分004は埋め戻し材などとして再利用されるものの、二次処理系011での脱水ケーキ015は産業廃棄物として処理される。これはシールド掘削機によるトンネル掘削作業現場では、泥水や泥土に流動性を与えて切羽の安定を確保するために、ベントナイト(粘土)を添加している。そのため、脱水ケーキ015はこのベントナイトを含有してスラリー状となっており、埋め戻し材などとして再利用することができない。この場合、脱水ケーキ015を産業廃棄物処理場まで輸送する運送費や、処分そのものの費用が多大なものとなり、施工コスト全体が上昇してしまうという問題が生じると共に、最終処分場の不足や不法投棄などの社会問題となっている。
【0005】
そこで、本出願人は、特願平10−31015号の「建設汚泥処理装置」にて、脱水ケーキ015を産業廃棄物とはせずに粒状化処理することで、埋め戻し材などとして再利用することを提案している。この「建設汚泥処理装置」は、二次処理系011で処理された脱水ケーキ015にセメントを添加すると共に水ガラスを添加して攪拌混合機で攪拌混合し、その後、セメントと水ガラスが混合された脱水ケーキ015を解砕造粒機で内部物質を分断しながら粒子化させることで粒状体を生成するものである。
【0006】
ところで、上述した「建設汚泥処理装置」で生成された粒状体は、埋め戻し材などとして再利用されるが、この場合、粒状体はその粒径がばらついた方が締め固め材としては適している。ところが、上述した「建設汚泥処理装置」では、セメントと水ガラスを添加した脱水ケーキ015を攪拌混合機で攪拌混合した後、解砕造粒機で回転翼などを用いて粒子化して粒状体を生成している。そのため、粒子化処理された粒状体はその粒径が均一となりやすく、粒径がばらついた粒状体を生成するのは困難であった。
【0007】
本発明はこのような問題を解決するものであって、発生土を処理して再利用可能とすることで処理コストの低減を図ると共に、粒径のばらついた粒状体を容易に生成可能とした解砕造粒装置及び発生土処理装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上述の目的を達成するための請求項1の発明の解砕造粒装置は、発生土の投入口と、該投入口から投入されて吸水剤及び固化剤が添加混合された発生土の内部物質を、周速の異なる複数の回転翼により、分断あるいは造粒して異なる粒径の粒状体を生成させる複数の粒状体生成領域と、該複数の粒状体生成領域にて生成された異なる粒径の粒状体を、粒状体生成と同時あるいは粒状体生成後に、混合する混合手段とを前記粒状体生成領域と一体又は別体に具えことを特徴とするものである。
【0009】
また、請求項2の発明の解砕造粒装置では、前記投入口を有する中空の回転ドラムを回転自在に支持すると共に、該回転ドラム内に該回転ドラムの回転軸心とほぼ平行な軸心をもって旋回軸を回転自在に支持し、該旋回軸に吸水剤及び固化剤が前記回転翼を固定することで、該旋回軸の軸方向に前記複数の粒状体生成領域を形成すると共に、該回転翼により生成された粒状体を混合することを特徴としている。
【0010】
また、請求項3の発明の解砕造粒装置では、前記回転ドラム及び前記旋回軸の回転軸心は、垂直軸に対して所定角度傾斜しており、該旋回軸の上部に短い回転翼が固定される一方、該旋回軸の下部に長い回転翼が固定され、該複数の回転翼と対向して飛翔した飛翔物を該回転翼に導くスクレーパが配設されたことを特徴としている。
【0011】
また、請求項4の発明の解砕造粒装置では、前記投入口に連結された中空をなす複数の回転ドラムを回転自在に支持し、該複数の回転ドラム内に前記回転翼をそれぞれ回転自在に支持したことを特徴としている。
【0012】
また、請求項5の発明の解砕造粒装置では、前記投入口及び生成された粒状体の排出口を有する中空の回転ドラムをほぼ水平な軸心をもって回転自在に支持し、該回転ドラム内に前記複数の回転翼を回転自在に支持し、前記回転ドラム内にて該回転翼の回転軸心付近と先端部付近とを仕切る仕切り壁を設けることで複数の粒状体生成領域を形成すると共に、該回転翼により生成された粒状体を混合することを特徴としている。
【0013】
また、請求項6の発明の解砕造粒装置では、前記回転ドラム内における該回転ドラムの回転軸心から偏心した位置に旋回軸を旋回自在に支持し、該旋回軸に前記複数の回転翼を該回転ドラムの径方向に沿って伸縮自在に設けたことを特徴としている。
【0014】
また、請求項7の発明の解砕造粒装置では、前記回転ドラム内における該回転ドラムの回転軸心と同心上に旋回軸を旋回自在に支持し、該旋回軸に該回転ドラムの内周面近傍まで延出した前記複数の回転翼を固定すると共に、該回転翼の長手方向中途部に円筒形状をなす前記仕切り壁を固定したことを特徴としている。
【0015】
また、請求項8の発明の発生土処理装置は、発生土に吸水剤を添加する吸水剤添加装置と、前記発生土に固化剤を添加する固化剤添加装置と、前記吸水剤及び前記固化剤が添加された発生土を攪拌混合する攪拌混合機と、前記吸水剤及び固化剤が混合された発生土の内部物質を、周速の異なる複数の回転翼により、分断あるいは造粒して異なる粒径の粒状体を生成させる複数の粒状体生成領域を有する解砕造粒機と、該複数の粒状体生成領域にて生成された異なる粒径の粒状体を、粒状体生成と同時あるいは粒状体生成後に、混合する混合手段とを前記解砕造粒機と一体又は別体に具えことを特徴とするものである。
【0016】
また、請求項9の発明の発生土処理装置は、掘削工事によって発生した発生土から砂礫成分を除去する一次処理手段と、該一次処理手段で処理された発生土に凝集剤を添加して脱水処理する二次処理手段と、該二次処理手段で処理された発生土を粒状体とする三次処理手段とを具え、該三次処理手段は、前記発生土に吸水剤を添加する吸水剤添加装置と、前記発生土に固化剤を添加する固化剤添加装置と、前記吸水剤及び前記固化剤が添加された発生土を攪拌混合する攪拌混合機と、前記吸水剤及び固化剤が混合された発生土の内部物質を、周速の異なる複数の回転翼により、分断あるいは造粒して異なる粒径の粒状体を生成させる複数の粒状体生成領域を有する解砕造粒機と、該複数の粒状体生成領域にて生成された異なる粒径の粒状体を、粒状体生成と同時あるいは粒状体生成後に、混合する混合手段とを前記解砕造粒機と一体又は別体に有すことを特徴とするものである。
【0017】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を詳細に説明する。
【0018】
なお、以下に複数の実施形態を説明するが、各実施形態で取扱う発生土は、建設発生土と建設汚泥からなるものである。この建設発生土は、建設工事に伴って発生する土砂であって、港湾、河川の浚渫に伴って生ずる土砂、その他に類する浚渫土と、この浚渫土以外のものからなる。また、建設汚泥は、浚渫以外の建設工事等に係る掘削工事に伴って排出されるもののうち、標準ダンプトラックに山積みができず、また、その上を人が歩けない状態のものである。
【0019】
[第1実施形態]
図1に本発明の第1実施形態に係る発生土処理装置の処理工程を表す概略、図2に三次処理系の処理工程を表す概略、図3に本実施形態の解砕造粒機の断面を示す。
【0020】
本実施形態の発生土処理装置は、泥水式シールド掘削機によって排出された発生土(建設汚泥)を処理するものであって、図1に示すように、この発生土Aから砂礫成分Bを除去する一次処理系11と、この一次処理系11で処理された発生土Cに凝集剤Dを添加して脱水処理することで脱水ケーキEを生成する二次処理系21と、この脱水ケーキEを粒状体Fとする三次処理系31とから構成されている。
【0021】
一次処理系11には、建設現場で発生した発生土Aから砂礫成分(粒径>74μm)Bを分別する分級機12と、この砂礫成分Bを分離除去した発生土Cを二次処理系21に搬送するポンプ13とが設けられている。また、二次処理系21は、一次処理系11から搬送された発生土Cにポンプ22によって凝集剤Dを添加する凝集剤添加装置23と、凝集剤Dが添加された発生土Cを脱水処理することで、粘土シルト成分(粒径≦74μm)の脱水ケーキEを生成する脱水機24とが設けられている。
【0022】
そして、三次処理系31には、図1及び図2に示すように、二次処理系21で処理された脱水ケーキEを搬送するスクリューコンベヤ32と、この脱水ケーキEに吸水剤としての水ガラス(珪酸ソーダの粉末でもよい)Gを添加(数μm以下の粘土の微粒子成分の5〜15%)する吸水剤添加装置33と、固化剤としてのセメントHを添加(珪酸ソーダの4〜10倍)する固化剤添加装置34と、水ガラスGとセメントHとが添加された脱水ケーキEを駆動モータ35によって駆動して攪拌混合する攪拌混合機36と、攪拌混合された脱水ケーキEの内部物質を分断しながら粒子化させることで粒状体Fを生成する解砕造粒機37と、この生成した粒状体Fを搬送する搬送コンベヤ38とが設けられている。
【0023】
この解砕造粒機37において、図3に示すように、L型をなす基台41には、下方が開口した円筒形状のケーシング42が傾斜して固定されており、このケーシング42内には上方が開口した円筒形状の回転ドラム43が回転自在に支持され、駆動モータ44によって駆動回転可能となっている。そして、ケーシング42の上部には脱水ケーキEの投入口45が形成されると共に、ケーシング42の下部には生成された粒状体Fの図示しない排出口が形成されている。また、このケーシング42の上部には駆動モータ46が固定されており、この駆動モータ46によって回転可能な旋回軸47は回転ドラム43内に挿通し、複数の回転翼48が取付けられている。この各回転翼48は下方に向かってその長さが長くなるように設定されている。更に、回転ドラム43内には各回転翼48と対向するようにスクレーパ49がケーシング42に固定されている。
【0024】
ここで、このように構成された本実施形態の発生土処理装置による発生土の処理方法について説明する。
【0025】
図1に示すように、泥水式シールド掘削機によるトンネル掘削現場で発生した発生土Aにはベントナイトなどの粘土質が含まれており、この発生土Aは一次処理系11に送られ、分級機12によって砂礫成分(粒径>74μm)Bが分離除去され、発生土Cとして二次処理系21に送られる。この二次処理系21では、発生土Cに凝集剤添加装置23から凝集剤Dが添加された後、脱水機24によって機械的に脱水され、粘土シルト成分(粒径≦74μm)よりなる脱水ケーキEが生成され、三次処理系31に送られる。なお、この脱水ケーキEは比重が1.4〜1.6となっており、74μm以下の微粒子成分100%、含水率40〜55%程度のものである。
【0026】
三次処理系31では、図2に示すように、脱水ケーキEをスクリューコンベヤ32によって攪拌混合機36内に搬送し、この攪拌混合機36にて、脱水ケーキEに対して、まず、吸水剤添加装置33によって水ガラスGを添加し、次に、固化剤添加装置34によってセメントHを添加する。攪拌混合機36は水ガラスGとセメントHが添加された脱水ケーキEを各添加物G,Hが均等に分布するまで攪拌混合するが、このとき、水ガラスGとセメントHとの反応により、脱水ケーキE中のベントナイトの微粒子同志が拘束し合うと共に水分を吸収してゲル化する。そして、ゲル化した脱水ケーキEは攪拌混合機36のらせん状の攪拌翼によって解砕造粒機37に投入され、ここで、内部の物質を分断、粒子化させることで粒状体Fを生成し、搬送コンベヤ38上に排出して装置の外に搬出する。
【0027】
即ち、脱水ケーキEにセメントHが添加されることで脱水ケーキE中水分のpHが変動し、これによって水ガラスGは脱水ケーキE中の微粒子間に珪酸ポリマーを形成し、微粒子を拘束すると共に、脱水ケーキE中の自由水を取り込みゲル化させる。これにより、脱水ケーキEの粘性が増加し、解砕造粒機37によって分散粒状化が可能となる。また、セメントHは水硬性を保有しており、粒状体Fの内部に混合されており、内部に取り込まれた水分などと反応し、数時間から数日で水和物を生成して安定固化する。脱水ケーキE中の微粒子は、水ガラスGによって拘束された状態で硬化するために大粒化しており、粒状体Fは微粒子成分が低減している。
【0028】
ここで解砕造粒機37内での脱水ケーキEの粒子化処理を具体的に説明すると、図3に示すように、水ガラスGとセメントHが添加されてゲル化した脱水ケーキEは、投入口45から回転ドラム43内に一定量が投入される。すると、この脱水ケーキEは回転する回転ドラム43によって飛翔されてスクレーパ49に衝突し、このスクレーパ49によって回転する各回転翼48に導かれ、この回転翼48によって解砕されて分散される。このように脱水ケーキEが各回転翼48によって解砕分散されることにより、表面乾燥がなされて次第に粒状体Fとなり、且つ、小径化していく。そして、所定時間処理して所定粒径まで粒子化された粒状体Fが生成されると、回転ドラム43及び回転翼48の回転を停止し、粒状体Fを排出口から搬送コンベヤ38上に排出する。
【0029】
このとき、本実施形態では、旋回軸47に固定された複数の回転翼48が下方に向かってその長さが長くなっている。一般に、粒状体Fの粒径や硬度は回転翼48の回転力に応じて変化するものである。そのため、回転ドラム43内の上部では、回転翼48が短いためにその先端部での周速は小さく、つまり、回転翼48の回転力が小さくなり、生成される粒状体Fの粒径は大きく、硬度は低い。一方、回転ドラム43内の下部では、回転翼48が長いためにその先端部での周速は大きく、つまり、回転翼48の回転力が大きくなり、生成される粒状体Fの粒径は小さく、硬度は高い。このように回転ドラム43内では、旋回軸47の軸方向に沿って粒径や硬度の異なる粒状体Fが生成され、ここに複数の粒状体生成領域が形成されることとなり、粒状体Fの生成後に混合(混合手段)することで、粒径のばらついた粒状体Fを容易に生成できる。
【0030】
なお、ここで粒状体Fとは、土の品質区分で第1種の発生土に相当するもので、埋戻しや盛り土などに適用できるものである。具体的には、以下を満たすものである。
▲1▼粒度:74μm以下の微粒子分が10%以下、最大粒径:13mm以下
▲2▼締め固め地盤支持力:CBR12%以上(砕石路盤との相対比較基準)
▲3▼排水中に指定有害物質を基準濃度以上含まない。
▲4▼pH:5.8〜8.6(生活排水基準)
などであるが、いずれも適用箇所や自治体によって多少の相違がある。
【0031】
このように本実施形態の発生土処理装置にあっては、無機系の材料を用いて生成された粒状体Fが強度と安全性を保有しているため、建設資材として埋戻し材や盛り土材など、良質土相当として再利用が可能となり、廃却処分などの費用を低減することが可能となる。この場合、粒状体Fからなる建設資材は、軽量で透水性が良好であるため、運動場や植木の土壌や造成地の盛土として最適であり、また、埋立地の排水ドレーン材として使用することもできる。また、水ガラスGとセメントHを粒子化剤とすることで処理費用が低減すると共に、処理作業が容易となる。
【0032】
つまり、安全な無機材料である水ガラスG(珪酸ソーダ)と、セメントHなど無機系の水硬性材料とを併用する装置とすることで、安全性を確保できる。また、水ガラスGで吸水することにより、比較的高含水比の泥土に対しても、分散造粒に必要な粘性の増加を可能とすると共に、微粒子を拘束して大粒化することで粒状体中の微粒成分を低減できる。更に、従来、処理でコストや時間が必要であった乾燥や脱水などの処理が不要となり、低コストで高効率に粒状化することができる。そして、固化剤を、水ガラスGのゲル化反応剤と水和反応による長期強度発現との2つの効果を1度に達成し、装置の簡素化と低コスト化が図れる。
