JP3752076B2 - Super high heat input welding steel containing Mg - Google Patents

Super high heat input welding steel containing Mg Download PDF

Info

Publication number
JP3752076B2
JP3752076B2 JP10467998A JP10467998A JP3752076B2 JP 3752076 B2 JP3752076 B2 JP 3752076B2 JP 10467998 A JP10467998 A JP 10467998A JP 10467998 A JP10467998 A JP 10467998A JP 3752076 B2 JP3752076 B2 JP 3752076B2
Authority
JP
Japan
Prior art keywords
steel
oxide
heat input
toughness
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10467998A
Other languages
Japanese (ja)
Other versions
JPH11293382A (en
Inventor
龍治 植森
卓也 原
直樹 斎藤
幸男 冨田
周二 粟飯原
博 為広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10467998A priority Critical patent/JP3752076B2/en
Publication of JPH11293382A publication Critical patent/JPH11293382A/en
Application granted granted Critical
Publication of JP3752076B2 publication Critical patent/JP3752076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超大入熱溶接を実施しても溶接熱影響部(HAZ)の靱性の劣化が小さい溶接構造用鋼板に関わるものである。
【0002】
【従来の技術】
造船、建築など溶接構造物の脆性破壊防止の観点から、溶接部からの脆性破壊の発生抑制、すなわち、使用される鋼板のHAZ靱性の向上に関する研究が数多く報告されてきた。さらに、近年では、溶接施工能率の向上の観点から、従来実施されてきた大入熱溶接(およそ20kJ/mm以下)から、さらに溶接入熱が増大した超大入熱溶接(50〜100kJ/mm)を実施される場合が増加している。
【0003】
大入熱溶接と超大入熱溶接の鋼板への影響の差異は、高温での滞留時間の差異に起因しており、超大入熱溶接ではその時間が極めて長時間であるために、結晶粒径が著しく粗大化する領域が広く、靱性の低下が著しい点にある。
【0004】
一般に、鋼板のHAZ部における結晶粒の粗大化に対し、例えば、特開昭55−26164号公報にて開示されているように、微細なTiNや、また特開昭52−17314号公報にて開示されているように、「C:0.01〜0.2%、Si:0.002〜1.5%、Mn:0.5〜2.5%、Tiあるいは/およびZr:0.002〜0.1%、Caあるいは/およびMg:0.004〜以下、Ceあるいは/およびLa:0.001〜0.1%、Al:0.005〜0.1%、N:0.002〜0.015%を添加することを特徴とする大入熱溶接用構造用鋼」におけるZrNなどをいずれも鋼中に微細分散させることで、それらによる旧オーステナイト粒(以下、旧γ粒と略す)のピニング効果により、結晶粒の粗大化を防止する対策が提案されている。
【0005】
このような窒化物は、大入熱溶接時には溶解せずにピニングの効果を保持し、結晶粒の微細化に寄与する。しかしながら、1400℃以上の高温での滞留時間が極めて長い超大入熱溶接熱では旧γ粒のピニングに寄与する微細な窒化物が鋼中で容易に溶解し、消滅してしまう問題点がある。
【0006】
一方、近年HAZ靱性のさらなる向上を目的として、溶鋼中で生成する酸化物を用いる技術が開示されている。例えば、特開昭59−190313号公報には、溶鋼をTiあるいはTi合金で脱酸し、ついでAl、Mgなどを添加することを特徴とする溶接性の優れた鋼材の製造方法が開示されている。これは、Ti酸化物がフェライトの変態核として作用し、フェライト分率を増加させるという効果によるもので、従来、窒化物などの析出物によるピニング効果と異なった方法でのHAZ部の靱性向上を図った技術である。
【0007】
その後、同種の発明として、特開昭61−79745号公報、特開平5−43977号公報、特開平6−37364号公報などでは、粒内変態核としての酸化物の個数増加を図るなど様々な発明が開示されている。
【0008】
特に、前記特開昭59−190313号公報に記載の発明の骨子は、「γ→α変態時のフェライト核生成、即ちフェライト組織の微細化に利用可能な含Ti酸化物を均一に微細分散させる」ことであり、先に述べたような窒化物などによりピニング効果を図るものではなく、冷却過程で生じるγ→α変態時のフェライト変態を促進することで、粗大な脆化組織の生成を抑制することを図り、組織の微細化を達成するものである。これらの靱性改善方法はすべて粗大な組織の中に粒内でのフェライト変態を促進させるために、変態核として酸化物を利用するものである。
【0009】
【発明が解決しようとする課題】
しかしながら、溶接構造物の大型化、軽量化から、高張力鋼の要求が高まりつつあり、合金元素添加量が増加する傾向にある。その場合、HAZでの焼入れ性の増加から、従来のフェライト変態を利用するHAZ靱性の向上対策は、有効ではなくなってきつつある。
【0010】
以上のような観点から、抜本的なHAZ靱性の向上を図るためには、超大入熱溶接時でも旧γ粒のピニング効果が期待できるような、高温でも溶解しにくい酸化物粒子などを窒化物と同様に鋼中に微細分散できるような技術の開発が望まれる。しかも、その場合にこれまでのフェライト変態核以上の変態能力を付与する事が可能ならば、本分野で利用される鋼材特性に対して飛躍的なHAZ靱性向上をもたらすものと考えられる。
【0011】
酸化物の導入方法としては、鋼の溶製工程においてTiなどの脱酸元素を単独に添加する方法があるが、多くの場合に溶鋼保持中に酸化物の凝集合体がおこり粗大な酸化物の生成をもたらすことにより、かえって鋼の清浄度を損ない靱性を低下させてしまう。そこで、これらの酸化物の微細化を図るために、先の例に述べたごとく、複合脱酸法などさまざまな工夫がなされている。しかしながら、従来知られている方法では、超大入熱溶接熱時の結晶粒の粗大化を阻止し得るほどの微細な酸化物を分散させることはできない。
【0012】
【課題を解決するための手段】
上記課題を解決するために、本発明者らは、従来の複合脱酸方法を改良し、従来以上に酸化物(あるいは窒化物)を微細でかつ均一に分散させ、さらにこの微細分散粒子にフェライト変態能も併せて付与することを鋭意検討し、超大入熱溶接においてもHAZ靱性の優れた鋼を開発し、本発明をなすに至った。
【0013】
すなわち、本発明が要旨とするところは、以下の通りである。
(1) 質量%で、
C :0.02〜0.20%、 Si:0.02〜0.50%、
Mn:0.3〜2.0%、 P :0.03%以下、
S :0.0001〜0.030%、Al:0.0005〜0.01%、
Ti:0.003〜0.050%、 Mg:0.0001〜0.0150%、
O :0.0005〜0.0080
を含有し、さらに、
Zr:0.0001〜0.050%、Ta:0.0001〜0.050%、
Nb:0.0001〜0.050
の1種以上を含有し、残部が鉄および不可避的不純物からなる鋼であって、
粒子径が0.2〜5.0μmのMg含有酸化物を核にして、該酸化物の周辺に析出した硫化物と窒化物のいずれか一方または双方より構成される該酸化物との複合粒子を1mm2 当たり10〜1000個含有し、かつ、粒子径が0.005〜0.1μmのMgOないしはMg含有酸化物を核にして、酸化物を包含もしくは周辺に析出した窒化物より構成される大きさ0.01〜2.0μmの酸化物−窒化物の複合粒子を1mm2 当たり1.0×104 〜1.0×108 個含むことを特徴とする、Mgを含有する超大入熱溶接用鋼。