【0033】
また、本実施形態の解砕造粒機38では、回転ドラム43内の旋回軸47に固定された複数の回転翼48を下方に向かってその長さを長くしている。そのため、回転ドラム43内の上部では回転翼48の回転力が小さく、粒径が大きく硬度の低い粒状体Fが生成され、下部では回転翼48の回転力が大きく、粒径が小さく硬度の高い粒状体Fが生成され、これらの粒状体Fを混合することで粒径のばらついた粒状体Fを容易に生成することがことができる。
【0034】
[第2実施形態]
図4に本発明の第2実施形態に係る発生土処理装置における三次処理系の処理工程を表す概略、図5に本実施形態の攪拌混合解砕造粒機の平面視、図6に本実施形態の攪拌混合解砕造粒機の正面視、図7に図5のVII−VII断面を示す。なお、前述した実施形態で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。
【0035】
本実施形態の発生土処理装置は、前述の実施形態と同様に、泥水式シールド掘削機によって排出された発生土(建設汚泥)を処理するものであって、一次処理系と、二次処理系は同様であるために説明は省略し、脱水ケーキを処理する三次処理系のみについて説明する。
【0036】
本実施形態の発生土処理装置における三次処理系51には、図4に示すように、二次処理系で処理された脱水ケーキEを搬送するスクリューコンベヤ32と、この脱水ケーキEに吸水剤としての水ガラスGを添加する吸水剤添加装置33と、固化剤としてのセメントHを添加する固化剤添加装置34と、水ガラスGとセメントHとが添加された脱水ケーキEを攪拌混合すると共に、脱水ケーキEの内部物質を分断しながら粒子化させることで粒状体Fを生成する攪拌混合解砕造粒機52と、この生成した粒状体Fを搬送する搬送コンベヤ38とが設けられている。
【0037】
この攪拌混合解砕造粒機52は、図5乃至図7に示すように、基台61上には前後の壁部62a,62bが立設されており、この壁部62a,62bの下部には軸受63a,63bによって互いに平行をなす4つの回転軸64が回転自在に支持され、各回転軸64にはそれぞれ2つの支持ローラ65が固結されている。この前後の壁部62a,62bの間には円筒形状をなす中空の3つの回転ドラム66a,66b,66cが位置し、各支持ローラ65上に載置されることで回転自在に支持されている。そして、一つの回転軸64の一端部には従動ギヤ67が固結され、減速ギヤ68と噛み合っており、この減速ギヤ68と同軸上に設けられた従動プーリ69と駆動モータ70の駆動プーリ71との間には駆動伝達ベルト72が掛け回されている。従って、駆動モータ70を駆動すると、駆動力が駆動プーリ71、駆動伝達ベルト72、従動プーリ69、減速ギヤ68、従動ギヤ67を介して回転軸64に伝達され、一組の支持ローラ65を回転駆動することで回転ドラム66aをX方向に回転することができ、他の支持ローラ65を回転することで他の回転ドラム66b,66cをX方向に回転することができる。
【0038】
そして、壁部62aの上部には脱水ケーキEを各回転ドラム66a,66b,66c内に投入する投入口73a,73b,73cが形成されており、この投入口73a,73b,73cに一つのホッパ74が連結され、ホッパ74の内部には脱水ケーキEを所定量各回転ドラム66a,66b,66c内に投入できるようにスクリューフィーダ75が取付けられている。一方、壁部62bの下部には粒子化した粒状体Fを排出する排出口76a,76b,76cが形成され、この排出口76a,76b,76cには混合機77が連結されている。
【0039】
また、壁部42a,42bの下部には軸受78a,78bによって旋回軸79a,79b,79cが回転自在に支持され、この各旋回軸79a,79b,79cは各回転ドラム66a,66b,66c内の下部であって内部に投入された脱水ケーキEの搬送方向右方に近傍を貫通している。この旋回軸79a,79b,79cには複数の回転翼80a,80b,80cが取付けられ、この各回転翼80a,80b,80cは脱水ケーキEの搬送方向前方に傾いており、この傾斜によって回転ドラム66a,66b,66c内の脱水ケーキEを排出口76a,76b,76c側に搬送する搬送手段の機能を有する。本実施形態では、各回転ドラム66a,66b,66cの回転翼80a,80b,80cの長さが異なっており、回転翼80aが一番短く、回転翼80cが一番長く設定されている。
【0040】
そして、各旋回軸79a,79b,79cは外部に配設された駆動モータ81により伝達ベルト82a,82b,82cを介して回転駆動できるようになっている。従って、駆動モータ81を駆動すると、旋回軸79a,79b,79cと共に各回転翼80a,80b,80cが回転ドラム66a,66b,66cの回転方向Xと同じX方向に回転することができる。
【0041】
また、各回転ドラム66a,66b,66c内の上部にはそれぞれスクレーパ83が配設され、基端部が壁部42bに固定されている。更に、スクレーパ83の近傍には、水ガラスGを噴出する複数の吸水剤添加ノズル84を有する吸水剤供給管85と、セメントHを噴出する複数の固化剤添加ノズル86を有する固化剤供給管87が配設され、吸水剤供給管85及び固化剤供給管87の各基端部には、流量調整弁88,89を有する連結管90,91を介して吸水剤添加装置33及び固化剤添加装置34が連結され、固化剤供給管87の連結管91にはコンプレッサ92が連結されている。なお、スクレーパ83、吸水剤添加ノズル84、固化剤添加ノズル86等は、各回転ドラム66a,66b,66c内にそれぞれ設けられている。
【0042】
ここで、本実施形態の発生土処理装置による発生土の処理方法について説明する。図4に示すように、三次処理系51にて、脱水ケーキEをスクリューコンベヤ32にて攪拌混合解砕造粒機52内に投入され、ここで、脱水ケーキEに吸水剤添加装置33から水ガラスGが添加され、固化剤添加装置34からセメントHが添加され、各添加物G,Hが均等に分布するまで攪拌混合されてゲル化し、更に、内部の物質を分断、粒子化させることで粒状体Fを生成し、搬送コンベヤ38上に排出して装置の外に搬出する。
【0043】
即ち、図5乃至図7に示すように、二次処理された脱水ケーキEは、ホッパ57からスクリューフィーダ75により定量づつ各投入口73a,73b73cを通して各回転ドラム66a,66b,66c内に連続して投入される。一方、吸水剤添加装置33から連結管90を通して流量調整弁88によって調量された水ガラスGが吸水剤供給管85に送給され、各吸水剤添加ノズル84から各回転ドラム66a,66b,66c内の脱水ケーキEに噴出される。続いて、固化剤添加装置34から連結管91を通して流量調整弁89によって調量されたセメントHが固化剤供給管87に送給され、コンプレッサ92によって各固化剤添加ノズル86から各回転ドラム66a,66b,66c内の脱水ケーキEに噴出される。
【0044】
そして、水ガラスGとセメントHが添加された脱水ケーキEは、それぞれ回転する各回転ドラム66a,66b,66c及び各回転翼80a,80b,80cによって攪拌混合されてゲル化する。そして、ゲル化した脱水ケーキEは更に回転ドラム66a,66b,66c内で掻き上げられて各スクレーパ83に衝突し、このスクレーパ83によって回転する各回転翼80a,80b,80cに導かれ、解砕されて分散され、各排出口76a,76b,76c側へ搬送される。このように脱水ケーキEが各回転翼80a,80b,80cにて解砕分散されながら移動することで次第に粒状体Fとなり、且つ、小径化していく。
【0045】
このとき、本実施形態では、各回転ドラム66a,66b,66c内の各回転翼80a,80b,80cの長さが異なっている。そのため、回転ドラム66a内では、回転翼80aが短いために周速は小さく、生成される粒状体Fの粒径は大きく、硬度は低い。一方、回転ドラム66c内では、回転翼80cが長いために周速は大きく、生成される粒状体Fの粒径は小さく、硬度は高い。このように各回転ドラム66a,66b,66c内では、それぞれ粒径や硬度の異なる粒状体Fが生成され、ここに3つの粒状体生成領域が形成されることとなる。
【0046】
そして、所定粒径まで粒子化された粒径や硬度の異なる粒状体Fが各回転翼80a,80b,80cによって飛翔し、排出口76a,76b,76cを通って混合機77に排出される。粒径や硬度の異なる粒状体Fはこの混合機77で混合されてから搬送コンベヤ38上に搬出されることとなり、粒径のばらついた粒状体Fを容易に生成できる。
【0047】
このように本実施形態の発生土処理装置にあっては、攪拌混合解砕造粒機52にて、3つの回転ドラム66a,66b,66cを配設して各回転ドラム66a,66b,66c内の回転翼80a,80b,80cの長さを異なられることで、3つの粒状体生成領域を形成している。そのため、各回転ドラム66a,66b,66c内では回転翼80c80a,80b,80cの回転力が異なり、異なる粒径の粒状体Fが生成され、混合機77で混合することで粒径のばらついた粒状体Fを容易に生成できる。
【0048】
また、この攪拌混合解砕造粒機52では、吸水剤(水ガラスG)及び固化剤(セメントH)の添加処理と、水ガラスGとセメントHと脱水ケーキEとの攪拌混合処理と、粒状体F生成のための解砕造粒処理を連続して実施可能としている。そのため、脱水ケーキEの粒子化処理を連続して効率的に行うことができる。また、添加、攪拌混合、解砕造粒処理を回転ドラム66a,66b,66c内で行うため、装置がコンパクトとなって小型化が図れると共に、メンテナンスが容易となる。更に、水ガラスGやセメントHの添加タイミングや添加量を調整することで最適な粒子化処理が可能となる。
【0049】
[第3実施形態]
図8に本発明の第3実施形態に係る発生土処理装置における三次処理系で適用する攪拌混合解砕造粒機の断面、図9に図8のIX−IX断面を示す。
【0050】
なお、この第3実施形態以降で説明する各実施形態の発生土処理装置は、前述の第2実施形態とほぼ同様に、発生土(建設汚泥)を処理するものであって、脱水ケーキを処理する三次処理系にて使用する攪拌混合解砕造粒機の変形例である。従って、以下に説明する各実施形態では、第2実施形態で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。
【0051】
図8及び図9に示すように、本実施形態の発生土処理装置の三次処理系にて使用する攪拌混合解砕造粒機101において、支持ローラ65上には回転ドラム66が回転自在に支持され、駆動モータ70によってX方向に回転可能となっている。そして、回転ドラム66の一方には投入口73が設けられ、他方には排出口76が設けられている。また、回転ドラム66内には旋回軸79が回転自在に支持されて複数の回転翼102が取付けられ、駆動モータ81によって回転ドラム66と同方向に回転することができる。
【0052】
この回転翼102は旋回軸79に固定された固定筒103から2つの伸縮筒104,105が軸方向に伸縮自在であると共に、この2つの伸縮筒104,105が内蔵された図示しない圧縮ばねによって外方に付勢支持されている。従って、回転翼102は伸縮筒105の先端部が回転ドラム66の内周面に摺接しながら、この回転ドラム66と異なる速度で回転することができる。また、回転ドラム66内には、回転翼102の回転軸心(旋回軸79)付近と伸長した回転翼102の先端部付近とを仕切る仕切り壁106が取付けられている。この仕切り壁106はL字形状の板材からなり、回転翼102に干渉しないように複数に分割されている。
【0053】
なお、回転ドラム66内の上部には、図示しないが、スクレーパと、水ガラスGを噴出する複数の吸水剤添加ノズルを有する吸水剤供給管と、セメントHを噴出する複数の固化剤添加ノズルを有する固化剤供給管とが配設されている。
【0054】
本実施形態の発生土処理装置によって発生土の処理する場合、脱水ケーキEは、攪拌混合解砕造粒機101の回転ドラム66内に連続して投入され、水ガラスG及びセメントHが添加される。そして、水ガラスGとセメントHが添加された脱水ケーキEは、回転する回転ドラム66及び各回転翼102によって攪拌混合されてゲル化しながら解砕されて分散し、排出口76側へ搬送される。このように脱水ケーキEは攪拌、混合、解砕、造粒処理が施されながら搬送され、粒状体Fとなって排出口76から搬送コンベヤ38上に排出される。
【0055】
このとき、本実施形態では、回転翼102は回転ドラム66内で伸縮筒105の先端部がこの回転ドラム66の内周面に摺接し、伸縮しながら回転している。そのため、回転ドラム66内では、回転翼102が収縮したときの周速は小さく、仕切り壁106で仕切られた領域Aで生成される粒状体Fの粒径は大きく、硬度は低い。一方、回転翼102が伸長したときの周速は大きく、仕切り壁106で仕切られた領域Bで生成される粒状体Fの粒径は小さく、硬度は高い。このように各回転ドラム66内の各領域A,Bでは、それぞれ粒径や硬度の異なる粒状体Fが生成され、混合されてから排出口76を通って排出される。
【0056】
このように本実施形態の攪拌混合解砕造粒機101にあっては、回転ドラム66内に伸縮自在な回転翼102を回転自在に設けると共に、この回転翼102の回転軸心付近と伸長した回転翼102の先端部付近とを仕切る仕切り壁106を取付けることで、2つの粒状体生成領域を形成している。そのため、回転ドラム66内の領域A,Bでは回転翼102の回転力が異なり、異なる粒径の粒状体Fが生成されることとなり、混合することで粒径のばらついた粒状体Fを容易に生成できる。
【0057】
[第4実施形態]
図10に本発明の第4実施形態に係る発生土処理装置における三次処理系で適用する攪拌混合解砕造粒機の断面、図11に図10のXI−XI断面を示す。
【0058】
図10及び図11に示すように、本実施形態の発生土処理装置の三次処理系にて使用する攪拌混合解砕造粒機111において、支持ローラ65上には回転ドラム66が回転自在に支持され、駆動モータ70によってX方向に回転可能となっている。そして、回転ドラム66の一方には投入口73が設けられ、他方には排出口76が設けられている。また、回転ドラム66内には旋回軸79が回転自在に支持されて複数の回転翼122が取付けられ、駆動モータ81によって回転ドラム66と同方向に回転することができる。
【0059】
また、回転ドラム66内には、回転翼112の回転軸心(旋回軸79)付近と回転翼112の先端部付近とを仕切る仕切り壁113が取付けられている。この仕切り壁113は回転ドラム66よりも短い円筒形状をなし、回転ドラム66のほぼ中央に位置するように回転翼112に固定されている。
【0060】
本実施形態の発生土処理装置によって発生土の処理する場合、脱水ケーキEは、攪拌混合解砕造粒機111の回転ドラム66内に連続して投入され、水ガラスG及びセメントHが添加される。そして、水ガラスGとセメントHが添加された脱水ケーキEは、回転する回転ドラム66及び各回転翼112によって攪拌混合されてゲル化しながら解砕されて分散し、排出口76側へ搬送される。このように脱水ケーキEは攪拌、混合、解砕、造粒処理が施されながら搬送され、粒状体Fとなって排出口76から搬送コンベヤ38上に排出される。