【0014】
(2) 上記鋼の成分に、さらに、質量%で、
Cu:0.05〜1.5%、 Ni:0.05〜2.0%、
Cr:0.02〜1.5%、 Mo:0.02〜1.50%、
V :0.01〜0.10%、 B :0.0003〜0.0030
の1種以上を含有することを特徴とする前記(1)に記載のMgを含有する超大入熱溶接用鋼。
(3) 上記鋼の成分に、さらに、質量%で、
Ca:0.0005〜0.005%、REM:0.0005〜0.005%の1種以上を含有することを特徴とする前記(1)または(2)に記載のMgを含有する超大入熱溶接用鋼。
【0015】
【発明の実施の形態】
以下、本発明を詳細に説明する。
Mgは、従来から強脱酸剤、脱硫剤として鋼の清浄度を高めることで、溶接熱影響部の靱性を向上させることが知られている。さらに、酸化物の分散を制御してHAZ靱性を向上させる技術として、特開昭59−190313号公報に記載されているTi添加後、Mgを添加する複合添加の技術が明らかになっている。
しかしながら、その技術の目的は、先に引用したように、Mg添加により粒内変態核であるTi酸化物の増加を促進することであり、酸化物をより微細に分散させてピニングにより結晶粒の細粒化を達成するものではない。
【0016】
本発明者らは、Mgの有する強脱酸剤としての作用に着目、Alより凝集粗大化が起こりにくい性質を利用して、Ti添加鋼において、製鋼工程での脱酸材の添加順序および量を制御することで、酸化物の微細分散が期待できる余地があると考えた。
【0017】
発明者らは、Tiを添加し弱脱酸した溶鋼中に、Mgを添加した場合の酸化物の状態を系統的に調べた。その結果、Tiと同時にZr、Ta、Nbの1種あるいは2種以上を添加した後に、さらに少量のAlおよびMgをある条件下で添加することで、酸化物の粒子径として2種類のものが生成されることを見出した。すなわち、1つは粒子径が0.2〜5.0μmのMg含有酸化物であり、他は0.005〜0.1μmの超微細なMgOないしはMg含有酸化物である。
【0018】
このような酸化物の生成原因は次のような理由に基づくものと推定される。まず、比較的サイズの大きいMg含有酸化物はTiと同時にZr、Ta、Nbなどを同時に添加する事により、一旦これら元素より構成される酸化物が生成され、この状態で脱酸力の強いMgやAl等の元素が添加されると既に生成されている酸化物はこれら元素により還元され、最終的に0.2〜5.0μmのMg含有酸化物が生成されるものと推定される。
【0019】
ここで、重要な点は従来のTi脱酸では達成出来なかった粒子数の増加とサイズの微細化が生じる点にある。特に、μmサイズの酸化物に関しては、5μm以上のものが多くなるほど破壊の起点になりやすくなるため、Mg添加を図った場合には特開平9−157787に示されているようにMg量としては30〜50ppm程度が限界とされている。
【0020】
しかしながら、本発明ではこのような問題は回避され、150ppmまではMgの添加が可能になる。一方、超微細な酸化物の生成はTiやZrによる脱酸では弱脱酸元素故に溶存酸素がまだ残っているため、その時点でMgやAlが添加された場合には前述の酸化物の還元だけでなく、そのような溶存酸素と酸化反応が生じ、超微細な酸化物が生成されたものと予測できる。超微細な酸化物が生成される理由はTi単独に比べてZrやTaを同時に添加した場合には溶存酸素量が少なくなっていることに加えて、溶存酸素の溶鋼中での分布が均一化されることから、酸化物のクラスター化が抑制されたものと推定される。
【0021】
以上のように鋼中に生成された酸化物は、鋳造時あるいはその後の冷却過程や再加熱−熱間工程中に硫化物および窒化物の核生成サイトになる。電子顕微鏡を用いて1万倍〜3万倍でその様子を調査した結果、鋼中酸化物の存在状態は以下のように整理できる。なお、酸化物の存在状態については特定倍率(例えば3万倍)で10視野以上を観察し、平均粒子数を測定することが望ましい。
【0022】
1)粒子径が0.2〜5.0μmのMg含有酸化物が存在し、この酸化物を核にしてその周辺に硫化物あるいは窒化物が析出している。酸化物−硫化物あるいは/および窒化物の複合粒子は1mm2 当たり10〜1000個含有されている。
2)また、粒子径が0.005〜0.1μmの超微細なMgOないしはMg含有酸化物も存在する。この酸化物を核にして、酸化物を包含するようにもしくは周辺に析出した窒化物より構成される複合析出物は大きさが0.01〜2.0μmであり、1mm2 当たり1.0×104 〜1.0×108 個含まれる。なお、窒化物の粒子数はTi単独の場合に比べて(Ti−Zr)同時添加の場合の方が圧倒的に多く、サイズも小さい傾向にある。これはZr,Ta,Nbが窒化物形成能が高いことによる。
【0023】
本発明は上記の酸化物の存在状態によって達成されるHAZ部靱性の優れた鋼材に関するものであり、HAZ部の靱性向上についてさらに説明する。
図1は0.1C−1.0Mn鋼をベースにMg量を変えた場合の5μmサイズ以上の酸化物の粒子数を測定したものであり、TiとZrの同時添加の効果を示している。これから明らかなように、単純なTi添加後Mg添加では30ppm程度から酸化物数が増加するが、(Ti−Zr)同時添加により粗大な酸化物数は減少し、Mg量が150ppmでも50個程度である。しかしながら、150ppmを超えると粗大な酸化物が単独添加と同様に多くなる。以下はMg量が150ppm以下での酸化物の状態1)と2)による効用を説明する。
【0024】
これまで知られているように粒内変態は酸化物の個数が多いほど、かつ硫化物と窒化物の酸化物上への析出がある場合の方が促進される。1)に示したように前者は従来に比較して10倍以上増加していること、また後者についても確認した限りにおいて100%複合的に析出していることから、極めて粒内変態能は大きくなる。
【0025】
次いで、加熱γ粒径の微細化について図2により説明する。図2は、0.10C−1.0Mn鋼をベース成分とし、Ti量およびMg含有量を変化させた場合の、入熱90kJ/mm相当の再現熱サイクルを付与した時の旧γ粒の大きさを測定したものである。Mg添加量が少ない場合、Tiを添加しても旧γ粒径の微細化が得られないのに対し、Mgが添加された場合、0.010%以上のTi添加において、結晶粒の著しい微細化が達成されることがわかる。この傾向はMg量が多いほど顕著であり、TiとZr等の同時添加後Mgを添加した場合にはさらにその効果が大きくなる。結晶粒が微細化した鋼板を電子顕微鏡で観察した結果、前述したように0.1μm以下の面心立方構造のMgOやスピネル型構造のMIIMIII 2 4 (II:Mg,Ca,Fe,Mn、 III:Al,Cr,Mn,V)粒子が多数認められ、あるいは図3に模式的に示すようなMg含有酸化物−窒化物[TiN,(Ti,Zr)N,ZrN等]の複合粒子が多数存在することがわかった。
【0026】
電子顕微鏡観察において、Mg含有酸化物−窒化物粒子間の結晶学的な方位関係を調べると、いずれも[001]酸化物II[010]窒化物の方位関係を持っていることも明らかになった。このことは、Mgの微細酸化物が窒化物の優先析出サイトとして作用していることを示しており、この析出サイトが多数存在するために、結晶粒のピニングに有効な窒化物を増加させているものと考えられる。
さらに、超大入熱溶接時のような高温での滞留時間が長い場合、窒化物粒子の溶解が生じるが、本発明では、多数のMgOないしはMg含有酸化物が存在しており、たとえ窒化物粒子が溶解したとしても、依然として微細な酸化物粒子が存在するために、高温でも従来鋼以上に優れたピニング効果を発揮できる。
【0027】
すなわち、本発明の特徴は、顕著な粒内変態の向上に加え、TiNなどの窒化物を利用し結晶粒のピニングを図った従来鋼に比べ、MgO等の酸化物を鋼中に微細に導入することで、窒化物の析出核を創出し、これにより窒化物の個数の増加を図ると同時に、窒化物が溶解してしまい従来全く靱性の改善効果が見られなかった高温域でも、酸化物単独の効果により、これまでにない優れた結晶粒径の微細化効果を発揮できることである。
【0028】
本発明に用いたTi、Zr、Ta、Nb、Al,Mgの添加方法であるが、最初に、Si、Mnを添加後、まず、Tiと(Zr、Ta、Nbの1種あるいは2種以上)を添加し溶鋼中の酸素量を調整した後、少量のAlとMgを添加する。
TiやZrを先に添加するのは、溶鋼中の酸素量の調節と共に、先にできる(Ti,Zr)酸化物をAlとMgで還元するためである。最適なAlとMgの添加量は、Ti添加後、溶鋼中に存在する酸素量などに依存するが、実験では、その時の酸素濃度はTiやZr添加量に依存し、TiとAl、Mg添加量を適正な範囲で制御すれば良い。
【0029】
なお、Mgの添加方法であるが、Fe箔に金属Mgを包む方法、Mg合金による方法などを試みた結果、前者は、溶鋼投入の際の酸化反応が激しく、歩留まりが低下する。従って、通常の大気圧下で溶製する場合には比重の比較的重いMg合金による添加が好ましい。
【0030】
以下、本発明の成分の限定理由について述べる。
C:Cは鋼における母材強度を向上させる基本的な元素として欠かせない元素であり、その有効な下限として0.02%以上の添加が必要であるが、0.20%を超える過剰の添加では、鋼材の溶接性や靱性の低下を招くので、その上限を0.20%とした。
【0031】
Si:Siは製鋼上脱酸元素として必要な元素であり、鋼中に0.02%以上の添加が必要であるが、0.50%を超えるとHAZ靱性を低下させるのでそれを上限とする。
【0032】
Mn:Mnは、母材の強度および靱性の確保に必要な元素であるが、2.0%を超えるとHAZ靱性を著しく阻害するが、逆に0.3%未満では母材の強度確保が困難になるために、その範囲を0.3〜2.0%とする。
【0033】
P:Pは鋼の靱性に影響を与える元素であり、0.03%を超えて含有すると鋼材の母材だけでなくHAZの靱性を著しく阻害するので、その含有する上限を0.03%とした。
【0034】
S:Sは0.030%を超えて過剰に添加されると、粗大な硫化物の生成の原因となり靱性を阻害するが、その含有量が0.0001%未満になると、粒内フェライトの生成に有効なMnS等の硫化物生成量が著しく低下するために、0.0001〜0.030%をその範囲とする。
【0035】
Al:Alは通常脱酸材として添加されるが、本発明においては、0.01%超えて添加されるとMgの添加の効果を阻害するために、これを上限とする。また、安定にMIIMIII 2 4 を生成するためには0.0005%は必要であり、これを下限とした。
【0036】
Ti:Tiは、脱酸材として、さらには窒化物形成元素として結晶粒の細粒化に効果を発揮する元素であるが、多量の添加は炭化物の形成による靱性の著しい低下をもたらすために、その上限を0.050%にする必要があるが、所定の効果を得るためには0.003%以上の添加が必要であり、その範囲を0.003〜0.050%とする。
【0037】
Zr、Ta、Nb:Zr、Ta、NbはTiとともに本発明具現化のために必須の元素であり、その効果はTiと同時に添加されることで初めて発揮される。また、それ自身炭化物形成能力が高いためO量およびTi/N比を考えて、適切な量にする必要がある。すなわち、Tiと同様に多量の添加は炭化物の形成による靱性の著しい低下をもたらすために、それぞれその上限を0.050%にする制限するが、所定の効果を得るためには0.0001%以上の添加が必要であり、その範囲を0.0001〜0.050%とする。
【0038】
Mg:Mgは本発明の主たる合金元素であり、主に脱酸材として添加されるが、前述したように0.0150%を超えて添加されると、粗大な酸化物が生成し易くなり、母材およびHAZ靱性の低下をもたらす。しかしながら、0.0001%未満の添加では、ピニング粒子として必要な酸化物の生成が十分に期待できなくなるため、その添加範囲を0.0001〜0.0150%と限定する。
【0039】
O:OはMg含有酸化物を生成させるための必須元素である。0.0005未満では酸化物の個数が十分とはならないために、0.0005%を下限値とする。一方、0.0080%を超えて添加されると、粗大な酸化物が生成し易くなり、母材およびHAZ靱性の低下をもたらす。従って、上限値を0.0080%とした。
【0040】
なお、本発明においては、強度および靱性を改善する元素として、Cu,Ni,Cr,Mo,V,Bのうちで、1種または2種以上の元素を添加することができる。
【0041】
Cu:Cuは、靱性を低下させずに強度の上昇に有効な元素であるが、0.05%未満では効果がなく、1.5%を超えると鋼片加熱時や溶接時に割れを生じやすくする。従って、その含有量を0.05〜1.5%とする。
【0042】
Ni:Niは、靱性および強度の改善に有効な元素であり、その効果を得るためには0.05%以上の添加が必要であるが、2.0%を超える添加では溶接性が低下するために、その上限を2.0%とする。
【0043】
Cr:Crは析出強化による鋼の強度を向上させるために、0.02%以上の添加が有効であるが、多量に添加すると、焼入れ性を上昇させ、ベイナイト組織を生じさせ、靱性を低下させる。従って、その上限を1.5%とする。
【0044】
Mo:Moは、焼入れ性を向上させると同時に、炭窒化物を形成し強度を改善する元素であり、その効果を得るためには、0.02%以上の添加が必要になるが、1.50%を超えた多量の添加は必要以上の強化とともに、靱性の著しい低下をもたらすために、その範囲を0.02〜1.50%とする。
【0045】
V:Vは、炭化物、窒化物を形成し強度の向上に効果がある元素であるが、0.01%未満の添加ではその効果がなく、0.10%を超える添加では、逆に靱性の低下を招くために、その範囲を0.01〜0.10%とする。
【0046】
B:Bは一般に、固溶すると焼入れ性を増加させるが、またBNとして固溶Nを低下させ、溶接熱影響部の靱性を向上させる元素である。従って、0.0003%以上の添加でその効果を利用できるが、過剰の添加は靱性の低下を招くために、その上限を0.0030%とする。
【0047】
Ca,REM:Ca及びREMは硫化物を生成することにより伸長MnSの生成を抑制し、鋼材の板厚方向の特性、特に耐ラメラティアー性を改善する。Ca、REMはともに0.0005%未満ではこの効果が得られないので、下限値を0.0005%にした。逆に、0.005%を超えると、Ca及びREMの酸化物個数が増加し、超微細なMg含有酸化物の個数が低下するため、その上限を0.005%とする。
【0048】
上記の成分を含有する鋼は、製鋼工程で溶製後、連続鋳造などを経て厚板加熱、圧延を施される。この場合、圧延方法加熱冷却方法および熱処理方法においては、当該分野おいて従来から適用されている方法を用いてもHAZ靱性に関しては、何ら差し支えがない。
【0049】
【実施例】
次に、本発明の実施例について述べる。
表1(表1−1及び表1−2)の化学成分を有する鋼塊を、表2に示す熱間圧延および熱処理を行い鋼板とした後、最高加熱温度が1400℃で入熱が1.7kJ/mm相当の小入熱および90kJ/mm相当の超大入熱のそれぞれの再現熱サイクルを付与し、特定の温度でシャルピー試験を行い、両者の吸収エネルギーを求め、[小入熱時の靱性]− [超大入熱時の靱性]を計算した。
【0050】
鋼1〜22は本発明の例を示す。表2から明らかなように、これらの鋼板は、小入熱と超大入熱の靱性の差が最大でもおよそ4 kgf・mm以下と小さく、超大入熱溶接を実施してもほぼ小入熱溶接と同レベルの良好な靱性を有する。
【0051】
それに対し、鋼23〜36は本発明方法から逸脱した比較例を示す。すなわち、鋼23、24、25、26、27、29、30、33、34は基本成分の内いずれかの元素が、発明の要件を超えて添加されている例であり、鋼28、31ではAlとTiが下限値より小さい場合に相当する。鋼23〜34では本発明の重要な部分である酸化物個数の要件は満たしているものの、靱性劣化要因となる元素が過剰に添加されたことにより、超大入熱HAZ靱性の劣化が助長されたものである。また、鋼35はO量が少ない。鋼36〜38ではZr、Ta、Nbが添加されていない。
【0052】
以上の比較例では、いずれも超大入熱時のHAZ靱性が著しく低下していることが分かる。特に、比較鋼の33と34に示すように、微細な酸化物が多く存在しているにも関わらず靱性劣化が大きくなっているのは、過剰のMgあるいはOが添加されたことに起因しており、5μm以上の粗大な粒子が増大したためである。
【0053】
【表1】