【0061】
このとき、本実施形態では、回転ドラム66内では、仕切り壁113で仕切られた領域Aでは回転翼112の周速は小さく、生成される粒状体Fの粒径は大きく、硬度は低い。一方、仕切り壁113で仕切られた領域Bでは回転翼112の周速は大きく、生成される粒状体Fの粒径は小さく、硬度は高い。このように各回転ドラム66内の各領域A,Bでは、それぞれ粒径や硬度の異なる粒状体Fが生成され、混合されてから排出口76を通って排出される。
【0062】
このように本実施形態の攪拌混合解砕造粒機101にあっては、回転ドラム66内に回転翼112を回転自在に設けると共に、この回転翼112の回転軸心付近と先端部付近とを仕切る仕切り壁113を取付けることで、2つの粒状体生成領域を形成している。そのため、回転ドラム66内の領域A,Bでは回転翼112の回転力が異なり、異なる粒径の粒状体Fが生成されることとなり、混合することで粒径のばらついた粒状体Fを容易に生成できる。
【0063】
なお、上述した第2乃至第4実施形態では、2つ、あるいは3つの粒状体生成領域を形成したが、その数は生成する粒状体Fの種類に応じて適宜設定すればよいものである。
【0064】
また、上述した各実施形態では、回転ドラム43,66a,66b,66c,66を円筒形状としたが、多角形状であってもよい。更に、この回転ドラム43,66a,66b,66c,66と回転翼48,80a,80b,80c,80(旋回軸47,79a,79b,79c,79)の回転方向を同じとしたが、スクレーパ83などとの取付位置に応じて逆方向としてもよい。そして、回転翼48,80a,80b,80c,80の形状も限定されるものではない。
【0065】
そして、回転ドラム66a,66b,66c内の上部であってスクレーパ83の下方に吸水剤供給管85(吸水剤添加ノズル84)と固化剤供給管87(固化剤添加ノズル86)を設けたが、各ノズル84,86の詰まりの防止を考慮するとスクレーパ83の上方であってもよく、更に、スクレーパ83内に埋設してもよい。そして、この吸水剤としては水ガラスGの他に、例えば、珪酸塩としての珪酸ソーダ、ポリマーやモノマーなどの有機系吸水剤でもよく、固化剤としてはセメントHの他に、石灰系、石膏系の固化剤でもよい。
【0066】
更に、スクレーパ83の形状も、回転ドラム43,66a,66b,66c,66内に飛翔された脱水ケーキEを回転翼48,80a,80b,80c,80に導くことができれば、実施形態に限定されるものではなく、取付位置も必要に応じて決定すればよい。
【0067】
また、上述の各実施形態では、泥水式シールド掘削機によって排出された発生土Aを処理するものとしたが、土圧式シールド掘削機によって排出された発生土を処理することもでき、この場合、一次処理系及び二次処理系を省いて、発生土を直接三次処理系に搬入すればよい。これは、土圧式シールド掘削機によって排出された発生土の比重が、脱水ケーキEの比重1.4〜1.6とほぼ同様となっており、数cmの石や砂を含む泥土で含水率20〜50%程度であるからである。更に、この発生土は前述した建設発生土や建設汚泥であってもよい。
【0068】
【発明の効果】
以上、実施形態において詳細に説明したように請求項1の発明の解砕造粒装置によれば、発生土の投入口から投入されて吸水剤及び固化剤が添加混合された発生土の内部物質を分断あるいは造粒して粒子化させることで異なる粒径分布を有する粒状体を生成する複数の粒状体生成領域を設けると共に、この複数の粒状体生成領域にて生成された粒径分布を有する粒状体を混合する混合手段を設けたので、粒径のばらついた粒状体を容易に生成することができる。
【0069】
また、請求項2の発明の解砕造粒装置によれば、投入口を有する中空の回転ドラムを回転自在に支持すると共に、この回転ドラム内に旋回軸を回転自在に支持し、この旋回軸に吸水剤及び固化剤が添加混合された発生土の内部物質を分断して粒子化させる長さの異なる複数の回転翼を固定することで複数の粒状体生成領域を形成したので、簡単な構成で安定して粒状体の粒径コントロールが可能となる。
【0070】
また、請求項3の発明の解砕造粒装置によれば、回転ドラム及び旋回軸の回転軸心を所定角度傾斜させ、旋回軸の上部に短い回転翼を固定する一方、下部に長い回転翼を固定し、複数の回転翼と対向して飛翔した飛翔物を回転翼に導くスクレーパを配設したので、発生土をスクレーパに衝突させて再び回転翼に導いて解砕分散することで、粒子化処理を効率的に行うことができる。
【0071】
また、請求項4の発明の解砕造粒装置によれば、投入口に連結された中空をなす複数の回転ドラムを回転自在に支持し、この複数の回転ドラム内に吸水剤及び固化剤が添加混合された発生土の内部物質を分断して粒子化させるそれぞれ長さが異なる回転翼を回転自在に支持したので、簡単な構成で安定して粒状体の粒径コントロールが可能となると共に、粒子化処理を連続的に行うことができる。
【0072】
また、請求項5の発明の解砕造粒装置によれば、投入口及び生成された粒状体の排出口を有する中空の回転ドラムをほぼ水平な軸心をもって回転自在に支持し、この回転ドラム内に吸水剤及び固化剤が添加混合された発生土の内部物質を分断して粒子化させる複数の回転翼を回転自在に支持し、回転ドラム内にて回転翼の回転軸心付近と先端部付近とを仕切る仕切り壁を設けたので、一つの回転ドラム内で安定した粒状体の粒径コントロールが可能となって装置のコンパクト化を図ることができると共に、粒子化処理を連続的に行うことができる。
【0073】
また、請求項6の発明の解砕造粒装置によれば、回転ドラム内における回転ドラムの回転軸心から偏心した位置に旋回軸を旋回自在に支持し、旋回軸に複数の回転翼を該回転ドラムの径方向に沿って伸縮自在に設けたので、一つの回転ドラム内で安定した粒状体の粒径コントロールが可能となって装置のコンパクト化を図ることができる。
【0074】
また、請求項7の発明の解砕造粒装置によれば、回転ドラム内における回転ドラムの回転軸心と同心上に旋回軸を旋回自在に支持し、旋回軸に回転ドラムの内周面近傍まで延出した複数の回転翼を固定すると共に、回転翼の長手方向中途部に円筒形状をなす前記仕切り壁を固定したので、一つの回転ドラム内で安定した粒状体の粒径コントロールが可能となると共に、仕切り壁の固定が容易となり、装置のコンパクト化を図ることができる。
【0075】
また、請求項8の発明の発生土処理装置によれば、吸水剤添加装置と固化剤添加装置とを設けると共に、吸水剤及び固化剤が添加された発生土を攪拌混合する攪拌混合機と、吸水剤及び固化剤が混合された発生土の内部物質を分断あるいは造粒して粒子化させることで異なる粒径分布を有する粒状体を生成する複数の粒状体生成領域を有する解砕造粒機と、複数の粒状体生成領域にて生成された粒径分布を有する粒状体を混合する混合手段とを設けたので、発生土に吸水剤及び固化剤を添加することで、微粒子間にポリマーが形成されて微粒子を拘束すると共に、自由水を取り込みゲル化させることで発生土の粘性が増加して分散粒状化が容易となり、また、粒径のばらついた粒状体を容易に生成することができ、粒子化処理を効率的に行うことで発生土を再利用して処理コストの低減を図ることができる。
【0076】
また、請求項9の発明の発生土処理装置によれば、掘削工事によって発生した発生土から砂礫成分を除去する一次処理手段と、一次処理手段で処理された発生土に凝集剤を添加して脱水処理する二次処理手段と、二次処理手段で処理された発生土を粒状体とする三次処理手段とを具え、この三次処理手段を、吸水剤添加装置と、固化剤添加装置と、吸水剤及び固化剤が添加された発生土を攪拌混合する攪拌混合機と、混合された発生土の内部物質を分断あるいは造粒して粒子化させることで異なる粒径分布を有する粒状体を生成する複数の粒状体生成領域を有する解砕造粒機と、複数の粒状体生成領域にて生成された粒径分布を有する粒状体を混合する混合手段とを設けたので、発生土に吸水剤及び固化剤を添加することで、微粒子間にポリマーが形成されて微粒子を拘束すると共に、自由水を取り込みゲル化させることで発生土の粘性が増加して分散粒状化が容易となり、また、粒径のばらついた粒状体を容易に生成することができ、粒子化処理を効率的に行うことで発生土を再利用して処理コストの低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る発生土処理装置の処理工程を表す概略図である。
【図2】三次処理系の処理工程を表す概略図である。
【図3】本実施形態の解砕造粒機の断面図である。
【図4】本発明の第2実施形態に係る発生土処理装置における三次処理系の処理工程を表す概略図である。
【図5】本実施形態の攪拌混合解砕造粒機の平面図である。
【図6】本実施形態の攪拌混合解砕造粒機の正面図である。
【図7】図5のVII−VII断面図である。
【図8】本発明の第3実施形態に係る発生土処理装置における三次処理系で適用する攪拌混合解砕造粒機の断面図である。
【図9】図8のIX−IX断面図である。
【図10】本発明の第4実施形態に係る発生土処理装置における三次処理系で適用する攪拌混合解砕造粒機の断面図である。
【図11】図10のXI−XI断面図である。
【図12】従来の発生土処理の工程の概略図である。
【符号の説明】
11 一次処理系
12 分級機
21 二次処理系
23 凝集剤添加装置
24 脱水機
31 三次処理系
32 スクリューコンベヤ
33 吸水剤添加装置
34 固化剤添加装置
36 攪拌混合機
37 解砕造粒機
38 搬送コンベヤ
42 ケーシング
43 回転ドラム
44 駆動モータ
45 投入口
46 駆動モータ
47 旋回軸
48 回転翼
49 スクレーパ
65 支持ローラ
66a,66b,66c,66 回転ドラム
70 駆動モータ
73a,73b,73c,73 投入口
74 ホッパ
76a,76b,76c,76 排出口
77 混合機
79a,79b,79c,79 旋回軸
80a,80b,80c,80 回転翼
81 駆動モータ
83 スクレーパ
84 吸水剤供給ノズル
85 吸水剤供給管
86 固化剤供給ノズル
87 固化剤供給管
101 攪拌混合解砕造粒機
102 回転翼
106 仕切り壁
111 攪拌混合解砕造粒機
112 回転翼
113 仕切り壁
A,C 発生土
B 砂礫成分
D 凝集剤
E 脱水ケーキ
F 粒状体
G 水ガラス(吸水剤)
H セメント(固化剤)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pulverizing and granulating apparatus for granulating generated soil generated in construction engineering works and construction sludge having a high water content generated in excavation work, and the generated soil using this pulverizing and granulating apparatus. It is related with the generated soil processing apparatus which processes.
[0002]
[Prior art]
FIG. 12 shows an outline of the conventional generated soil treatment process.
[0003]
In the conventional generated soil treatment, as shown in FIG. 12, in the primary treatment system 001, the generated soil 002 generated at a construction site, for example, a tunnel excavation work site using a shield excavator, is separated by a classifier 003 with a gravel component (particle size> 74 μm) 004 is separated and conveyed to the secondary processing system 011 by the pump 005. In this secondary treatment system 011, the coagulant 013 is added to the generated soil 006 from which the gravel component 004 is separated by the coagulant adding device 012, and dehydrated by the dehydrator 014, so that the clay silt component (particle size ≦ 74 μm) dehydrated cake 015 is produced. The gravel component 004 separated in the primary treatment system 001 is reused as a backfill material, etc., and the dehydrated cake 015 generated in the secondary treatment system 011 is transported to the treatment plant as industrial waste and discarded. .
[0004]
[Problems to be solved by the invention]
As described above, in the conventional generated soil treatment apparatus, the gravel component 004 in the primary treatment system 001 is reused as backfill material, but the dewatered cake 015 in the secondary treatment system 011 is treated as industrial waste. The In the tunnel excavation work site using a shield excavator, bentonite (clay) is added in order to provide fluidity to mud and mud and ensure the stability of the face. For this reason, the dehydrated cake 015 contains the bentonite in a slurry form and cannot be reused as a backfill material or the like. In this case, the transportation cost for transporting the dehydrated cake 015 to the industrial waste disposal site and the cost of the disposal itself become large, resulting in a problem that the overall construction cost increases, and the shortage or illegality of the final disposal site. It becomes a social problem such as dumping.
[0005]
Therefore, the present applicant reused the dewatered cake 015 as a backfill material by granulating the dehydrated cake 015 without using industrial waste in the “construction sludge treatment apparatus” of Japanese Patent Application No. 10-31015. Propose to do. This “construction sludge treatment device” adds cement to the dewatered cake 015 treated in the secondary treatment system 011 and also adds water glass and stirs and mixes with a stirring mixer, and then the cement and water glass are mixed. The dehydrated cake 015 is made into particles while breaking the internal substance with a pulverizing granulator to produce a granular material.
[0006]
By the way, although the granular material produced | generated with the "construction sludge processing apparatus" mentioned above is reused as a backfilling material etc., in this case, the direction where the particle size varies is suitable as a compacting material. Yes. However, in the above-mentioned “construction sludge treatment device”, the dehydrated cake 015 to which cement and water glass are added is stirred and mixed with a stirring mixer, and then granulated by using a rotary blade or the like with a crushing granulator. Is generated. For this reason, the granulated particles are likely to have a uniform particle size, and it has been difficult to produce particles having varying particle sizes.
[0007]
The present invention solves such a problem, and by processing the generated soil and making it reusable, the processing cost is reduced, and a granular material with varying particle sizes can be easily generated. It aims at providing a crushing granulation apparatus and a generated soil processing apparatus.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the pulverizing and granulating apparatus of the invention of claim 1 includes an inlet of the generated soil, and an internal substance of the generated soil which is added from the inlet and mixed with the water-absorbing agent and the solidifying agent. The , With multiple rotor blades with different peripheral speeds Split or granulate Generate granules with different particle sizes A plurality of granule generation areas and the plurality of granule generation areas are generated. Of different particle sizes Mixing means for mixing the granule at the same time as the granule production or after the granule production is provided integrally or separately from the granule production region. The It is characterized by this.
[0009]
In the crushing and granulating apparatus according to the second aspect of the present invention, the hollow rotary drum having the inlet is rotatably supported, and an axis substantially parallel to the rotation axis of the rotary drum is provided in the rotary drum. The swivel shaft is rotatably supported with a water absorbing agent and a solidifying agent on the swivel shaft. Said By fixing the rotating blades, the plurality of granular material generating regions are formed in the axial direction of the swivel shaft, and the granular materials generated by the rotating blades are mixed.
[0010]
In the crushing and granulating apparatus according to the third aspect of the present invention, the rotation drum and the rotation shaft center of the swivel shaft are inclined at a predetermined angle with respect to the vertical shaft, and a short rotor blade is provided above the swivel shaft. Fixed to the bottom of the pivot long A rotary blade is fixed, and a scraper that guides the flying object that flies opposite to the plurality of rotary blades to the rotary blade is provided.
[0011]
In the crushing and granulating apparatus according to the invention of claim 4, a plurality of hollow rotating drums connected to the charging port are rotatably supported, and the plurality of rotating drums are disposed in the plurality of rotating drums. Said Rotating wings Respectively It is characterized by being rotatably supported.
[0012]
In the pulverizing and granulating apparatus according to the fifth aspect of the invention, a hollow rotary drum having the inlet and the outlet for the produced granular material is rotatably supported with a substantially horizontal axis, and the inside of the rotary drum is In Said A plurality of rotary blades are rotatably supported, and a plurality of granule generation regions are formed by providing a partition wall that partitions the vicinity of the rotation axis of the rotary blade and the vicinity of the tip in the rotary drum, It is characterized by mixing the granular material generated by the rotor blades.
[0013]
In the crushing and granulating apparatus according to the sixth aspect of the invention, a swiveling shaft is pivotally supported at a position eccentric from the rotation axis of the rotary drum in the rotary drum, and the plurality of rotary blades are supported on the swivel shaft. Is provided to extend and contract along the radial direction of the rotary drum.
[0014]
In the crushing and granulating apparatus according to the seventh aspect of the present invention, a turning shaft is pivotally supported concentrically with the rotation axis of the rotating drum in the rotating drum, and the inner periphery of the rotating drum is supported on the turning shaft. The plurality of rotor blades extending to the vicinity of the surface are fixed, and the partition wall having a cylindrical shape is fixed to a middle portion in the longitudinal direction of the rotor blades.
[0015]
Further, the generated soil treatment apparatus of the invention of claim 8 includes a water absorbing agent adding device for adding a water absorbing agent to the generated soil, a solidifying agent adding device for adding a solidifying agent to the generated soil, the water absorbing agent and the solidifying agent. An agitator and mixer for agitating and mixing the generated soil to which the water is added, and an internal substance of the generated soil in which the water-absorbing agent and the solidifying agent are mixed. , With multiple rotor blades with different peripheral speeds Split or granulate Generate granules with different particle sizes A crushing and granulating machine having a plurality of granule generation regions, and produced in the plurality of granule generation regions Of different particle sizes A mixing means for mixing the granule with the granulation granulator at the same time as the granule production or after the granule production. The It is characterized by this.