Figure 0003752076
【0054】
【表2】
Figure 0003752076
【0055】
【表3】
Figure 0003752076
【0056】
【発明の効果】
本発明の化学成分および製造方法に限定し、TiやZrの添加後にMgを適切に添加することで、超大入熱溶接熱影響部の靱性の低下を防止し、構造物のぜい性破壊に対する安全性を大幅に向上することができる。
【図面の簡単な説明】
【図1】 Mg量を変化させた鋼板中の5μm以上の酸化物個数を示した図である。
【図2】 Ti、Mg量を変化させた鋼板に、超大入熱溶接相当の熱サイクルを付与した場合の旧γ粒サイズを示した図である。
【図3】 本発明の鋼に含まれる複合粒子を模式的に示した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel sheet for welded structure in which the deterioration of the toughness of the weld heat-affected zone (HAZ) is small even when super-high heat input welding is performed.
[0002]
[Prior art]
From the viewpoint of preventing brittle fracture of welded structures such as shipbuilding and building, many studies have been reported on the suppression of the occurrence of brittle fracture from the welded portion, that is, the improvement of the HAZ toughness of the steel sheet used. Further, in recent years, from the viewpoint of improving the welding work efficiency, super large heat input welding (50 to 100 kJ / mm) in which the welding heat input is further increased from the conventional high heat input welding (approximately 20 kJ / mm or less). The number of cases implemented is increasing.
[0003]
The difference in the effect of large heat input welding and super large heat input welding on the steel sheet is due to the difference in residence time at high temperature. There is a wide area where the roughness is significantly increased, and the toughness is significantly reduced.
[0004]
Generally, with respect to the coarsening of crystal grains in the HAZ part of a steel plate, for example, as disclosed in JP-A-55-26164, fine TiN or JP-A-52-17314 As disclosed, “C: 0.01 to 0.2%, Si: 0.002 to 1.5%, Mn: 0.5 to 2.5%, Ti or / and Zr: 0.002 ~ 0.1%, Ca or / and Mg: 0.004 or less, Ce or / and La: 0.001 to 0.1%, Al: 0.005 to 0.1%, N: 0.002 ZrN and the like in “structural steel for high heat input welding characterized by adding 0.015%” are all finely dispersed in the steel so that prior austenite grains (hereinafter abbreviated as old γ grains) are obtained. The pinning effect prevents the coarsening of crystal grains. There has been proposed.
[0005]
Such a nitride does not melt during high heat input welding, maintains the pinning effect, and contributes to refinement of crystal grains. However, with ultra-high heat input welding heat at a very high residence time of 1400 ° C. or higher, there is a problem that fine nitrides that contribute to the pinning of the old γ grains are easily dissolved and disappear in the steel.
[0006]
On the other hand, in recent years, a technique using an oxide generated in molten steel has been disclosed for the purpose of further improving HAZ toughness. For example, JP-A-59-190313 discloses a method for producing a steel material with excellent weldability, characterized by deoxidizing molten steel with Ti or a Ti alloy and then adding Al, Mg, or the like. Yes. This is due to the effect that Ti oxide acts as a transformation nucleus of ferrite and increases the ferrite fraction. Conventionally, the toughness of the HAZ part is improved by a method different from the pinning effect by precipitates such as nitrides. This is the technology that was planned.
[0007]
Thereafter, as the same kind of invention, in JP-A-61-79745, JP-A-5-43977, JP-A-6-37364, etc., there are various methods such as increasing the number of oxides as intragranular transformation nuclei. The invention is disclosed.
[0008]
In particular, the gist of the invention described in the above-mentioned Japanese Patent Application Laid-Open No. 59-190313 is that “a ferrite nucleation during the γ → α transformation, that is, a Ti-containing oxide that can be used for refining the ferrite structure is uniformly finely dispersed. It is not intended to achieve the pinning effect with nitrides as described above, but suppresses the formation of coarse brittle structures by promoting ferrite transformation during the γ → α transformation that occurs during the cooling process. To achieve the refinement of the structure. All of these toughness improving methods use oxides as transformation nuclei in order to promote ferrite transformation within the grains in a coarse structure.
[0009]
[Problems to be solved by the invention]
However, the demand for high-strength steel is increasing due to the increase in size and weight of welded structures, and the amount of alloy element addition tends to increase. In that case, due to the increase in hardenability with HAZ, conventional measures for improving HAZ toughness using ferrite transformation are becoming ineffective.
[0010]
From the above viewpoint, in order to drastically improve the HAZ toughness, nitrides such as oxide particles that can be expected to have a pinning effect on old γ grains even during super-high heat input welding and are not easily dissolved at high temperatures are nitrided. Development of technology that can be finely dispersed in steel is desired. Moreover, in that case, if it is possible to impart a transformation ability higher than that of the conventional ferrite transformation nucleus, it is considered that the HAZ toughness is dramatically improved with respect to the steel material characteristics used in this field.
[0011]
As a method for introducing oxides, there is a method in which a deoxidizing element such as Ti is added alone in the steel melting process, but in many cases, oxide aggregation and coalescence occur during holding of molten steel, resulting in the formation of coarse oxides. By causing the formation, the cleanliness of the steel is impaired and the toughness is lowered. Therefore, in order to miniaturize these oxides, various ideas such as a composite deoxidation method have been made as described in the previous example. However, conventionally known methods cannot disperse fine oxides that can prevent the coarsening of crystal grains during super-high heat input welding heat.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors improved the conventional composite deoxidation method to disperse oxides (or nitrides) more finely and uniformly than in the past, and further to this finely dispersed particles, ferrite We have eagerly studied to impart transformation ability, and have developed a steel having excellent HAZ toughness even in super-high heat input welding, which has led to the present invention.
[0013]
That is, the gist of the present invention is as follows.
(1) In mass %,
C: 0.02 to 0.20%, Si: 0.02 to 0.50%,
Mn: 0.3 to 2.0%, P: 0.03% or less,
S: 0.0001~ 0.030%, Al: 0.0005~0.01%,
Ti: 0.003~ 0.050%, Mg: 0.0001~ 0.0150%,
O: 0.0005 to 0.0080 %
In addition,
Zr: 0.0001 to 0.050 %, Ta: 0.0001 to 0.050 %,
Nb: 0.0001 to 0.050 %
A steel composed of iron and unavoidable impurities,
Composite particles of oxides composed of either or both of sulfides and nitrides with Mg-containing oxides having a particle size of 0.2 to 5.0 μm as the core and precipitated around the oxides 10 to 1000 per mm 2 , and MgO or Mg-containing oxide having a particle diameter of 0.005 to 0.1 μm is used as a nucleus, and the oxide is included or is formed from a nitride deposited around the oxide. Super-high heat input containing Mg, characterized in that it includes 1.0 × 10 4 to 1.0 × 10 8 composite particles of oxide-nitride having a size of 0.01 to 2.0 μm per 1 mm 2. Steel for welding.
[0014]
(2) the components of the steel further contains, by mass%,
Cu: 0.05 to 1.5%, Ni: 0.05 to 2.0%,
Cr: 0.02 to 1.5%, Mo: 0.02 to 1.50%,
V: 0.01~0.10%, B: 0.0003~ 0.0030%
The super high heat input welding steel containing Mg according to the above (1) , characterized by containing at least one of the following.
(3) the components of the steel further contains, by mass%,
Ca: from 0.0005 to 0.005%, REM: characterized in that it contains one or more from 0.0005 to 0.005%, superatmospheric containing Mg according to (1) or (2) Steel for heat input welding.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
Conventionally, Mg is known to improve the toughness of the heat affected zone by increasing the cleanliness of steel as a strong deoxidizer and desulfurizer. Furthermore, as a technique for improving the HAZ toughness by controlling oxide dispersion, a technique for adding Mg after adding Ti described in Japanese Patent Application Laid-Open No. 59-190313 has been clarified.
However, as stated above, the purpose of the technology is to promote the increase of Ti oxides, which are intragranular transformation nuclei, by adding Mg, and by dispersing finer oxides and pinning the grains. It does not achieve fine graining.
[0016]
The present inventors pay attention to the action of Mg as a strong deoxidizer, utilizing the property that aggregation coarsening is less likely to occur than Al, and in the Ti-added steel, the order and amount of deoxidizers added in the steelmaking process It was considered that there is room for fine dispersion of oxides by controlling the above.
[0017]
The inventors systematically examined the state of oxides when Mg was added to molten steel that was weakly deoxidized by adding Ti. As a result, after adding one or more of Zr, Ta, Nb at the same time as Ti, and adding a small amount of Al and Mg under certain conditions, two types of oxide particle sizes can be obtained. It was found to be generated. That is, one is an Mg-containing oxide having a particle size of 0.2 to 5.0 μm, and the other is an ultrafine MgO or Mg-containing oxide having a particle size of 0.005 to 0.1 μm.
[0018]
It is presumed that the cause of such oxide formation is based on the following reason. First, a relatively large Mg-containing oxide is formed by simultaneously adding Ti, Zr, Ta, Nb, etc. simultaneously with Ti, and an oxide composed of these elements is once generated. When an element such as Al or Al is added, it is presumed that the oxide that has already been produced is reduced by these elements, and finally a 0.2 to 5.0 μm Mg-containing oxide is produced.
[0019]
Here, the important point is that the increase in the number of particles and the miniaturization of the size which cannot be achieved by the conventional Ti deoxidation occur. In particular, with respect to oxides having a size of μm, as the number of oxides having a size of 5 μm or more increases, the starting point of breakdown tends to increase. Therefore, when Mg is added, the amount of Mg as shown in JP-A-9-157787 The limit is about 30-50 ppm.
[0020]
However, in the present invention, such a problem is avoided, and Mg can be added up to 150 ppm. On the other hand, the generation of ultrafine oxides is due to the weak deoxidation element in the deoxidation with Ti or Zr, so that dissolved oxygen still remains. In addition, it can be predicted that such a dissolved oxygen and oxidation reaction occurred, and an ultrafine oxide was generated. The reason why ultra-fine oxides are produced is that when Zr or Ta is added simultaneously with Ti alone, the amount of dissolved oxygen is reduced, and the distribution of dissolved oxygen in the molten steel is uniform. Therefore, it is presumed that the oxide clustering is suppressed.
[0021]
As described above, the oxide generated in the steel becomes a nucleation site of sulfide and nitride during casting or during the subsequent cooling process or reheating-hot process. As a result of investigating the state at 10,000 to 30,000 times using an electron microscope, the existence state of oxides in steel can be organized as follows. In addition, about the presence state of an oxide, it is desirable to observe 10 visual fields or more by specific magnification (for example, 30,000 times), and to measure an average particle number.
[0022]
1) An Mg-containing oxide having a particle size of 0.2 to 5.0 μm exists, and sulfide or nitride is precipitated around the oxide as a nucleus. 10 to 1000 oxide-sulfide and / or nitride composite particles are contained per 1 mm 2 .
2) There are also ultrafine MgO or Mg-containing oxides having a particle size of 0.005 to 0.1 μm. The composite precipitate composed of nitrides including this oxide as a core and including the oxide or precipitated in the periphery has a size of 0.01 to 2.0 μm, and 1.0 × 1 mm 2. 10 4 to 1.0 × 10 8 pieces are included. The number of nitride particles tends to be overwhelmingly larger and smaller in size when (Ti-Zr) is added simultaneously than when Ti alone is used. This is because Zr, Ta, and Nb have high nitride forming ability.
[0023]
The present invention relates to a steel material having excellent HAZ toughness achieved by the presence of the above-mentioned oxide, and further describes the improvement in toughness of the HAZ part.
FIG. 1 shows the number of oxide particles having a size of 5 μm or more when the amount of Mg is changed based on 0.1 C-1.0 Mn steel, and shows the effect of simultaneous addition of Ti and Zr. As is clear from this, the number of oxides increases from about 30 ppm when Mg is added after simple Ti addition, but the number of coarse oxides is reduced by simultaneous addition of (Ti-Zr), and about 50 even if the Mg amount is 150 ppm. It is. However, if it exceeds 150 ppm, the amount of coarse oxide increases in the same manner as when it is added alone. The following describes the utility of oxide states 1) and 2) with Mg content of 150 ppm or less.
[0024]
As known so far, the intragranular transformation is promoted as the number of oxides increases and when there is precipitation of sulfides and nitrides on the oxides. As shown in 1), the former is increased by more than 10 times compared to the conventional case, and as far as the latter is confirmed, it is precipitated 100% in a complex manner. Become.
[0025]
Next, the refinement of the heated γ particle diameter will be described with reference to FIG. FIG. 2 shows the size of old γ grains when a reproducible heat cycle equivalent to a heat input of 90 kJ / mm is applied when 0.10C-1.0Mn steel is used as a base component and the Ti content and Mg content are changed. This is a measure of the thickness. When the amount of Mg added is small, refinement of the old γ grain size cannot be obtained even when Ti is added. On the other hand, when Mg is added, when Ti is added in an amount of 0.010% or more, the crystal grains are extremely fine. It can be seen that conversion is achieved. This tendency becomes more prominent as the amount of Mg increases. When Mg is added after simultaneous addition of Ti and Zr, the effect is further increased. As a result of observing the steel sheet with refined crystal grains with an electron microscope, as described above, MgO having a face-centered cubic structure of 0.1 μm or less and MIIIMIII 2 O 4 (II: Mg, Ca, Fe, Mn, III: a large number of Al, Cr, Mn, V) particles are observed, or composite particles of Mg-containing oxide-nitride [TiN, (Ti, Zr) N, ZrN, etc.] as schematically shown in FIG. It turns out that there are many.
[0026]
When the crystallographic orientation relationship between the Mg-containing oxide and the nitride particles is examined by observation with an electron microscope, it becomes clear that all have the orientation relationship of [001] oxide II [010] nitride. It was. This indicates that the fine oxide of Mg is acting as a preferential precipitation site for nitride, and since there are many such precipitation sites, the number of nitrides effective for crystal grain pinning is increased. It is thought that there is.
Furthermore, when the residence time at a high temperature is long as in super-high heat input welding, the dissolution of the nitride particles occurs. In the present invention, however, there are a large number of MgO or Mg-containing oxides, even if the nitride particles Even if dissolved, fine oxide particles still exist, so that a pinning effect superior to that of conventional steel can be achieved even at high temperatures.
[0027]
That is, the feature of the present invention is that, in addition to the remarkable improvement in intragranular transformation, oxides such as MgO are finely introduced into the steel compared to conventional steel that uses nitrides such as TiN to achieve crystal pinning. In this way, nitride precipitation nuclei are created, thereby increasing the number of nitrides, and at the same time, the oxides are dissolved even in a high temperature range where the nitrides have been dissolved and no conventional toughness improving effect has been observed. By the single effect, it is possible to exert an excellent effect of refining the crystal grain size which has never been achieved.
[0028]
This is a method for adding Ti, Zr, Ta, Nb, Al, and Mg used in the present invention. First, after adding Si and Mn, first, Ti and (one or more of Zr, Ta, and Nb are used. ) To adjust the amount of oxygen in the molten steel, and then add a small amount of Al and Mg.
To add Ti and Zr earlier, with regulation of the amount of oxygen in the molten steel, in order to reduce possible previously (Ti, Zr) oxide of Al and Mg. The optimal amount of Al and Mg added depends on the amount of oxygen present in the molten steel after Ti addition, but in the experiment, the oxygen concentration at that time depends on the amount of Ti and Zr added, and Ti, Al, and Mg are added. The amount may be controlled within an appropriate range.
[0029]
In addition, although it is the addition method of Mg, as a result of trying the method of wrapping metal Mg in Fe foil, the method by Mg alloy, etc., the former has a strong oxidation reaction at the time of molten steel injection | pouring, and a yield falls. Therefore, in the case of melting at normal atmospheric pressure, addition with a Mg alloy having a relatively heavy specific gravity is preferable.
[0030]
Hereinafter, the reasons for limiting the components of the present invention will be described.
C: C is an indispensable element as a basic element for improving the strength of the base metal in steel, and as an effective lower limit, addition of 0.02% or more is necessary, but an excess exceeding 0.20% Addition causes a decrease in the weldability and toughness of the steel material, so the upper limit was made 0.20%.