[0016]
Further, the generated soil treatment apparatus of the invention of claim 9 is a primary treatment means for removing gravel components from the generated soil generated by excavation work, and adding a flocculant to the generated soil treated by the primary treatment means for dehydration. A secondary treatment means for treating, and a tertiary treatment means for making the generated soil treated by the secondary treatment means into a granular material, wherein the tertiary treatment means adds a water absorbent to the generated soil. A solidifying agent addition device for adding a solidifying agent to the generated soil, a stirring mixer for stirring and mixing the generated soil to which the water absorbing agent and the solidifying agent are added, and a generation in which the water absorbing agent and the solidifying agent are mixed The material inside the soil , With multiple rotor blades with different peripheral speeds Split or granulate Generate granules with different particle sizes A crushing and granulating machine having a plurality of granule generation regions, and produced in the plurality of granule generation regions Of different particle sizes Mixing means for mixing the granule at the same time as the granule production or after the granule production is mixed with the crushing granulator or separately. Ru It is characterized by this.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
[0018]
In addition, although several embodiment is described below, the generated soil handled by each embodiment consists of construction generated soil and construction sludge. This construction generated soil is earth and sand generated in connection with construction work, and is composed of earth and sand generated along with dredging of harbors and rivers, and other types of dredged soil, and other than this dredged soil. In addition, construction sludge is one that cannot be piled up on a standard dump truck and that cannot be walked on by a standard dump truck among those discharged along with excavation work related to construction work other than dredging.
[0019]
[First Embodiment]
FIG. 1 is a schematic diagram showing the processing steps of the generated soil processing apparatus according to the first embodiment of the present invention, FIG. 2 is a schematic diagram showing the tertiary processing system processing steps, and FIG. 3 is a cross-sectional view of the pulverization granulator of this embodiment. Indicates.
[0020]
The generated soil treatment apparatus of this embodiment processes the generated soil (construction sludge) discharged by the muddy water type shield excavator, and removes gravel components B from the generated soil A as shown in FIG. A primary treatment system 11, a secondary treatment system 21 that generates a dehydrated cake E by adding a flocculant D to the generated soil C treated by the primary treatment system 11 and performing a dehydration process, and the dehydrated cake E It is comprised from the tertiary processing system 31 used as the granular material F. FIG.
[0021]
The primary treatment system 11 includes a classifier 12 that separates the gravel component (particle size> 74 μm) B from the generated soil A generated at the construction site, and the generated soil C from which the gravel component B is separated and removed. And a pump 13 for transporting to the center. Further, the secondary treatment system 21 includes a flocculant addition device 23 that adds the flocculant D to the generated soil C conveyed from the primary treatment system 11 by the pump 22 and a dehydration treatment of the generated soil C to which the flocculant D is added. Thus, a dehydrator 24 for generating a dewatered cake E of a clay silt component (particle size ≦ 74 μm) is provided.
[0022]
As shown in FIGS. 1 and 2, the tertiary treatment system 31 includes a screw conveyor 32 that conveys the dewatered cake E processed in the secondary treatment system 21, and water glass as a water absorbent in the dewatered cake E. (It may be a powder of sodium silicate) Add a water absorbing agent addition device 33 for adding G (5 to 15% of the fine particle component of clay of several μm or less) and cement H as a solidifying agent (4 to 10 times that of sodium silicate) ) A solidifying agent adding device 34, a stirring mixer 36 for stirring and mixing the dehydrated cake E to which the water glass G and cement H have been added by a drive motor 35, and an internal substance of the stirred and mixed dehydrated cake E A crushing and granulating machine 37 that generates particles F by dividing the particles into particles and a conveyor conveyer 38 that conveys the generated particles F are provided.
[0023]
In this crushing and granulating machine 37, as shown in FIG. 3, a cylindrical casing 42 having an open bottom is inclined and fixed to an L-shaped base 41. A cylindrical rotary drum 43 having an upper opening is rotatably supported and can be driven and rotated by a drive motor 44. An inlet 45 for the dehydrated cake E is formed in the upper part of the casing 42, and an outlet (not shown) for the generated granular material F is formed in the lower part of the casing 42. A drive motor 46 is fixed to the upper portion of the casing 42, and a turning shaft 47 rotatable by the drive motor 46 is inserted into the rotary drum 43, and a plurality of rotary blades 48 are attached. Each of the rotary blades 48 is set so that its length increases downward. Further, a scraper 49 is fixed to the casing 42 so as to face each rotary blade 48 in the rotary drum 43.
[0024]
Here, the generated soil processing method by the generated soil processing apparatus of the present embodiment configured as described above will be described.
[0025]
As shown in FIG. 1, the generated soil A generated at the tunnel excavation site by the muddy water type shield excavator contains clayaceous material such as bentonite, and this generated soil A is sent to the primary treatment system 11 to be classified. 12 separates and removes the gravel component (particle size> 74 μm) B and sends it to the secondary treatment system 21 as generated soil C. In this secondary treatment system 21, after the flocculant D is added to the generated soil C from the flocculant adding device 23, it is mechanically dehydrated by the dehydrator 24 and dehydrated cake made of clay silt components (particle size ≦ 74 μm). E is generated and sent to the tertiary processing system 31. The dehydrated cake E has a specific gravity of 1.4 to 1.6, a fine particle component of 74 μm or less, 100%, and a moisture content of about 40 to 55%.
[0026]
In the tertiary treatment system 31, as shown in FIG. 2, the dewatered cake E is transported into the stirring mixer 36 by the screw conveyor 32, and the water absorbing agent is first added to the dewatered cake E by the stirring mixer 36. Water glass G is added by the device 33, and then cement H is added by the solidifying agent adding device 34. The stirring mixer 36 stirs and mixes the dewatered cake E to which the water glass G and the cement H are added until the additives G and H are evenly distributed. At this time, due to the reaction between the water glass G and the cement H, The bentonite particles in the dehydrated cake E are bound to each other and absorb moisture and gel. Then, the dehydrated cake E that has been gelled is fed into the crushing and granulating machine 37 by means of a helical stirring blade of the stirring mixer 36, where the substance inside is divided and granulated to produce granules F. Then, it is discharged onto the conveyor 38 and carried out of the apparatus.
[0027]
That is, when cement H is added to the dewatered cake E, the pH of the moisture in the dehydrated cake E fluctuates, whereby the water glass G forms a silicate polymer between the fine particles in the dehydrated cake E and restrains the fine particles. The free water in the dehydrated cake E is taken in and gelled. As a result, the viscosity of the dewatered cake E increases, and the pulverization granulator 37 enables dispersion granulation. Cement H has hydraulic properties and is mixed inside the granular material F. It reacts with moisture and the like taken inside, and forms a hydrate within a few hours to a few days and stabilizes. To do. The fine particles in the dehydrated cake E are enlarged to be cured while being constrained by the water glass G, and the fine particles are reduced in the granular material F.
[0028]
Here, the particle formation process of the dehydrated cake E in the crushing and granulating machine 37 will be specifically described. As shown in FIG. 3, the dehydrated cake E that is gelated by adding water glass G and cement H is A certain amount is charged into the rotary drum 43 from the charging port 45. Then, the dewatered cake E flies by the rotating rotary drum 43 and collides with the scraper 49, is guided to the rotating blades 48 rotated by the scraper 49, and is crushed and dispersed by the rotating blades 48. In this way, the dewatered cake E is crushed and dispersed by the rotary blades 48, whereby the surface is dried and gradually becomes granular bodies F, and the diameter is reduced. Then, when the granular material F that has been processed for a predetermined time and is granulated to a predetermined particle size is generated, the rotation of the rotary drum 43 and the rotary blades 48 is stopped, and the granular material F is discharged onto the transport conveyor 38 from the discharge port. To do.
[0029]
At this time, in this embodiment, the length of the plurality of rotary blades 48 fixed to the turning shaft 47 becomes longer downward. In general, the particle size and hardness of the granular material F change according to the rotational force of the rotary blade 48. Therefore, in the upper part in the rotating drum 43, since the rotary blade 48 is short, the peripheral speed at the tip thereof is small, that is, the rotational force of the rotary blade 48 is small, and the particle size of the generated granular material F is large. The hardness is low. On the other hand, in the lower part of the rotating drum 43, the rotating blade 48 is long, so the peripheral speed at the tip thereof is large, that is, the rotational force of the rotating blade 48 is large, and the particle size of the generated granular material F is small. The hardness is high. As described above, in the rotating drum 43, the granular material F having different particle diameters and hardnesses is generated along the axial direction of the pivot shaft 47, and a plurality of granular material generation regions are formed therein. By mixing (mixing means) after generation, it is possible to easily generate the granular material F having a variation in particle diameter.
[0030]
Here, the granular material F corresponds to the first type of generated soil in the soil quality classification, and can be applied to backfilling or embankment. Specifically, it satisfies the following.
(1) Particle size: 10% or less of fine particles of 74 μm or less, maximum particle size: 13 mm or less
(2) Compaction ground support force: CBR 12% or more (relative comparison standard with crushed stone roadbed)
(3) Do not contain specified hazardous substances above the standard concentration in the wastewater.
(4) pH: 5.8 to 8.6 (Standard for domestic wastewater)
However, there are some differences depending on the application location and local government.
[0031]
Thus, in the generated soil treatment apparatus of this embodiment, since the granular material F produced | generated using the inorganic material has intensity | strength and safety | security, a backfill material and a embankment material are used as construction materials. For example, it can be reused as high quality soil, and the cost for disposal can be reduced. In this case, the construction material made of granular material F is lightweight and has good water permeability, so it is most suitable as an embankment for athletic fields, planted soil, and reclaimed land, and can also be used as a drainage drain material for landfills. it can. In addition, by using water glass G and cement H as a granulating agent, the processing cost is reduced and the processing operation is facilitated.
[0032]
That is, safety can be ensured by using a device that uses water glass G (sodium silicate), which is a safe inorganic material, and an inorganic hydraulic material such as cement H. Further, by absorbing water with water glass G, it is possible to increase the viscosity necessary for dispersion granulation even for a relatively high water content mud, and by restricting the fine particles to increase the size, The fine particle component in the inside can be reduced. Furthermore, the treatment such as drying and dehydration, which conventionally required the cost and time for the treatment, is unnecessary, and can be granulated at a low cost and with high efficiency. Then, the solidifying agent can achieve the two effects of the gelation reaction agent of the water glass G and the long-term strength expression by the hydration reaction at a time, thereby simplifying the apparatus and reducing the cost.
[0033]
Moreover, in the crushing granulator 38 of this embodiment, the length of the some rotary blade 48 fixed to the turning shaft 47 in the rotating drum 43 is lengthened toward the downward direction. For this reason, in the upper part of the rotary drum 43, the rotating force of the rotating blades 48 is small, and a granular material F having a large particle size and low hardness is generated. The granular material F is produced | generated and the granular material F in which the particle size varied by mixing these granular materials F can be produced | generated easily.
[0034]
[Second Embodiment]
FIG. 4 is a schematic view showing the treatment process of the tertiary treatment system in the generated soil treatment apparatus according to the second embodiment of the present invention, FIG. 5 is a plan view of the stirring, mixing, pulverizing granulator of this embodiment, and FIG. 6 is the present embodiment. FIG. 7 shows a sectional view taken along the line VII-VII in FIG. 5. In addition, the same code | symbol is attached | subjected to the member which has the same function as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted.
[0035]
The generated soil treatment apparatus of this embodiment treats the generated soil (construction sludge) discharged by the muddy water type shield excavator in the same manner as the above-described embodiment, and includes a primary treatment system and a secondary treatment system. Since this is the same, the description is omitted, and only the tertiary treatment system for treating the dehydrated cake will be explained.
[0036]
As shown in FIG. 4, the tertiary treatment system 51 in the generated soil treatment apparatus of the present embodiment includes a screw conveyor 32 that conveys the dewatered cake E treated in the secondary treatment system, and the dewatered cake E as a water absorbent. The water absorbing agent adding device 33 for adding the water glass G, the solidifying agent adding device 34 for adding the cement H as the solidifying agent, and the dewatered cake E to which the water glass G and the cement H are added are stirred and mixed, A stirring / mixing / pulverizing granulator 52 that generates the granular material F by dividing the dehydrated cake E into particles while being divided, and a conveying conveyor 38 that conveys the generated granular material F are provided.
[0037]
As shown in FIGS. 5 to 7, the stirring and mixing pulverization granulator 52 has front and rear wall portions 62 a and 62 b erected on a base 61, and the lower portions of the wall portions 62 a and 62 b. The four rotating shafts 64 that are parallel to each other are rotatably supported by the bearings 63a and 63b, and two supporting rollers 65 are fixed to each rotating shaft 64, respectively. Three hollow cylindrical rotating drums 66a, 66b, and 66c are positioned between the front and rear wall portions 62a and 62b, and are rotatably supported by being placed on the respective support rollers 65. . A driven gear 67 is fixed to one end of one rotating shaft 64 and meshes with a reduction gear 68. A driven pulley 69 provided coaxially with the reduction gear 68 and a drive pulley 71 of the drive motor 70. A drive transmission belt 72 is wound between the two. Therefore, when the drive motor 70 is driven, the driving force is transmitted to the rotary shaft 64 via the drive pulley 71, the drive transmission belt 72, the driven pulley 69, the reduction gear 68, and the driven gear 67, and rotates a set of support rollers 65. By driving, the rotary drum 66a can be rotated in the X direction, and by rotating the other support roller 65, the other rotary drums 66b and 66c can be rotated in the X direction.
[0038]
In the upper part of the wall 62a, there are formed inlets 73a, 73b, 73c for feeding the dewatered cake E into the rotary drums 66a, 66b, 66c. One hopper is provided in each of the inlets 73a, 73b, 73c. 74 is connected, and a screw feeder 75 is attached to the inside of the hopper 74 so that a dehydrated cake E can be put into the rotary drums 66a, 66b, 66c by a predetermined amount. On the other hand, discharge ports 76a, 76b and 76c for discharging the granulated granular material F are formed at the lower part of the wall 62b, and a mixer 77 is connected to the discharge ports 76a, 76b and 76c.
[0039]
In addition, pivot shafts 79a, 79b, 79c are rotatably supported by bearings 78a, 78b below the wall portions 42a, 42b. The pivot shafts 79a, 79b, 79c are provided in the rotary drums 66a, 66b, 66c. The lower part penetrates the vicinity to the right in the conveying direction of the dewatered cake E put in the inside. A plurality of rotary blades 80a, 80b, and 80c are attached to the swivel shafts 79a, 79b, and 79c, and the rotary blades 80a, 80b, and 80c are inclined forward in the conveying direction of the dewatered cake E. The dewatering cake E in 66a, 66b, 66c has a function of a conveying means for conveying the dehydrated cake E to the discharge ports 76a, 76b, 76c. In the present embodiment, the lengths of the rotary blades 80a, 80b, 80c of the rotary drums 66a, 66b, 66c are different, the rotary blade 80a being the shortest and the rotary blade 80c being the longest.
[0040]
Each of the turning shafts 79a, 79b, 79c can be rotationally driven by a drive motor 81 provided outside via the transmission belts 82a, 82b, 82c. Therefore, when the drive motor 81 is driven, the rotary blades 80a, 80b, 80c can rotate in the same X direction as the rotation direction X of the rotary drums 66a, 66b, 66c together with the turning shafts 79a, 79b, 79c.
[0041]
Further, a scraper 83 is disposed at an upper portion in each of the rotating drums 66a, 66b, and 66c, and a base end portion is fixed to the wall portion 42b. Further, in the vicinity of the scraper 83, a water absorbing agent supply pipe 85 having a plurality of water absorbing agent addition nozzles 84 for ejecting water glass G and a solidifying agent supply pipe 87 having a plurality of solidifying agent addition nozzles 86 for ejecting cement H. Are disposed at the base ends of the water-absorbing agent supply pipe 85 and the solidifying agent supply pipe 87 via connecting pipes 90 and 91 having flow rate adjusting valves 88 and 89, respectively. 34 is connected, and a compressor 92 is connected to the connecting pipe 91 of the solidifying agent supply pipe 87. Note that the scraper 83, the water-absorbing agent addition nozzle 84, the solidifying agent addition nozzle 86, and the like are provided in the respective rotating drums 66a, 66b, and 66c.
[0042]
Here, the generated soil processing method by the generated soil processing apparatus of the present embodiment will be described. As shown in FIG. 4, in the tertiary treatment system 51, the dehydrated cake E is charged into the stirring, mixing, and pulverizing granulator 52 by the screw conveyor 32. By adding glass G, adding cement H from the solidifying agent adding device 34, stirring and mixing until each additive G, H is evenly distributed, gelling, and further dividing and granulating the internal substance The granular material F is produced | generated, discharged | emitted on the conveyance conveyor 38, and is carried out of an apparatus.
[0043]
That is, as shown in FIGS. 5 to 7, the dehydrated cake E that has been subjected to the secondary treatment continues from the hopper 57 into the rotating drums 66 a, 66 b, 66 c through the input ports 73 a, 73 b 73 c quantified by the screw feeder 75. Is inserted. On the other hand, the water glass G metered by the flow rate adjusting valve 88 from the water absorbent addition device 33 through the connecting pipe 90 is fed to the water absorbent supply pipe 85, and each rotary drum 66 a, 66 b, 66 c from each water absorbent addition nozzle 84. It is ejected to the dehydrated cake E inside. Subsequently, the cement H metered by the flow rate adjusting valve 89 is fed from the solidifying agent addition device 34 through the connecting pipe 91 to the solidifying agent supply pipe 87, and each rotary drum 66 a, It ejects to the dewatering cake E in 66b, 66c.
[0044]
Then, the dewatered cake E to which the water glass G and the cement H are added is agitated and mixed by the rotating drums 66a, 66b, and 66c and the rotating blades 80a, 80b, and 80c, respectively, and gels. The gelled dewatered cake E is further scraped up in the rotary drums 66a, 66b, and 66c and collides with the scrapers 83, and is guided to the rotary blades 80a, 80b, and 80c rotated by the scraper 83 to be crushed. Then, it is dispersed and conveyed to the respective outlets 76a, 76b, 76c. In this manner, the dewatered cake E moves while being crushed and dispersed by the rotary blades 80a, 80b, and 80c, thereby gradually becoming granular bodies F and having a smaller diameter.
[0045]
At this time, in this embodiment, the length of each rotary blade 80a, 80b, 80c in each rotary drum 66a, 66b, 66c differs. Therefore, in the rotating drum 66a, since the rotary blade 80a is short, the peripheral speed is low, the particle size of the generated granular material F is large, and the hardness is low. On the other hand, in the rotary drum 66c, since the rotary blade 80c is long, the peripheral speed is high, the particle size of the produced granular material F is small, and the hardness is high. Thus, in each rotary drum 66a, 66b, 66c, the granular material F from which a particle size and hardness differ is produced | generated, respectively, and three granular material production | generation areas will be formed here.
[0046]
And the granular material F from which the particle size and hardness which differed to the predetermined particle size differ and fly by each rotary blade 80a, 80b, 80c, and is discharged | emitted by the mixer 77 through the discharge port 76a, 76b, 76c. Granules F having different particle diameters and hardnesses are mixed by the mixer 77 and then transferred onto the transport conveyor 38, so that the granules F having different particle diameters can be easily generated.
[0047]
As described above, in the generated soil treatment apparatus of the present embodiment, the three rotating drums 66a, 66b, and 66c are arranged in the rotating drums 66a, 66b, and 66c by the stirring, mixing, and pulverizing granulator 52. By changing the lengths of the rotor blades 80a, 80b, and 80c, three granular material generating regions are formed. Therefore, the rotational force of the rotary blades 80 c 80 a, 80 b, 80 c is different in each of the rotary drums 66 a, 66 b, 66 c, and the granular material F having different particle diameters is generated and mixed by the mixer 77. The body F can be easily generated.
[0048]
Further, in the stirring and mixing pulverization granulator 52, a water-absorbing agent (water glass G) and a solidifying agent (cement H) are added, a water glass G, cement H, and a dehydrated cake E are stirred and mixed. The pulverization granulation process for the production | generation of the body F is enabled continuously. Therefore, the particle formation process of the dewatering cake E can be performed continuously and efficiently. In addition, since the addition, stirring and mixing and the crushing and granulating processes are performed in the rotating drums 66a, 66b, and 66c, the apparatus can be made compact and downsized, and maintenance is facilitated. Furthermore, by adjusting the addition timing and addition amount of the water glass G and cement H, it becomes possible to perform an optimal particle formation treatment.
[0049]
[Third Embodiment]
FIG. 8 shows a cross section of a stirring and mixing pulverization granulator applied in the tertiary treatment system in the generated soil treatment apparatus according to the third embodiment of the present invention, and FIG. 9 shows a cross section IX-IX of FIG.
[0050]
The generated soil treatment apparatus of each embodiment described in the third and subsequent embodiments processes the generated soil (construction sludge) in substantially the same manner as the second embodiment described above, and processes the dewatered cake. It is a modification of the stirring mixing pulverization granulator used in the tertiary processing system. Therefore, in each embodiment described below, members having the same functions as those described in the second embodiment are denoted by the same reference numerals, and redundant description is omitted.
[0051]
As shown in FIGS. 8 and 9, in the stirring, mixing and pulverizing granulator 101 used in the tertiary treatment system of the generated soil treatment apparatus of the present embodiment, a rotary drum 66 is rotatably supported on a support roller 65. The drive motor 70 can rotate in the X direction. An input port 73 is provided on one side of the rotary drum 66 and a discharge port 76 is provided on the other side. A rotating shaft 79 is rotatably supported in the rotating drum 66 and a plurality of rotating blades 102 are attached. The rotating motor 66 can be rotated in the same direction as the rotating drum 66 by a drive motor 81.
[0052]
The rotary blade 102 has two telescopic cylinders 104 and 105 that can be expanded and contracted in the axial direction from a fixed cylinder 103 fixed to the swivel shaft 79, and a compression spring (not shown) in which the two telescopic cylinders 104 and 105 are incorporated. Energized and supported outward. Accordingly, the rotary blade 102 can rotate at a speed different from that of the rotary drum 66 while the tip of the telescopic cylinder 105 is in sliding contact with the inner peripheral surface of the rotary drum 66. In addition, a partition wall 106 that partitions the vicinity of the rotation axis (swivel shaft 79) of the rotary blade 102 and the vicinity of the tip of the extended rotary blade 102 is attached to the rotary drum 66. The partition wall 106 is made of an L-shaped plate and is divided into a plurality of pieces so as not to interfere with the rotary blade 102.
[0053]
Although not shown, a scraper, a water absorbent supply pipe having a plurality of water absorbent addition nozzles for ejecting water glass G, and a plurality of solidifying agent addition nozzles for ejecting cement H are provided in the upper part of the rotary drum 66. And a solidifying agent supply pipe having the same.
[0054]
When the generated soil is processed by the generated soil processing apparatus of this embodiment, the dewatered cake E is continuously put into the rotating drum 66 of the stirring, mixing, pulverizing and granulating machine 101, and water glass G and cement H are added. The Then, the dewatered cake E to which the water glass G and the cement H are added is stirred and mixed by the rotating rotary drum 66 and the rotary blades 102, crushed and dispersed while gelling, and conveyed to the discharge port 76 side. . In this way, the dewatered cake E is conveyed while being stirred, mixed, pulverized, and granulated, and becomes a granular material F, which is discharged from the discharge port 76 onto the conveying conveyor 38.
[0055]
At this time, in the present embodiment, the rotating blade 102 rotates in the rotating drum 66 while the tip end portion of the telescopic cylinder 105 is in sliding contact with the inner peripheral surface of the rotating drum 66 and expands and contracts. Therefore, in the rotary drum 66, the peripheral speed when the rotary blade 102 contracts is small, the particle size of the granular material F generated in the region A partitioned by the partition wall 106 is large, and the hardness is low. On the other hand, the peripheral speed when the rotor blade 102 extends is high, the particle size of the granular material F generated in the region B partitioned by the partition wall 106 is small, and the hardness is high. Thus, in each area | region A and B in each rotary drum 66, the granular material F from which a particle size and hardness differ, respectively, is produced | generated, is discharged through the discharge port 76, after being mixed.
[0056]
As described above, in the stirring, mixing, pulverizing and granulating machine 101 according to the present embodiment, the rotatable blades 102 are rotatably provided in the rotating drum 66, and extended to the vicinity of the rotation axis of the rotating blades 102. By attaching a partition wall 106 that partitions the vicinity of the tip of the rotary blade 102, two granular material generation regions are formed. Therefore, in the regions A and B in the rotary drum 66, the rotational force of the rotary blades 102 is different, and the granules F having different particle diameters are generated. By mixing, the granules F having different particle diameters can be easily obtained. Can be generated.
[0057]
[Fourth Embodiment]
FIG. 10 shows a cross section of a stirring and mixing pulverization granulator applied in a tertiary treatment system in a generated soil treatment apparatus according to the fourth embodiment of the present invention, and FIG. 11 shows a cross section XI-XI of FIG.
[0058]
As shown in FIGS. 10 and 11, in the stirring, mixing and pulverizing granulator 111 used in the tertiary treatment system of the generated soil treatment apparatus of the present embodiment, a rotary drum 66 is rotatably supported on a support roller 65. The drive motor 70 can rotate in the X direction. An input port 73 is provided on one side of the rotary drum 66 and a discharge port 76 is provided on the other side. In addition, a rotating shaft 79 is rotatably supported in the rotating drum 66 and a plurality of rotating blades 122 are attached, and can be rotated in the same direction as the rotating drum 66 by a drive motor 81.
[0059]
In addition, a partition wall 113 that partitions the vicinity of the rotation axis (swivel shaft 79) of the rotary blade 112 and the vicinity of the tip of the rotary blade 112 is attached to the rotary drum 66. The partition wall 113 has a cylindrical shape shorter than that of the rotary drum 66 and is fixed to the rotary blade 112 so as to be located at the approximate center of the rotary drum 66.
[0060]
When the generated soil is processed by the generated soil processing apparatus of the present embodiment, the dewatered cake E is continuously put into the rotary drum 66 of the stirring, mixing, pulverizing and granulating machine 111, and water glass G and cement H are added. The Then, the dewatered cake E to which the water glass G and the cement H are added is stirred and mixed by the rotating rotary drum 66 and the rotary blades 112, crushed and dispersed while gelling, and conveyed to the discharge port 76 side. . In this way, the dewatered cake E is conveyed while being stirred, mixed, pulverized, and granulated, and becomes a granular material F, which is discharged from the discharge port 76 onto the conveying conveyor 38.
[0061]
At this time, in the present embodiment, in the rotary drum 66, in the region A partitioned by the partition wall 113, the peripheral speed of the rotating blade 112 is small, the particle size of the generated granular material F is large, and the hardness is low. On the other hand, in the region B partitioned by the partition wall 113, the peripheral speed of the rotary blade 112 is large, the particle size of the generated granular material F is small, and the hardness is high. Thus, in each area | region A and B in each rotary drum 66, the granular material F from which a particle size and hardness differ, respectively, is produced | generated, is discharged through the discharge port 76, after being mixed.
[0062]
As described above, in the stirring, mixing, pulverizing and granulating machine 101 of the present embodiment, the rotary blade 112 is rotatably provided in the rotary drum 66, and the vicinity of the rotational axis and the tip of the rotary blade 112 are provided. By attaching the partition wall 113 for partitioning, two granule generation regions are formed. Therefore, in the regions A and B in the rotary drum 66, the rotational force of the rotary blade 112 is different, and the granular material F having different particle diameters is generated. By mixing, the granular material F having different particle diameters can be easily obtained. Can be generated.
[0063]
In the second to fourth embodiments described above, two or three granule generation regions are formed, but the number may be set as appropriate according to the type of granule F to be generated.
[0064]
Moreover, in each embodiment mentioned above, although rotating drum 43, 66a, 66b, 66c, 66 was made into the cylindrical shape, polygonal shape may be sufficient. Furthermore, although the rotating directions of the rotating drums 43, 66a, 66b, 66c, 66 and the rotating blades 48, 80a, 80b, 80c, 80 (swivel shafts 47, 79a, 79b, 79c, 79) are the same, the scraper 83 It is good also as a reverse direction according to the attachment position. And the shape of the rotary blades 48, 80a, 80b, 80c, 80 is not limited.
[0065]
A water absorbing agent supply pipe 85 (water absorbing agent addition nozzle 84) and a solidifying agent supply pipe 87 (a solidifying agent addition nozzle 86) are provided in the upper part of the rotary drums 66a, 66b, 66c and below the scraper 83. Considering prevention of clogging of the nozzles 84 and 86, it may be above the scraper 83, and may be embedded in the scraper 83. In addition to water glass G, this water-absorbing agent may be, for example, sodium silicate as a silicate, an organic water-absorbing agent such as a polymer or a monomer, and as a solidifying agent, in addition to cement H, lime-based, gypsum-based It may be a solidifying agent.
[0066]
Furthermore, the shape of the scraper 83 is also limited to the embodiment as long as the dewatered cake E flying in the rotary drums 43, 66a, 66b, 66c, 66 can be guided to the rotary blades 48, 80a, 80b, 80c, 80. However, the attachment position may be determined as necessary.
[0067]
Moreover, in each above-mentioned embodiment, it was assumed that the generated soil A discharged by the muddy water type shield excavator was processed, but the generated soil discharged by the earth pressure type shield excavator can also be processed. The generated soil can be directly carried into the tertiary treatment system, omitting the primary treatment system and the secondary treatment system. This is because the specific gravity of the generated soil discharged by the earth pressure type shield excavator is almost the same as the specific gravity of dehydrated cake E of 1.4 to 1.6, and the moisture content is mud containing several centimeters of stone and sand. It is because it is about 20 to 50%. Further, the generated soil may be the construction generated soil or the construction sludge described above.
[0068]
【The invention's effect】
As described above in detail in the embodiment, according to the pulverizing and granulating apparatus of the invention of claim 1, the internal material of the generated soil which is introduced from the inlet of the generated soil and added and mixed with the water-absorbing agent and the solidifying agent. Divide Or granulation Different particle size by particleizing Have distribution The particle size generated in the plurality of granule generation regions is provided with a plurality of granule generation regions for generating the granule Have distribution Since the mixing means for mixing the granular materials is provided, it is possible to easily generate granular materials with varying particle diameters.
[0069]
According to the crushing and granulating apparatus of the second aspect of the invention, the hollow rotating drum having the inlet is rotatably supported, and the rotating shaft is rotatably supported in the rotating drum. Since a plurality of granular material generation regions are formed by fixing multiple rotor blades with different lengths that divide and granulate the internal material of the generated soil in which the water-absorbing agent and solidifying agent are added and mixed with This makes it possible to control the particle size of the granular material stably.
[0070]
According to the crushing and granulating apparatus of the invention of claim 3, the rotating drum and the rotation shaft center of the turning shaft are inclined at a predetermined angle, and the short rotating blade is fixed to the upper portion of the turning shaft, while the lower portion long A scraper that fixes the rotating blades and guides the flying objects facing the rotating blades to the rotating blades is installed, so that the generated soil collides with the scraper and leads to the rotating blades again to disperse and disperse. Thus, the particle formation process can be performed efficiently.
[0071]
According to the crushing and granulating apparatus of the invention of claim 4, a plurality of hollow rotating drums connected to the inlet are rotatably supported, and a water absorbing agent and a solidifying agent are contained in the plurality of rotating drums. Since the rotating blades with different lengths are divided and divided to separate the internal material of the generated soil that has been added and mixed, the particle size of the granular material can be controlled stably with a simple configuration. The particle formation process can be performed continuously.
[0072]
According to the pulverizing and granulating apparatus of the fifth aspect of the present invention, the hollow rotary drum having the inlet and the outlet for the generated granular material is rotatably supported with a substantially horizontal axis. A plurality of rotating blades that divide and pulverize the internal material of the generated soil in which a water absorbing agent and a solidifying agent are added and mixed are rotatably supported, and in the rotating drum, near the rotation axis of the rotating blade and at the tip Since a partition wall is provided to divide the vicinity, it is possible to control the particle size of the granular material stably in one rotating drum, and to reduce the size of the apparatus, and to continuously perform the particle formation treatment. Can do.
[0073]
According to the pulverizing and granulating apparatus of the invention of claim 6, the swiveling shaft is pivotally supported at a position eccentric from the rotation axis of the rotating drum in the rotating drum, and the plurality of rotary blades are provided on the rotating shaft. Since the rotary drum is provided so as to extend and contract along the radial direction of the rotary drum, the particle size of the granular material can be stably controlled in one rotary drum, and the apparatus can be made compact.
[0074]
Further, according to the crushing and granulating apparatus of the invention of claim 7, the turning shaft is pivotally supported concentrically with the rotation axis of the rotating drum in the rotating drum, and the vicinity of the inner peripheral surface of the rotating drum is supported on the turning shaft. In addition to fixing a plurality of rotating blades extending to the center, and fixing the cylindrical partition wall in the longitudinal direction of the rotating blade, it is possible to control the particle size of the granular material stably in one rotating drum. In addition, the partition wall can be easily fixed, and the apparatus can be made compact.
[0075]
Further, according to the generated soil treatment apparatus of the invention of claim 8, while providing a water absorbing agent adding device and a solidifying agent adding device, a stirring mixer for stirring and mixing the generated soil added with the water absorbing agent and the solidifying agent; Separation of internal material of generated soil mixed with water absorbing agent and solidifying agent Or granulation Different particle size by particleizing Have distribution Crushing and granulating machine having a plurality of granule generation regions for generating granules, and a particle size generated in the plurality of granule generation regions Have distribution By adding a water absorbing agent and a solidifying agent to the generated soil, a polymer is formed between the fine particles, and the fine particles are constrained, and free water is taken in and gelled. The viscosity of the generated soil increases, making it easy to disperse and granulate. Also, it is possible to easily generate particles with varying particle sizes, and the generated soil can be reused by efficient particle formation. The processing cost can be reduced.
[0076]
Further, according to the generated soil treatment apparatus of the invention of claim 9, a primary treatment means for removing gravel components from the generated soil generated by excavation work, and a flocculant is added to the generated soil treated by the primary treatment means. A secondary treatment means for performing a dehydration treatment; and a tertiary treatment means for forming the generated soil treated by the secondary treatment means into a granular material. The tertiary treatment means includes a water absorbing agent adding device, a solidifying agent adding device, and a water absorbing agent. Agitating and mixing machine that stirs and mixes the generated soil to which the agent and solidifying agent are added, and divides the internal material of the mixed generated soil Or granulation Different particle size by particleizing Have distribution Crushing and granulating machine having a plurality of granule generation regions for generating granules, and a particle size generated in the plurality of granule generation regions Have distribution By adding a water absorbing agent and a solidifying agent to the generated soil, a polymer is formed between the fine particles, and the fine particles are constrained, and free water is taken in and gelled. The viscosity of the generated soil increases, making it easy to disperse and granulate. Also, it is possible to easily generate particles with varying particle sizes, and the generated soil can be reused by efficient particle formation. The processing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a processing step of a generated soil processing apparatus according to a first embodiment of the present invention.
FIG. 2 is a schematic diagram illustrating a processing process of a tertiary processing system.
FIG. 3 is a cross-sectional view of the crushing and granulating machine of the present embodiment.
FIG. 4 is a schematic diagram showing a treatment process of a tertiary treatment system in the generated soil treatment apparatus according to the second embodiment of the present invention.
FIG. 5 is a plan view of the stirring, mixing and pulverizing granulator according to the present embodiment.
FIG. 6 is a front view of the stirring, mixing and pulverizing granulator according to the present embodiment.
7 is a cross-sectional view taken along the line VII-VII in FIG.
FIG. 8 is a cross-sectional view of a stirring and mixing pulverization granulator applied in a tertiary treatment system in a generated soil treatment apparatus according to a third embodiment of the present invention.
9 is a cross-sectional view taken along the line IX-IX in FIG.
FIG. 10 is a cross-sectional view of a stirring and mixing pulverization granulator applied in a tertiary treatment system in a generated soil treatment apparatus according to a fourth embodiment of the present invention.
11 is a cross-sectional view taken along the line XI-XI in FIG.
FIG. 12 is a schematic view of a conventional generated soil treatment process.
[Explanation of symbols]
11 Primary treatment system
12 classifier
21 Secondary treatment system
23 Flocculant addition device
24 Dehydrator
31 Tertiary processing system
32 Screw conveyor
33 Water-absorbing agent addition device
34 Solidifying agent addition device
36 Stir mixer
37 Crushing granulator
38 Conveyor
42 Casing
43 Rotating drum
44 Drive motor
45 slot
46 Drive motor
47 Rotating axis
48 rotor blades
49 Scraper
65 Support roller
66a, 66b, 66c, 66 Rotating drum
70 Drive motor
73a, 73b, 73c, 73 slot
74 Hopper
76a, 76b, 76c, 76 outlet
77 Mixer
79a, 79b, 79c, 79 Rotating shaft
80a, 80b, 80c, 80 rotor blades
81 Drive motor
83 Scraper
84 Water absorbent supply nozzle
85 Water Absorbent Supply Pipe
86 Solidifying agent supply nozzle
87 Solidifying agent supply pipe
101 Mixing and crushing granulator
102 rotor blades
106 partition wall
111 Mixing and crushing granulator
112 rotor blades
113 partition wall
A, C generation soil
B Gravel component
D flocculant
E Dehydrated cake
F Granules
G Water glass (water absorbing agent)
H Cement (solidifying agent)

Claims (9)

発生土の投入口と、該投入口から投入されて吸水剤及び固化剤が添加混合された発生土の内部物質を、周速の異なる複数の回転翼により、分断あるいは造粒して異なる粒径の粒状体を生成させる複数の粒状体生成領域と、該複数の粒状体生成領域にて生成された異なる粒径の粒状体を、粒状体生成と同時あるいは粒状体生成後に、混合する混合手段とを前記粒状体生成領域と一体又は別体に具えことを特徴とする解砕造粒装置。 Different particle sizes by dividing or granulating the inner material of the generated soil into which the water is added and mixed with the water absorbing agent and the solidifying agent, by using a plurality of rotating blades having different peripheral speeds. A plurality of granule generation regions for generating a plurality of granule bodies, and a mixing means for mixing particles having different particle sizes generated in the plurality of granule generation regions at the same time as or after the granule generation. solution砕造granulator, characterized in that the equipped to the granulate generation region and integrally or separately. 請求項1記載の解砕造粒装置において、前記投入口を有する中空の回転ドラムを回転自在に支持すると共に、該回転ドラム内に該回転ドラムの回転軸心とほぼ平行な軸心をもって旋回軸を回転自在に支持し、該旋回軸に前記回転翼を固定することで、該旋回軸の軸方向に前記複数の粒状体生成領域を形成すると共に、該回転翼により生成された粒状体を混合することを特徴とする解砕造粒装置。2. The crushing and granulating apparatus according to claim 1, wherein a hollow rotating drum having the charging port is rotatably supported, and a rotating shaft having an axis substantially parallel to the rotating axis of the rotating drum in the rotating drum. rotatably supports the, by fixing the rotor blade to said pivot axis, mixed to form a plurality of granules generation region in the axial direction of said pivot axis, the granules produced by the rotary blade A crushing and granulating apparatus characterized in that: 請求項2記載の解砕造粒装置において、前記回転ドラム及び前記旋回軸の回転軸心は、垂直軸に対して所定角度傾斜しており、該旋回軸の上部に短い回転翼が固定される一方、該旋回軸の下部に長い回転翼が固定され、該複数の回転翼と対向して飛翔した飛翔物を該回転翼に導くスクレーパが配設されたことを特徴とする解砕造粒装置。  3. The crushing and granulating apparatus according to claim 2, wherein the rotation drum and the rotation shaft center of the pivot shaft are inclined at a predetermined angle with respect to a vertical axis, and a short rotor blade is fixed to the upper portion of the pivot shaft. On the other hand, a crushing and granulating apparatus characterized in that a long rotary blade is fixed to the lower part of the swivel shaft, and a scraper is disposed to guide a flying object that flies opposite to the plurality of rotary blades to the rotary blade. . 請求項1記載の解砕造粒装置において、前記投入口に連結された中空をなす複数の回転ドラムを回転自在に支持し、該複数の回転ドラム内に前記回転翼をそれぞれ回転自在に支持したことを特徴とする解砕造粒装置。In solution砕造particle apparatus according to claim 1, wherein a plurality of rotary drum forming a concatenated hollow rotatably supported in inlet and said rotary blade rotatably supported respectively in the rotary drum of the plurality of A crushing granulator characterized by that. 請求項1記載の解砕造粒装置において、前記投入口及び生成された粒状体の排出口を有する中空の回転ドラムをほぼ水平な軸心をもって回転自在に支持し、該回転ドラム内に前記複数の回転翼を回転自在に支持し、前記回転ドラム内にて該回転翼の回転軸心付近と先端部付近とを仕切る仕切り壁を設けることで複数の粒状体生成領域を形成すると共に、該回転翼により生成された粒状体を混合することを特徴とする解砕造粒装置。In solution砕造particle device according to claim 1, wherein the plurality of the inlet and hollow rotary drum having a discharge outlet of the generated granules rotatably supported with a substantially horizontal axis, and the rotation by the drum The rotary blades of the rotary blades are rotatably supported, and a partition wall is provided in the rotary drum to partition the vicinity of the rotational axis of the rotary blades and the vicinity of the tip thereof, thereby forming a plurality of granular material generating regions and rotating the rotary blades. A crushing and granulating apparatus characterized by mixing granular materials generated by blades. 請求項5記載の解砕造粒装置において、前記回転ドラム内における該回転ドラムの回転軸心から偏心した位置に旋回軸を旋回自在に支持し、該旋回軸に前記複数の回転翼を該回転ドラムの径方向に沿って伸縮自在に設けたことを特徴とする解砕造粒装置。  6. The crushing and granulating apparatus according to claim 5, wherein a swiveling shaft is pivotally supported at a position eccentric from a rotation axis of the rotating drum in the rotating drum, and the plurality of rotating blades are rotated on the rotating shaft. A crushing and granulating apparatus, wherein the crushing and granulating apparatus is provided so as to be stretchable along a radial direction of the drum. 請求項5記載の解砕造粒装置において、前記回転ドラム内における該回転ドラムの回転軸心と同心上に旋回軸を旋回自在に支持し、該旋回軸に該回転ドラムの内周面近傍まで延出した前記複数の回転翼を固定すると共に、該回転翼の長手方向中途部に円筒形状をなす前記仕切り壁を固定したことを特徴とする解砕造粒装置。  6. The crushing and granulating apparatus according to claim 5, wherein a swiveling shaft is pivotally supported concentrically with the rotation axis of the rotating drum in the rotating drum, and the rotating shaft extends to the vicinity of the inner peripheral surface of the rotating drum. A crushing and granulating apparatus characterized in that the plurality of extended rotating blades are fixed, and the partition wall having a cylindrical shape is fixed to a middle portion in the longitudinal direction of the rotating blades. 発生土に吸水剤を添加する吸水剤添加装置と、前記発生土に固化剤を添加する固化剤添加装置と、前記吸水剤及び前記固化剤が添加された発生土を攪拌混合する攪拌混合機と、前記吸水剤及び固化剤が混合された発生土の内部物質を、周速の異なる複数の回転翼により、分断あるいは造粒して異なる粒径の粒状体を生成させる複数の粒状体生成領域を有する解砕造粒機と、該複数の粒状体生成領域にて生成された異なる粒径の粒状体を、粒状体生成と同時あるいは粒状体生成後に、混合する混合手段とを前記解砕造粒機と一体又は別体に具えことを特徴とする発生土処理装置。A water-absorbing agent adding device for adding a water-absorbing agent to the generated soil, a solidifying agent-adding device for adding a solidifying agent to the generated soil, and a stirring mixer for stirring and mixing the generated soil to which the water-absorbing agent and the solidifying agent are added; A plurality of granule generation regions for generating particles having different particle diameters by dividing or granulating the internal material of the generated soil mixed with the water-absorbing agent and the solidifying agent with a plurality of rotor blades having different peripheral speeds. The pulverizing granulator includes a pulverizing granulator, and a mixing means for mixing the granular materials having different particle sizes generated in the plurality of granular material generating regions at the same time as the granular material generation or after the granular material generation. generating soil processing apparatus being characterized in that comprises the machine and integrally or separately. 掘削工事によって発生した発生土から砂礫成分を除去する一次処理手段と、該一次処理手段で処理された発生土に凝集剤を添加して脱水処理する二次処理手段と、該二次処理手段で処理された発生土を粒状体とする三次処理手段とを具え、該三次処理手段は、前記発生土に吸水剤を添加する吸水剤添加装置と、前記発生土に固化剤を添加する固化剤添加装置と、前記吸水剤及び前記固化剤が添加された発生土を攪拌混合する攪拌混合機と、前記吸水剤及び固化剤が混合された発生土の内部物質を、周速の異なる複数の回転翼により、分断あるいは造粒して異なる粒径の粒状体を生成させる複数の粒状体生成領域を有する解砕造粒機と、該複数の粒状体生成領域にて生成された異なる粒径の粒状体を、粒状体生成と同時あるいは粒状体生成後に、混合する混合手段とを前記解砕造粒機と一体又は別体に有すことを特徴とする発生土処理装置。A primary treatment means for removing gravel components from the generated soil generated by excavation work, a secondary treatment means for adding a flocculant to the generated soil treated by the primary treatment means, and a dehydration treatment; and the secondary treatment means. A tertiary treatment means for forming the treated generated soil into a granular material, the tertiary treatment means comprising: a water absorbent addition device for adding a water absorbent to the generated soil; and a solidifying agent addition for adding a solidifying agent to the generated soil. A plurality of impellers having different peripheral speeds, an apparatus, an agitator and mixer for agitating and mixing the generated soil to which the water-absorbing agent and the solidifying agent are added, and an internal substance of the generated soil to which the water-absorbing agent and the solidifying agent are mixed. Accordingly, a solution砕造granulator having a plurality of granules generation region to generate a granulate of particle size different divided or granulated, granules of different particle sizes generated by the granules generation region of the plurality of At the same time as granule production or after granule production Wherein a mixing means for mixing solutions砕造granulator and soil generated processing apparatus characterized by that Yusuke integrally or separately.
JP13351499A 1999-05-14 1999-05-14 Crushing and granulating device and generated soil treatment device Expired - Lifetime JP3752105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13351499A JP3752105B2 (en) 1999-05-14 1999-05-14 Crushing and granulating device and generated soil treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13351499A JP3752105B2 (en) 1999-05-14 1999-05-14 Crushing and granulating device and generated soil treatment device

Publications (2)

Publication Number Publication Date
JP2000319927A JP2000319927A (en) 2000-11-21
JP3752105B2 true JP3752105B2 (en) 2006-03-08

Family

ID=15106575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13351499A Expired - Lifetime JP3752105B2 (en) 1999-05-14 1999-05-14 Crushing and granulating device and generated soil treatment device

Country Status (1)

Country Link
JP (1) JP3752105B2 (en)

Also Published As

Publication number Publication date
JP2000319927A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
JP2000073333A (en) Granular bentonite, manufacture of granular bentonite, bentonite mixed soil material, and water impervious construction method
JP2003126894A (en) Method and apparatus for treating generated earth and method for producing granular material
JP2003126826A (en) Device for method of treating generated soil
KR101570830B1 (en) Soil aggregates and continuous mixing device
US20070272776A1 (en) Method and Apparatus for Processing Excavated Earth
JP3626876B2 (en) Crushing and granulating device and generated soil treatment device
JP3752105B2 (en) Crushing and granulating device and generated soil treatment device
JP3758912B2 (en) Crushing and granulating device and generated soil treatment device
JP2010089016A (en) Method and apparatus for treating dredged soil
JP3729805B2 (en) Inorganic sludge treatment equipment
JP2003126895A (en) Method and apparatus for treating generated earth
JP2003129515A (en) Produced soil treatment device and treatment method
JP4313126B2 (en) Sludge treatment system
JP2001254391A (en) Sludge cake grain refining system, mobile granulating machine to be used for the same, and sludge cake grain refining method
JP2001334162A (en) Fine granulating device for dehydrated cake
JP2002336671A (en) Apparatus for granulating muddy soil
JP2002097663A (en) Self-traveling soil improving machine and preliminary crushing apparatus
JPH11315554A (en) Device and method of treating generated soil
JP3242674B2 (en) Mud and mud waste treatment equipment
JP2003145195A (en) Apparatus for crush-recycling treatment
JP2898850B2 (en) Mud treatment method
JP3626877B2 (en) Generated soil treatment method and apparatus
JP2006130443A (en) Continuous granulation system of dehydrated cake
JPH11221486A (en) Treatment of ready mixed concrete remaining in concrete truck mixer agitator
JP2003096817A (en) Waste soil improving apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051209

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term