[0031]
Si: Si is an element necessary as a deoxidizing element in steelmaking, and 0.02% or more is necessary to be added to the steel. However, if it exceeds 0.50 %, the HAZ toughness is lowered, so that is the upper limit. .
[0032]
Mn: Mn is an element necessary for ensuring the strength and toughness of the base material. However, if it exceeds 2.0%, the HAZ toughness is significantly inhibited, but conversely if less than 0.3%, the strength of the base material is secured. In order to become difficult, the range is made 0.3 to 2.0%.
[0033]
P: P is an element that affects the toughness of steel. If contained in excess of 0.03%, not only the base material of steel but also the toughness of HAZ is significantly inhibited, so the upper limit of its content is 0.03%. did.
[0034]
S: When S exceeds 0.030% and is added excessively, coarse sulfides are generated and toughness is inhibited. However, when the content is less than 0.0001%, formation of intragranular ferrite is generated. Since the amount of sulfides such as MnS that is effective for reducing significantly decreases, 0.0001 to 0.030% is made the range.
[0035]
Al: Al is usually added as a deoxidizer, but in the present invention, if added over 0.01%, the effect of adding Mg is inhibited, so this is made the upper limit. Further, 0.0005% is necessary to stably produce MIIIMIII 2 O 4 , and this was made the lower limit.
[0036]
Ti: Ti is a deoxidizing agent, but further is an element effective in grain refinement and to grain nitride forming element, addition of a large amount to provide a significant reduction in toughness due to the formation of carbides In addition, the upper limit needs to be 0.050%, but in order to obtain a predetermined effect, addition of 0.003% or more is necessary, and the range is made 0.003 to 0.050%.
[0037]
Zr, Ta, and Nb: Zr, Ta, and Nb are elements essential for realizing the present invention together with Ti, and their effects are exhibited only when they are added simultaneously with Ti. Moreover, since the carbide forming ability itself is high, it is necessary to consider the amount of O and the Ti / N ratio and to make the amount appropriate. That is, in the same manner as Ti, addition of a large amount brings about a significant decrease in toughness due to the formation of carbides. Therefore, the upper limit is limited to 0.050%, but 0.0001% or more is required to obtain a predetermined effect. In the range of 0.0001 to 0.050 %.
[0038]
Mg: Mg is the main alloying element of the present invention, and is mainly added as a deoxidizing material. However, if added over 0.0150% as described above, a coarse oxide is likely to be generated, This results in a reduction in the base metal and HAZ toughness. However, since addition of less than 0.0001% makes it impossible to sufficiently generate oxides necessary as pinning particles, the addition range is limited to 0.0001 to 0.0150%.
[0039]
O: O is an essential element for generating an Mg-containing oxide. If it is less than 0.0005 % , the number of oxides is not sufficient, so 0.0005% is set as the lower limit. On the other hand, when it is added in excess of 0.0080%, a coarse oxide is easily generated, and the base material and the HAZ toughness are lowered. Therefore, the upper limit is set to 0.0080%.
[0040]
In the present invention, one or more elements of Cu, Ni, Cr, Mo, V, and B can be added as elements for improving strength and toughness.
[0041]
Cu: Cu is an element effective for increasing the strength without reducing toughness, but if it is less than 0.05%, it is not effective, and if it exceeds 1.5%, it tends to cause cracking when heating the steel slab or during welding. To do. Therefore, the content is set to 0.05 to 1.5 % .
[0042]
Ni: Ni is an element effective for improving toughness and strength, and in order to obtain the effect, 0.05% or more of addition is necessary, but if it exceeds 2.0% , weldability is lowered. Therefore, the upper limit is made 2.0%.
[0043]
Cr: Cr is effective to add 0.02% or more to improve the strength of steel by precipitation strengthening, but if added in a large amount, the hardenability is increased, the bainite structure is generated, and the toughness is reduced. . Therefore, the upper limit is made 1.5%.
[0044]
Mo: Mo is an element that improves hardenability and at the same time forms carbonitride to improve strength. To obtain the effect, addition of 0.02% or more is necessary. The addition of a large amount exceeding 50% brings about a remarkable decrease in toughness as well as an unnecessarily strengthening, so the range is made 0.02 to 1.50 % .
[0045]
V: V is an element that forms carbides and nitrides and is effective in improving the strength. However, if added less than 0.01%, there is no effect, and if added over 0.10%, the toughness is reversed. In order to cause a decrease, the range is set to 0.01 to 0.10 % .
[0046]
B: In general, B is an element that increases the hardenability when dissolved, but lowers the dissolved N as BN and improves the toughness of the heat affected zone. Therefore, the effect can be utilized with addition of 0.0003% or more, but excessive addition causes a decrease in toughness, so the upper limit is made 0.0030%.
[0047]
Ca, REM: Ca and REM suppress the formation of stretched MnS by forming sulfides, and improve the properties of the steel material in the plate thickness direction, particularly lamellar resistance. Since this effect cannot be obtained when both Ca and REM are less than 0.0005%, the lower limit is set to 0.0005%. Conversely, if it exceeds 0.005%, the number of Ca and REM oxides increases and the number of ultrafine Mg-containing oxides decreases, so the upper limit is made 0.005%.
[0048]
The steel containing the above components is subjected to thick plate heating and rolling through continuous casting after melting in the steel making process. In this case, the rolling method, in the heating and cooling method and heat treatment method, for HAZ toughness by using a method that is conventionally applied Oite the art, there is no harm at all.
[0049]
【Example】
Next, examples of the present invention will be described.
Steel ingots having the chemical components shown in Table 1 (Table 1-1 and Table 1-2) were subjected to hot rolling and heat treatment shown in Table 2 to obtain steel plates, and then the maximum heating temperature was 1400 ° C. and the heat input was 1. Reproduction heat cycles of small heat input equivalent to 7 kJ / mm and super high heat input equivalent to 90 kJ / mm were applied, Charpy test was performed at a specific temperature, and the absorbed energy of both was obtained. [Toughness at small heat input ]-[Toughness at ultra-high heat input] was calculated.
[0050]
Steels 1-22 show examples of the present invention. As can be seen from Table 2, these steel sheets have a small difference in toughness between small heat input and super large heat input, at most about 4 kgf · mm or less. It has good toughness at the same level.
[0051]
On the other hand, steels 23 to 36 show comparative examples deviating from the method of the present invention. That is, steels 23, 24, 25, 26, 27, 29, 30, 33, and 34 are examples in which any of the basic components is added in excess of the requirements of the invention. This corresponds to the case where Al and Ti are smaller than the lower limit values. In Steels 23 to 34, although the requirement for the number of oxides, which is an important part of the present invention, is satisfied, the excessive addition of elements that cause toughness deterioration contributed to the deterioration of super large heat input HAZ toughness. Is. Steel 35 has a small amount of O. In Steels 36 to 38, Zr, Ta, and Nb are not added.
[0052]
In the above comparative examples, it can be seen that the HAZ toughness at the time of ultra-high heat input is significantly reduced. In particular, as shown in comparative steels 33 and 34, the large deterioration in toughness despite the presence of many fine oxides is due to the addition of excess Mg or O. This is because coarse particles of 5 μm or more have increased.
[0053]
[Table 1]
Figure 0003752076
[0054]
[Table 2]
Figure 0003752076
[0055]
[Table 3]
Figure 0003752076
[0056]
【The invention's effect】
By limiting the chemical components and production method of the present invention and adding Mg after the addition of Ti and Zr, the toughness of the super-high heat input welding heat-affected zone can be prevented and the brittle fracture of the structure can be prevented. Safety can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a view showing the number of oxides of 5 μm or more in a steel sheet in which the amount of Mg is changed.
FIG. 2 is a view showing an old γ grain size when a heat cycle equivalent to super-high heat input welding is applied to a steel sheet with varying amounts of Ti and Mg.
FIG. 3 is a diagram schematically showing composite particles contained in the steel of the present invention.

Claims (3)

質量%で、
C :0.02〜0.20%、
Si:0.02〜0.50%、
Mn:0.3〜2.0%、
P :0.03%以下、
S :0.0001〜0.030%、
Al:0.0005〜0.01%、
Ti:0.003〜0.050%、
Mg:0.0001〜0.0150%、
O :0.0005〜0.0080
を含有し、さらに
Zr:0.0001〜0.050%、
Ta:0.0001〜0.050%、
Nb:0.0001〜0.050
の1種以上を含有し、残部が鉄および不可避的不純物からなる鋼であって、
粒子径が0.2〜5.0μmのMg含有酸化物を核にして、酸化物の周辺に析出した硫化物と窒化物のいずれか一方または双方より構成される該酸化物との複合粒子を1mm2 当たり10〜1000個含有し、かつ、粒子径が0.005〜0.1μmのMgOないしはMg含有酸化物を核にして、該酸化物を包含もしくは周辺に析出した窒化物より構成される大きさ0.01〜2.0μmの酸化物−窒化物の複合粒子を1mm2 当たり1.0×104 〜1.0×108 個含むことを特徴とする、Mgを含有する超大入熱溶接用鋼。
% By mass
C: 0.02 to 0.20%,
Si: 0.02 to 0.50%,
Mn: 0.3 to 2.0%,
P: 0.03% or less,
S: 0.0001 to 0.030 %,
Al: 0.0005 to 0.01%
Ti: 0.003 to 0.050 %,
Mg: 0.0001 to 0.0150 %,
O: 0.0005 to 0.0080 %
Zr: 0.0001 to 0.050 %,
Ta: 0.0001 to 0.050 %,
Nb: 0.0001 to 0.050 %
A steel composed of iron and unavoidable impurities,
Particle size and the Mg-containing oxide 0.2~5.0μm nuclear, composite particles of from configured oxide one or both of sulfides and nitrides precipitated in the periphery of the oxide 10 to 1000 per mm 2 , and MgO or Mg-containing oxide having a particle diameter of 0.005 to 0.1 μm is used as a nucleus, and the oxide is contained or deposited in the periphery. oxides of magnitude 0.01~2.0μm that - characterized in that it contains 1.0 × 10 4 ~1.0 × 10 8 per 1 mm 2 of the composite particles of nitrides, containing Mg ultra rafters Steel for heat welding.
さらに、質量%で、
Cu:0.05〜1.5%、
Ni:0.05〜2.0%、
Cr:0.02〜1.5%、
Mo:0.02〜1.50%、
V :0.01〜0.10%、
B :0.0003〜0.0030
の1種以上を含有することを特徴とする請求項1に記載のMgを含有する超大入熱溶接用鋼。
Furthermore, in mass %,
Cu: 0.05 to 1.5%,
Ni: 0.05-2.0%,
Cr: 0.02 to 1.5%,
Mo: 0.02 to 1.50%,
V: 0.01 to 0.10%,
B: 0.0003 to 0.0030 %
The super high heat input welding steel containing Mg according to claim 1 , characterized in that it contains one or more of the following.
さらに、質量%で、
Ca:0.0005〜0.005%、
REM:0.0005〜0.005%
の1種以上を含有することを特徴とする請求項1または2に記載のMgを含有する超大入熱溶接用鋼。
Furthermore, in mass %,
Ca: 0.0005 to 0.005%,
REM: 0.0005 to 0.005%
The super high heat input welding steel containing Mg according to claim 1 or 2 , characterized by containing at least one of the following.
JP10467998A 1998-04-15 1998-04-15 Super high heat input welding steel containing Mg Expired - Fee Related JP3752076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10467998A JP3752076B2 (en) 1998-04-15 1998-04-15 Super high heat input welding steel containing Mg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10467998A JP3752076B2 (en) 1998-04-15 1998-04-15 Super high heat input welding steel containing Mg

Publications (2)

Publication Number Publication Date
JPH11293382A JPH11293382A (en) 1999-10-26
JP3752076B2 true JP3752076B2 (en) 2006-03-08

Family

ID=14387168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10467998A Expired - Fee Related JP3752076B2 (en) 1998-04-15 1998-04-15 Super high heat input welding steel containing Mg

Country Status (1)

Country Link
JP (1) JP3752076B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143023B1 (en) * 1999-10-12 2005-06-01 Nippon Steel Corporation Steel for welded structure purpose exhibiting no dependence of haz toughness on heat input and method for producing the same
DE60035616T2 (en) 2000-02-10 2008-04-10 Sanyo Special Steel Co., Ltd., Himeji LEAD-FREE MACHINE BLAST WITH EXCELLENT PROCESSABILITY AND REDUCED ANISOTROPY OF STRENGTH
JP3699657B2 (en) * 2000-05-09 2005-09-28 新日本製鐵株式会社 Thick steel plate with yield strength of 460 MPa or more with excellent CTOD characteristics of the heat affected zone
KR100482208B1 (en) 2000-11-17 2005-04-21 주식회사 포스코 Method for manufacturing steel plate having superior toughness in weld heat-affected zone by nitriding treatment
KR20020041022A (en) * 2000-11-25 2002-06-01 이구택 Structural steel with superior welding property
EP1337678B1 (en) 2000-12-01 2007-10-03 Posco Steel plate to be precipitating tin+mns for welded structures, method for manufacturing the same and welding fabric using the same
CN1149297C (en) 2000-12-14 2004-05-12 Posco公司 Steel Plate to be precipitating Tin+Zrn for welded structures, method for mfg. same and welding fabric using same
JP4710180B2 (en) * 2001-07-05 2011-06-29 Jfeスチール株式会社 Manufacturing method of high cleanliness steel
KR100605717B1 (en) * 2001-12-27 2006-08-01 주식회사 포스코 Steels for Welded Structures With Finely Disperded Oxides of Ti-Al-Zr-Mg

Also Published As

Publication number Publication date
JPH11293382A (en) 1999-10-26

Similar Documents

Publication Publication Date Title
JP2019157277A (en) High-strength low-specific gravity steel sheet and method for manufacturing the same
KR100259797B1 (en) Steel having improved toughness in welding heat affected zone
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
TW201041683A (en) Steel material for high heat input welding
JP3545696B2 (en) High strength hot rolled steel sheet excellent in hole expandability and ductility and method for producing the same
JP3802810B2 (en) Steel for welded structures having no dependence on heat input of HAZ toughness and method for manufacturing
JP3752076B2 (en) Super high heat input welding steel containing Mg
JP2005105322A (en) Thick steel plate excellent in toughness of welded joint subjected to large heat input welding, and its production method
JP2012092422A (en) Thick steel plate excellent in toughness of weld heat-affected zone
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
JP3323414B2 (en) Steel with excellent heat-affected zone toughness in large heat input welding and method for producing the same
JP2006241510A (en) Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method
JP3520241B2 (en) Super large heat input welding steel containing Mg
JP3762644B2 (en) High-strength cold-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
JP3752050B2 (en) Super high heat input welding steel containing Mg
JP4762450B2 (en) Method for producing high strength welded structural steel with excellent base metal toughness and weld zone HAZ toughness
JP3545697B2 (en) Low corrosion rate high strength hot rolled steel sheet excellent in hole expandability and ductility and method for producing the same
JP2000119797A (en) High tensile strength steel material for welding, excellent in toughness in weld heat-affected zone, and its manufacture
JP4105989B2 (en) High strength welded structural steel excellent in both base metal toughness and weld zone HAZ toughness and method for producing the same
JPH093599A (en) Steel for welding structure excellent in toughness of weld heat affected zone and its production
JP4105991B2 (en) High strength welded structural steel with excellent high heat input weld HAZ toughness and method for producing the same
JP4351317B2 (en) ERW steel pipe with excellent groove corrosion resistance and method for producing the same
JP4299743B2 (en) High strength steel for high strength welded structure with excellent base metal toughness and super high heat input weld HAZ toughness, and its manufacturing method
JP2000054065A (en) High tensile strength steel material for welding, excellent in toughness in weld heat-affected zone, and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees