JP3751948B2 - Sodium carboxymethylcellulose for milk-containing beverages - Google Patents

Sodium carboxymethylcellulose for milk-containing beverages Download PDF

Info

Publication number
JP3751948B2
JP3751948B2 JP2003070762A JP2003070762A JP3751948B2 JP 3751948 B2 JP3751948 B2 JP 3751948B2 JP 2003070762 A JP2003070762 A JP 2003070762A JP 2003070762 A JP2003070762 A JP 2003070762A JP 3751948 B2 JP3751948 B2 JP 3751948B2
Authority
JP
Japan
Prior art keywords
milk
cmc
component
etherification
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003070762A
Other languages
Japanese (ja)
Other versions
JP2004275072A (en
Inventor
恵一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS CO. LTD.
Original Assignee
DKS CO. LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKS CO. LTD. filed Critical DKS CO. LTD.
Priority to JP2003070762A priority Critical patent/JP3751948B2/en
Publication of JP2004275072A publication Critical patent/JP2004275072A/en
Application granted granted Critical
Publication of JP3751948B2 publication Critical patent/JP3751948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Dairy Products (AREA)
  • Non-Alcoholic Beverages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、乳含有飲料用カルボキシメチルセルロースナトリウム(以下、CMC−Naという)に関するものである。
【0002】
【従来の技術】
乳含有飲料には、乳成分として乳タンパクが含有されている。乳タンパクは、等電点を有し、pH4.6以上で凝集しやすくなるので、乳含有飲料(とりわけpH4.6以上の乳含有飲料)は、乳タンパクの凝集を抑制するために特殊な安定剤を必要とする。たとえば、従来の乳含有飲料では、特許文献1に示されるようにセルロースとCMC−Naとを配合する方法、乳化剤を添加する方法、乳含有飲料自体の原料を選別する方法などによって、乳タンパクの凝集を抑制することが行なわれてきた。
【0003】
しかしながら、たとえば、CMC−Naのみで、乳タンパクの凝集を抑制することができれば、乳化剤による乳含有飲料の風味の低下を防止すること、乳含有飲料の製造工程を簡素化することおよび経費を低減することができる。
【0004】
【特許文献1】
特開2002−171902公報
【0005】
【発明が解決しようとする課題】
本発明の目的は、前記のような従来技術に対して、CMC−Naのみで、乳含有飲料における乳タンパクの凝集を抑制することができる乳含有飲料用CMC−Naを提供することにある。
【0006】
なお、乳含有飲料のpHが、乳タンパクの等電点であるpH4.6以上の場合に、乳タンパクが凝集して沈殿が発生し、乳含有飲料の分離がおこり、さらには乳含有飲料の保存中に粘度変化がおきる。したがって、本発明の乳含有飲料用CMC−Naは、pH3.0〜5.0の酸性の乳含有飲料よりも、とりわけpH5.0以上のほぼ中性に近い乳含有飲料の安定剤として有用である。
【0007】
【課題を解決するための手段】
本発明は、前記のような従来技術の問題点に着目してなされたものである。すなわち、pH4.6以上の乳含有飲料の乳タンパクを安定化させるための安定剤として、特性の異なる3種類のCMC−Naを配合したCMC−Na(配合品)を乳含有飲料用の安定剤として使用することによって、前記の課題を解決したものである。
【0008】
すなわち、本発明は、(A)アルカリセルロース調製時の反応溶媒中のアルカリ濃度を30〜50重量%とし、エーテル化反応終了後の反応液のpHを8.0〜9.0に調整することによって製造されたエーテル化度が0.7〜1.0であり、2%水溶液粘度が2〜400mPa・sであるCMC−Na70〜90重量%、(B)エーテル化度が1.0〜1.2であり、2%水溶液粘度が500〜1000mPa・sであるCMC−Na5〜15重量%、および(C)エーテル化度が0.6以上かつ0.7未満であり、2%水溶液粘度が2〜200mPa・sであるCMC−Na5〜15重量%からなる乳含有飲料用CMC−Naに関する。
【0009】
【発明の実施の形態】
本発明では、特性の異なる3種類のCMC−Naを配合して得られるCMC−Na(配合品)を乳含有飲料用の安定剤として使用する。すなわち、(A)エーテル化度が0.7〜1.0(好ましくは0.80〜0.90)であり、2%水溶液粘度が2〜400mPa・s(好ましくは5〜200mPa・s)であるCMC−Na(以下、(A)成分という)、(B)エーテル化度が1.0〜1.2(好ましくは1.05〜1.15)であり、2%水溶液粘度が500〜1000mPa・s(好ましくは700〜800mPa・s)であるCMC−Na(以下、(B)成分という)および(C)エーテル化度が0.6以上かつ0.7未満(好ましくは0.62〜0.68)であり、2%水溶液粘度が2〜200mPa・s(好ましくは5〜100mPa・s)であるCMC−Na(以下、(C)成分という)を配合して得られるCMC−Na(配合品)を乳含有飲料用の安定剤として使用する。
【0010】
(A)成分は、含水有機溶媒中でセルロース質原料にアルカリを作用させてアルカリセルロースを調製したのち、エーテル化剤を作用させて、CMC−Naを製造する方法において、アルカリセルロースの調製時の反応溶媒中の水に溶解したアルカリ濃度を30〜40重量%とし、エーテル化反応終了後に反応液中の過剰のアルカリを有機酸で中和して反応液のpHを8.0〜9.0に調整することにより製造されたCMC−Naである。
【0011】
反応溶媒中のアルカリ濃度を30重量%未満にすると、アルカリセルロース反応時のアルカリ量が不足し、アルカリセルロース化を充分にできない場合があり、40重量%より高くすると、アルカリ量により、セルロース分子鎖が切断され、重合度(粘度)が低下する傾向がある。エーテル化反応終了後の反応液のpHを8.0未満にすると、食品用として用いる場合、食品のpHが、CMC−Naの食品添加物公定量規格であるpH6.0〜8.5の範囲に合致しなくなる。
【0012】
含水有機溶媒に使用する有機溶媒としては、たとえば、エチルアルコール、イソプロピルアルコール、n−プロピルアルコール、n−ブチルアルコール、イソブチルアルコール、アセトン、ジオキサン、エチルアルコール−ベンゼン混合溶媒、エチルアルコール−トルエン混合溶媒、イソプロピルアルコール−ベンゼン混合溶媒が使用される。含水有機溶媒中の水の濃度は、30〜50重量%(とりわけ35〜45重量%)であることが好ましい。含水有機溶媒中の水の濃度が低いと、エーテル化剤の副反応が進んでエーテル化剤の有効利用率が低下し、高いと、反応系内で水によるセルロース分子へのアタックが減少し、結晶化が阻害され、水溶性の低いCMC−Naができる傾向がある。
【0013】
セルロース質原料としては、たとえば、木材パルプ、コットンリンターパルプが使用される。アルカリとしては、たとえば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、水酸化ルビジウムが使用される。エーテル化剤としては、たとえば、モノクロール酢酸、モノクロール酢酸ナトリウム、モノクロール酢酸メチル、モノクロール酢酸エチル、モノクロール酢酸イソプロピルが使用される。有機酸としては、たとえば、酢酸、リンゴ酸、スルファミン酸、ギ酸、プロピロン酸が使用される。
【0014】
このような方法で製造された(A)成分を使用することによって、水中の乳成分の粒子を安定に分散させることができる。(A)成分は、たとえば、特開2001−114801公報記載の製造方法によって製造することができる。
【0015】
(B)成分および(C)成分としては、エーテル化度および2%水溶液粘度が、それぞれ所定の範囲にあるCMC−Naが、製造方法に限定されることなく、使用される。一般に、CMC−Naのエーテル化度は、たとえば、CMC−Na製造時のエーテル化剤使用量を調節することによって、CMC−Naの2%水溶液粘度は、たとえば、CMC−Na製造時の使用するセルロースの重合度を調節することによって、制御することができる。(B)成分は、エーテル化度および2%水溶液粘度が高いCMC−Naであり、主に、粘性によって乳成分微粒子を分散させるために寄与する成分である。(C)成分は、エーテル化度および2%水溶液粘度が低いCMC−Naであり、主に、乳成分のタンパクの凝集による粒子の大粒化を防止するために寄与する成分である。
【0016】
本発明のCMC−Na(配合品)の(A)成分、(B)成分および(C)成分の配合割合(重量%)は70〜90:5〜15:5〜15(好ましくは80〜88:6〜10:6〜10)である。(A)成分の配合割合が小さいと、乳成分中のタンパクとの結合因子が少なくなり、好ましい飲料が得られない場合があり、大きいこと自体には、とくに支障はないが、(B)成分および(C)成分の配合割合が減少することになる。(B)成分の配合割合が小さいと、乳成分微粒子を分散する粘性が不足し、大きいと、特に支障はないが、(A)成分および(B)成分の配合割合が減少することになる。(C)成分の配合割合が小さいと、乳成分のタンパクの凝集硬化が少なくなり、大きいこと自体には、特に支障はないが、(A)成分および(B)成分の配合割合が減少することとなる。
【0017】
本発明のCMC−Na(配合品)の主成分は(A)成分であり、たとえば、(A)成分に対して、所定量の(B)成分および(C)成分を配合することにより、本発明のCMC−Na(配合品)を得ることができる。(A)成分、(B)成分および(C)成分は、たとえば、乳含有飲料に添加する前に配合して本発明のCMC−Na(配合品)としてもよいし、また、各成分を別個に乳含有飲料に添加してもよい。(A)成分、(B)成分および(C)成分は、粉末状の各成分を配合してもよいし、また、各成分の水溶液を配合してもよい。
【0018】
本発明のCMC−Na(配合品)のエーテル化度は0.7〜1.0(とりわけ0.8〜0.9)であることが好ましい。エーテル化度が0.7未満のCMC−Na(配合品)では、乳含有飲料中の乳タンパクを充分に安定に分散させることができない場合がある。一方、エーテル化度が1.0を超えるCMC−Na(配合品)では、安定剤としての効果にとくに問題はないが、必要以上にエーテル化度の高い配合品を製造するためには、原料コストが高くなる傾向がある。
【0019】
本発明のCMC−Na(配合品)の2%水溶液粘度は2〜400mPa・s(とりわけ5〜200mPa・s)であることが好ましい。2%水溶液粘度が2mPa・s未満のCMC−Na(配合品)では、乳含有飲料に対する添加量を2%まで高めても粘性保持による乳タンパクの分散安定性が得られない場合がある。また、2%水溶液粘度が400mPa・sを超えるCMC−Na(配合品)では、乳含有飲料の粘度が高くなり、飲み口が劣る場合がある。
【0020】
本発明のCMC−Na(配合品)は、乳タンパク(正電荷を有するカゼイン粒子)との相互作用に影響するエーテル化度や、2%水溶液粘度が異なるCMC−Naを配合することによって、2%水溶液粘度が高いCMC−Na((B)成分)により機能される増粘分散および各成分によるそのほかの特性の微妙なバランスを巧みに利用して、乳含有飲料中の乳タンパクを安定に分散させるものである。
【0021】
CMC−Naの2%水溶液粘度およびエーテル化度は、以下のようにして分析することができる。
【0022】
(1)水分
試料1〜2gを秤量瓶に精秤し、105±0.2℃の乾燥機中において2時間乾燥し、乾燥したことによる減量から試料中の水分値を次式により求める。
水分(%)=減量(g)÷試料(g)×100
【0023】
(2)2%水溶液粘度
300mlのトールビーカーに約5.0gの試料を精秤し、次式により求められる2%水溶液を得るために必要な溶解水量の水を加え、ガラス棒で分散させる。
溶解水量=試料(g)×(98−水分(%))÷2
【0024】
水分の値は前記(1)で求められる水分値を利用する。前記水溶液を一昼夜放置したのち、マグネチックスターラーで約5分間攪拌して完全な溶液としたのち、30分間25℃の恒温水槽に入れ、溶液を25℃にしたのち、ガラス棒で穏やかにかき混ぜ、MB型粘度計の適当なローターおよびガードを取りつけ、回転数60rpmで3分後の目盛りを読み取り、次式により求める。
粘度(mPa・s)=読み取り目盛り×係数
【0025】
(3)エーテル化度
試料約1gを精秤し、ろ紙に包んで磁製ルツボの中に入れ、600℃で灰化し、生成した水酸化ナトリウムを、0.1Nの硫酸で、フェノールフタレインを指示薬として滴定し、中和滴定に要した硫酸量A(ml)と0.1Nの硫酸の力価f3を用いてエーテル化度を計算する。
エーテル化度=162×A×f3÷(10000−80×A×f3
【0026】
本発明のCMC−Na(配合品)は、pH3.0〜5.0の酸性乳含有飲料よりも、pH5.0以上のほぼ中性に近い乳含有飲料の安定剤として好適に使用することができる。乳含有飲料に、本発明のCMC−Na(配合品)を、たとえば、0.1〜2重量%(好ましくは0.2〜1.5重量%)添加することによって、乳含有飲料の経時的な粘度変化を防止することができ、また、乳含有飲料中の乳タンパクの凝集を防止することができる。
【0027】
一般に、乳含有飲料に含有される乳成分としては、生乳、加工乳、全脂粉乳、脱脂粉乳、豆乳などがあり、通常、乳含有飲料の乳固形分は0.1〜7重量%である。乳含有飲料に含有される乳成分以外の成分としては、砂糖、グラニュー糖、液糖、pH調整剤、着色料、香料、ビタミン、ミネラルがあり、さらに果肉、果汁が加えられてもよい。
【0028】
乳含有飲料のpHは、乳含有飲料の味、風味を保持するために、pH5.0〜7.0の範囲で調整することが好ましい。乳含有飲料のpHは、クエン酸などの有機酸を加えることによって調整することができる。
【0029】
【実施例】
実施例1〜4および比較例1〜7
<CMC−Na(配合品)の調製方法>
(A)成分として表1に示す製造条件(アルカリ濃度、中和pH)で製造され、表1に示す特性(エーテル化度、2%水溶液粘度)のCMC−Na、(B)成分および(C)成分として、表1に示す特性(エーテル化度、2%水溶液粘度)のCMC−Naを使用し、表1に示す配合割合で配合して、表1に示す特性(エーテル化度、2%水溶液粘度)のCMC−Na(配合品)を得た。
【0030】
(A)成分は、以下の方法によって製造した。すなわち、5リットル二軸ニーダー型反応機に、イソプロピルアルコールと水に表1記載のアルカリ濃度となる量の水酸化ナトリウムを溶解させたアルカリ溶液を仕込み、ニーダーで攪拌しながら、チップ状の無水物N材パルプ200gを約5分間かけて添加した。25℃で30分間攪拌してアルカリセルロース反応を実施した。ついで、モノクロール酢酸を反応溶媒(水20gおよびイソプロピルアルコール80gの混合物)に溶解させたモノクロール酢酸溶液を25℃に温度調整したのちに、10分間かけて添加した。20分間攪拌し、混合したのち、78℃で120分間エーテル化反応を実施した。反応終了後、50℃以下まで冷却し、過剰の水酸化ナトリウムを50重量%酢酸水溶液で中和して、反応液のpH(中和pH)を表1記載の値に調整した。ついで、温度80〜100℃で60〜120分間加熱し、溶媒を気化させて冷却器で回収した。そののち、回収されたCMC−Naを取り出し、減圧濾過機で反応溶媒を絞り出し、80%メタノール3kgで30分間の洗浄を2回実施した。そののち、脱液、乾燥、および粉砕してCMC−Naを得た。実施例1、比較例1、3〜7では、低重合度パルプ(重合度300)を使用し、実施例2および4では、低重合度パルプ(重合度100)を使用し、実施例3および比較例2では、中重合度パルプ(重合度900)を使用して製造されたCMC−Naを(A)成分として使用した。
【0031】
比較例1は、(A)成分の配合割合が小さく、(B)成分および(C)成分の配合割合が大きいCMC−Na(配合品)である。比較例2は、(B)成分のエーテル化度が小さく、(C)成分のエーテル化度が大きくかつ粘度が高いCMC−Na(配合品)である。比較例3は、(B)成分のエーテル化度が大きく、(C)成分のエーテル化度が大きくかつ粘度が高いCMC−Na(配合品)である。比較例4は、アルカリ濃度の低い条件下で製造した(A)成分を配合したCMC−Na(配合品)である。比較例5は、アルカリ濃度が高い条件下で製造した(A)成分を配合したCMC−Na(配合品)である。比較例6は、中和pHが低い条件下で製造した(A)成分を配合したCMC−Na(配合品)である。比較例7は、中和pHが高い条件下で製造した(A)成分を配合したCMC−Na(配合品)である。
【0032】
【表1】

Figure 0003751948
【0033】
<乳含有飲料の調製方法>
乳含有飲料を以下の処方で調製し、評価した。
【0034】
以下のA液、B液、C液およびD液、さらに純水を20℃に調整した。A液は、1リットルビーカーに水300gを採取し、各実施例および比較例のCMC−Na(配合品)3.0g(乳含有飲料に対する添加率0.3%)または15.0g(乳含有飲料に対する添加率1.5%)を完全に溶解させ、さらにグラニュー糖70gを溶解させて調製した。B液は、1リットルビーカーに水300gを採取し、脱脂粉乳10.0g(乳含有飲料中の濃度1%)または50.0g(乳含有飲料中の濃度5%)を完全に溶解させて調製した。C液としては、3重量%クエン酸水溶液100gを使用した。D液としては、果汁(バナナ果汁)100gを使用した。
【0035】
前記各液を20℃に調整したのち、前記1リットルビーカー中のA液に、B液およびC液を投入し、600rpmで攪拌し、1分後、pHメーターで測定しながら混合液のpHが5.5または6.5になるようにC液を添加した。C液の添加量を考慮して、乳含有飲料の総量が1000gになるように、純水を加えたのち、1分間攪拌した。この乳含有飲料を攪拌しながら90℃に到達するまで加熱殺菌したのち、5℃まで冷却した。
【0036】
<乳含有飲料の評価>
各乳含有飲料の一部を100mlの目盛り管に入れ、5℃の冷蔵庫中で20日間保存し、乳含有飲料の状態を観察した。乳含有飲料の状態は、目盛り管の沈殿量および目盛り管の上澄液量により評価した。また、各乳含有飲料の残りの一部を500mlのマヨネーズビン中に入れ、5℃の冷蔵庫中で20日間保存し、乳含有飲料の粘度測定に使用した。乳含有飲料の状態観察および粘度測定は、乳含有飲料調製時、調製の10日後および20日後に行なった。結果を表2〜9に示す。
【0037】
表2は、乳固形分1.5%でpH5.5の乳含有飲料に対してCMC−Na(配合品)添加率を1%とした場合、表3は、乳固形分1.5%でpH6.5の乳含有飲料に対してCMC−Na(配合品)添加率を0.3%とした場合、表4は、乳固形分5%でpH5.5の乳含有飲料に対してCMC−Na(配合品)添加率を0.3%とした場合、表5は、乳固形分5%でpH6.5の乳含有飲料に対してCMC−Na(配合品)添加率を0.3%とした場合、表6は、乳固形分1.5%でpH5.5の乳含有飲料に対してCMC−Na(配合品)添加率を1%とした場合、表7は、乳固形分1.5%でpH6.5の乳含有飲料に対してCMC−Na(配合品)添加率を1%とした場合、表8は、乳固形分5%でpH5.5の乳含有飲料に対してCMC−Na(配合品)添加率を1%とした場合、表9は、乳固形分5%でpH6.5の乳含有飲料に対してCMC−Na(配合品)の添加率を1%とした場合の結果を示す。
【0038】
表2〜9中、乳含有飲料の状態の評価結果について、斜線(/)の左側の数値が乳タンパクの凝集の目安となる目盛り管の沈殿量を示し、右側の数値が乳含有飲料の分離の目安となる目盛り管の上澄液量を示す。いずれも、数値が小さいものほど、乳タンパクが凝集しにくいことまたは乳含有飲料が分離しにくいことを意味し、分散安定性が優れていることを示す。
【0039】
【表2】
Figure 0003751948
【0040】
【表3】
Figure 0003751948
【0041】
【表4】
Figure 0003751948
【0042】
【表5】
Figure 0003751948
【0043】
【表6】
Figure 0003751948
【0044】
【表7】
Figure 0003751948
【0045】
【表8】
Figure 0003751948
【0046】
【表9】
Figure 0003751948
【0047】
【発明の効果】
本発明のCMC−Na(配合品)によれば、乳含有飲料の経時的な粘度変化をおさえることができ、また、経時的な乳含有飲料の分離、乳タンパクの凝集を防止することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to sodium carboxymethyl cellulose for milk-containing beverages (hereinafter referred to as CMC-Na).
[0002]
[Prior art]
Milk-containing beverages contain milk protein as a milk component. Milk proteins have an isoelectric point and tend to aggregate at pH 4.6 or higher, so milk-containing beverages (especially milk-containing beverages at pH 4.6 or higher) have a special stability to suppress milk protein aggregation. Requires an agent. For example, in a conventional milk-containing beverage, as disclosed in Patent Document 1, the method of blending cellulose and CMC-Na, the method of adding an emulsifier, the method of selecting the raw material of the milk-containing beverage itself, etc. Suppression of aggregation has been performed.
[0003]
However, for example, if aggregation of milk protein can be suppressed with only CMC-Na, the deterioration of the flavor of the milk-containing beverage due to the emulsifier can be prevented, the production process of the milk-containing beverage can be simplified, and the cost can be reduced. can do.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-171902
[Problems to be solved by the invention]
The objective of this invention is providing the CMC-Na for milk-containing drinks which can suppress aggregation of the milk protein in a milk-containing drink only with CMC-Na with respect to the above prior arts.
[0006]
In addition, when the pH of the milk-containing beverage is pH 4.6 or higher, which is the isoelectric point of the milk protein, the milk protein aggregates and precipitates, and the milk-containing beverage is separated. Changes in viscosity occur during storage. Therefore, CMC-Na for milk-containing beverages of the present invention is more useful as a stabilizer for milk-containing beverages having a pH value of 5.0 or more and almost near neutrality than acidic milk-containing beverages having a pH of 3.0 to 5.0. is there.
[0007]
[Means for Solving the Problems]
The present invention has been made paying attention to the problems of the prior art as described above. That is, as a stabilizer for stabilizing milk protein of a milk-containing beverage having a pH of 4.6 or more, CMC-Na (compound) containing three types of CMC-Na having different characteristics is used as a stabilizer for milk-containing beverages. By using as above, the above-mentioned problems are solved.
[0008]
That is, in the present invention, (A) the alkali concentration in the reaction solvent when preparing alkali cellulose is 30 to 50% by weight, and the pH of the reaction solution after completion of the etherification reaction is adjusted to 8.0 to 9.0. CMC-Na having a degree of etherification of 0.7 to 1.0 and a 2% aqueous solution viscosity of 2 to 400 mPa · s, 70 to 90% by weight, and (B) a degree of etherification of 1.0 to 1 2 and 5% by weight of CMC-Na having a 2% aqueous solution viscosity of 500 to 1000 mPa · s, and (C) the degree of etherification is 0.6 or more and less than 0.7, and the 2% aqueous solution viscosity is The present invention relates to CMC-Na for milk-containing beverages consisting of 5 to 15% by weight of CMC-Na that is 2 to 200 mPa · s.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, CMC-Na (mixed product) obtained by blending three types of CMC-Na having different characteristics is used as a stabilizer for milk-containing beverages. That is, (A) the degree of etherification is 0.7 to 1.0 (preferably 0.80 to 0.90), and the 2% aqueous solution viscosity is 2 to 400 mPa · s (preferably 5 to 200 mPa · s). A certain CMC-Na (hereinafter referred to as component (A)), (B) a degree of etherification of 1.0 to 1.2 (preferably 1.05 to 1.15), and a 2% aqueous solution viscosity of 500 to 1000 mPa · CMC-Na (hereinafter referred to as component (B)) which is s (preferably 700 to 800 mPa · s) and (C) Degree of etherification of 0.6 or more and less than 0.7 (preferably 0.62 to 0) .68) and CMC-Na obtained by blending CMC-Na (hereinafter referred to as component (C)) having a 2% aqueous solution viscosity of 2 to 200 mPa · s (preferably 5 to 100 mPa · s). Products) with stabilizers for milk-containing beverages To use Te.
[0010]
The component (A) is prepared by reacting an alkali with a cellulosic raw material in a water-containing organic solvent to prepare alkali cellulose, and then reacting with an etherifying agent to produce CMC-Na. The alkali concentration dissolved in water in the reaction solvent is adjusted to 30 to 40% by weight, and after completion of the etherification reaction, excess alkali in the reaction solution is neutralized with an organic acid to adjust the pH of the reaction solution to 8.0 to 9.0. It is CMC-Na manufactured by adjusting to.
[0011]
If the alkali concentration in the reaction solvent is less than 30% by weight, the amount of alkali at the time of the alkali cellulose reaction may be insufficient, and there may be a case where the alkali cellulose cannot be sufficiently formed. Is cut and the polymerization degree (viscosity) tends to decrease. When the pH of the reaction solution after completion of the etherification reaction is less than 8.0, when used for food, the pH of the food is in the range of pH 6.0 to 8.5 which is the official standard for food additives of CMC-Na. Will not match.
[0012]
Examples of the organic solvent used for the water-containing organic solvent include ethyl alcohol, isopropyl alcohol, n-propyl alcohol, n-butyl alcohol, isobutyl alcohol, acetone, dioxane, ethyl alcohol-benzene mixed solvent, ethyl alcohol-toluene mixed solvent, An isopropyl alcohol-benzene mixed solvent is used. The concentration of water in the water-containing organic solvent is preferably 30 to 50% by weight (particularly 35 to 45% by weight). If the concentration of water in the water-containing organic solvent is low, the side reaction of the etherifying agent proceeds and the effective utilization rate of the etherifying agent decreases, and if it is high, the attack on the cellulose molecules by water in the reaction system decreases. There is a tendency that crystallization is inhibited and CMC-Na having low water solubility is formed.
[0013]
For example, wood pulp or cotton linter pulp is used as the cellulosic material. As the alkali, for example, sodium hydroxide, lithium hydroxide, potassium hydroxide, or rubidium hydroxide is used. As the etherifying agent, for example, monochloroacetic acid, sodium monochloroacetate, methyl monochloroacetate, ethyl monochloroacetate, isopropyl monochloroacetate are used. As the organic acid, for example, acetic acid, malic acid, sulfamic acid, formic acid, and propionic acid are used.
[0014]
By using the component (A) produced by such a method, it is possible to stably disperse the milk component particles in water. The component (A) can be produced, for example, by the production method described in JP-A-2001-114801.
[0015]
As the component (B) and the component (C), CMC-Na in which the degree of etherification and the 2% aqueous solution viscosity are respectively in a predetermined range are used without being limited to the production method. In general, the degree of etherification of CMC-Na is adjusted, for example, by the amount of etherification agent used in the production of CMC-Na, and the viscosity of a 2% aqueous solution of CMC-Na is used, for example, in the production of CMC-Na. It can be controlled by adjusting the degree of polymerization of cellulose. The component (B) is CMC-Na having a high degree of etherification and a 2% aqueous solution viscosity, and is a component that contributes mainly to disperse the milk component fine particles by viscosity. The component (C) is CMC-Na having a low degree of etherification and a 2% aqueous solution viscosity, and is a component that contributes mainly to prevent particles from becoming large due to protein aggregation of milk components.
[0016]
The blending ratio (% by weight) of the components (A), (B) and (C) of the CMC-Na (blended product) of the present invention is 70 to 90: 5 to 15: 5 to 15 (preferably 80 to 88). : 6-10: 6-10). When the blending ratio of the component (A) is small, the binding factor with the protein in the milk component decreases, and a preferable beverage may not be obtained. The large component itself is not particularly problematic, but the component (B) And the mixture ratio of (C) component will reduce. When the blending ratio of the component (B) is small, the viscosity for dispersing the milk component fine particles is insufficient. When the blending ratio is large, there is no particular problem, but the blending ratio of the component (A) and the component (B) decreases. When the blending ratio of the component (C) is small, the aggregation and hardening of the protein of the milk component is reduced, and there is no particular problem with the large component itself, but the blending ratio of the component (A) and the component (B) decreases. It becomes.
[0017]
The main component of the CMC-Na (mixed product) of the present invention is the component (A). For example, by blending a predetermined amount of the component (B) and the component (C) with the component (A), Inventive CMC-Na (formulated product) can be obtained. The component (A), the component (B), and the component (C) may be blended before adding to a milk-containing beverage to form the CMC-Na (blended product) of the present invention. It may be added to milk-containing beverages. (A) component, (B) component, and (C) component may mix | blend each powdery component, and may mix | blend the aqueous solution of each component.
[0018]
The degree of etherification of the CMC-Na (formulated product) of the present invention is preferably 0.7 to 1.0 (particularly 0.8 to 0.9). In CMC-Na (formulation) having a degree of etherification of less than 0.7, milk protein in a milk-containing beverage may not be sufficiently stably dispersed. On the other hand, in CMC-Na (mixed product) having an etherification degree exceeding 1.0, there is no particular problem in the effect as a stabilizer, but in order to produce a compound having a higher etherification degree than necessary, Cost tends to be high.
[0019]
The 2% aqueous solution viscosity of the CMC-Na (formulated product) of the present invention is preferably 2 to 400 mPa · s (particularly 5 to 200 mPa · s). In the case of CMC-Na (formulated product) having a 2% aqueous solution viscosity of less than 2 mPa · s, the dispersion stability of milk protein due to viscosity retention may not be obtained even if the amount added to the milk-containing beverage is increased to 2%. Moreover, in CMC-Na (formulated product) in which the 2% aqueous solution viscosity exceeds 400 mPa · s, the viscosity of the milk-containing beverage may be increased, and the drinking mouth may be poor.
[0020]
The CMC-Na (mixed product) of the present invention can be obtained by blending CMC-Na having a degree of etherification that affects the interaction with milk protein (casein particles having a positive charge) and a 2% aqueous solution viscosity. Stable dispersion of milk proteins in milk-containing beverages by skillfully utilizing the thickening dispersion functioned by CMC-Na (component (B)) with a high% aqueous solution viscosity and other characteristics of each component It is something to be made.
[0021]
The viscosity of 2% aqueous solution of CMC-Na and the degree of etherification can be analyzed as follows.
[0022]
(1) A moisture sample of 1 to 2 g is precisely weighed in a weighing bottle, dried in a dryer at 105 ± 0.2 ° C. for 2 hours, and a moisture value in the sample is obtained from the weight loss due to the drying by the following equation.
Moisture (%) = weight loss (g) / sample (g) × 100
[0023]
(2) About 5.0 g of sample is precisely weighed in a 300 ml tall beaker with a 2% aqueous solution viscosity, and a water amount of dissolved water necessary for obtaining a 2% aqueous solution obtained by the following formula is added and dispersed with a glass rod.
Dissolved water amount = sample (g) × (98−moisture (%)) ÷ 2
[0024]
As the moisture value, the moisture value obtained in (1) is used. The aqueous solution was allowed to stand for a whole day and night, and stirred for about 5 minutes with a magnetic stirrer to make a complete solution. A suitable rotor and guard of the MB type viscometer are attached, the scale after 3 minutes is read at a rotational speed of 60 rpm, and the following equation is used.
Viscosity (mPa · s) = reading scale × coefficient
(3) Degree of etherification About 1 g of a sample is precisely weighed, wrapped in filter paper, placed in a magnetic crucible, incinerated at 600 ° C, and the resulting sodium hydroxide is dissolved in 0.1N sulfuric acid and phenolphthalein. Titration is performed as an indicator, and the degree of etherification is calculated using the sulfuric acid amount A (ml) required for neutralization titration and the titer f 3 of 0.1 N sulfuric acid.
Degree of etherification = 162 × A × f 3 ÷ (10000−80 × A × f 3 )
[0026]
The CMC-Na (formulated product) of the present invention can be suitably used as a stabilizer for a milk-containing beverage having a pH of 5.0 or more, which is almost neutral, rather than an acidic milk-containing beverage having a pH of 3.0 to 5.0. it can. By adding 0.1 to 2% by weight (preferably 0.2 to 1.5% by weight) of the CMC-Na (mixed product) of the present invention to a milk-containing beverage, It is possible to prevent a significant change in viscosity and to prevent aggregation of milk proteins in the milk-containing beverage.
[0027]
In general, milk components contained in milk-containing beverages include raw milk, processed milk, whole milk powder, skim milk powder, soy milk, etc., and the milk solid content of milk-containing beverages is usually 0.1 to 7% by weight. . Ingredients other than the milk ingredient contained in the milk-containing beverage include sugar, granulated sugar, liquid sugar, pH adjuster, colorant, fragrance, vitamin, mineral, and fruit pulp and fruit juice may be added.
[0028]
The pH of the milk-containing beverage is preferably adjusted in the range of pH 5.0 to 7.0 in order to maintain the taste and flavor of the milk-containing beverage. The pH of milk-containing beverages can be adjusted by adding organic acids such as citric acid.
[0029]
【Example】
Examples 1-4 and Comparative Examples 1-7
<Method for preparing CMC-Na (mixed product)>
(C) Manufactured under the production conditions (alkali concentration, neutralized pH) shown in Table 1 as component (A), CMC-Na having the characteristics shown in Table 1 (degree of etherification, 2% aqueous solution viscosity), component (B) and (C ) As the component, CMC-Na having the characteristics shown in Table 1 (degree of etherification, 2% aqueous solution viscosity) was used and blended at the blending ratio shown in Table 1. The characteristics shown in Table 1 (degree of etherification, 2% CMC-Na (formulated product) of aqueous solution viscosity) was obtained.
[0030]
The component (A) was produced by the following method. That is, a 5 liter biaxial kneader type reactor is charged with an alkali solution in which sodium hydroxide having an alkali concentration shown in Table 1 is dissolved in isopropyl alcohol and water, and stirred with a kneader to form a chip-like anhydride. 200 g of N-wood pulp was added over about 5 minutes. The alkali cellulose reaction was carried out by stirring at 25 ° C. for 30 minutes. Then, a monochloroacetic acid solution in which monochloroacetic acid was dissolved in a reaction solvent (a mixture of 20 g of water and 80 g of isopropyl alcohol) was temperature-adjusted to 25 ° C. and then added over 10 minutes. After stirring for 20 minutes and mixing, an etherification reaction was carried out at 78 ° C. for 120 minutes. After completion of the reaction, the reaction mixture was cooled to 50 ° C. or less, and excess sodium hydroxide was neutralized with a 50 wt% aqueous acetic acid solution to adjust the pH (neutralization pH) of the reaction solution to the values shown in Table 1. Subsequently, it heated at the temperature of 80-100 degreeC for 60 to 120 minutes, the solvent was vaporized, and it collect | recovered with the cooler. Thereafter, the recovered CMC-Na was taken out, the reaction solvent was squeezed out with a vacuum filter, and washing was performed twice with 3 kg of 80% methanol for 30 minutes. Thereafter, liquid removal, drying, and pulverization were performed to obtain CMC-Na. In Example 1 and Comparative Examples 1 and 3 to 7, low-polymerization degree pulp (degree of polymerization 300) was used, and in Examples 2 and 4, low-polymerization degree pulp (degree of polymerization 100) was used, and Example 3 and In Comparative Example 2, CMC-Na produced using a medium polymerization degree pulp (polymerization degree 900) was used as the component (A).
[0031]
Comparative Example 1 is CMC-Na (mixed product) in which the blending ratio of the component (A) is small and the blending ratio of the component (B) and the component (C) is large. Comparative Example 2 is CMC-Na (mixed product) having a low degree of etherification of the component (B), a high degree of etherification of the component (C), and a high viscosity. Comparative Example 3 is CMC-Na (mixed product) having a high degree of etherification of the component (B), a high degree of etherification of the component (C), and a high viscosity. Comparative Example 4 is CMC-Na (blended product) blended with component (A) produced under a low alkali concentration condition. Comparative Example 5 is CMC-Na (blended product) blended with the component (A) produced under conditions with a high alkali concentration. Comparative Example 6 is CMC-Na (mixed product) blended with the component (A) produced under a condition where the neutralization pH is low. Comparative Example 7 is CMC-Na (mixed product) blended with the component (A) produced under conditions where the neutralization pH is high.
[0032]
[Table 1]
Figure 0003751948
[0033]
<Method for preparing milk-containing beverage>
A milk-containing beverage was prepared and evaluated with the following formulation.
[0034]
The following A liquid, B liquid, C liquid, D liquid, and pure water were adjusted to 20 ° C. For solution A, 300 g of water was collected in a 1 liter beaker, and 3.0 g (addition rate of 0.3% with respect to milk-containing beverage) or 15.0 g (containing milk) of each example and comparative example. (1.5% addition rate to beverage) was completely dissolved, and 70 g of granulated sugar was further dissolved. Liquid B is prepared by collecting 300 g of water in a 1-liter beaker and completely dissolving 10.0 g of skim milk powder (concentration 1% in milk-containing beverages) or 50.0 g (concentration 5% in milk-containing beverages). did. As C liquid, 100 g of 3 wt% citric acid aqueous solution was used. As the D solution, 100 g of fruit juice (banana juice) was used.
[0035]
After each liquid is adjusted to 20 ° C., liquid B and liquid C are put into liquid A in the 1 liter beaker, stirred at 600 rpm, and after 1 minute, the pH of the mixed liquid is measured with a pH meter. C liquid was added so that it might be 5.5 or 6.5. In consideration of the amount of liquid C added, pure water was added so that the total amount of the milk-containing beverage was 1000 g, followed by stirring for 1 minute. The milk-containing beverage was sterilized by heating until it reached 90 ° C. with stirring, and then cooled to 5 ° C.
[0036]
<Evaluation of milk-containing beverages>
A part of each milk-containing beverage was placed in a 100 ml scale tube and stored in a refrigerator at 5 ° C. for 20 days, and the state of the milk-containing beverage was observed. The state of the milk-containing beverage was evaluated by the amount of sediment in the scale tube and the amount of supernatant in the scale tube. The remaining part of each milk-containing beverage was placed in 500 ml mayonnaise bottle and stored in a refrigerator at 5 ° C. for 20 days, and used for measuring the viscosity of the milk-containing beverage. Observation of the state of the milk-containing beverage and measurement of the viscosity were performed at the time of preparing the milk-containing beverage, 10 days and 20 days after the preparation. The results are shown in Tables 2-9.
[0037]
Table 2 shows that when the CMC-Na (formulated product) addition rate is 1% for a milk-containing beverage with a milk solid content of 1.5% and a pH of 5.5, Table 3 shows a milk solid content of 1.5%. When the CMC-Na (formulated product) addition rate is 0.3% with respect to a milk-containing beverage with pH 6.5, Table 4 shows CMC- with respect to a milk-containing beverage with a milk solid content of 5% and a pH of 5.5. When the Na (blended product) addition rate is 0.3%, Table 5 shows that the CMC-Na (blended product) addition rate is 0.3% for a milk-containing beverage having a milk solid content of 5% and a pH of 6.5. Table 6 shows that when the addition ratio of CMC-Na (mixed product) is 1% with respect to a milk-containing beverage having a milk solid content of 1.5% and a pH of 5.5, Table 7 shows a milk solid content of 1. When the CMC-Na (formulated product) addition rate is 1% with respect to a milk-containing beverage with a pH of 6.5 at a pH of 5%, Table 8 shows the value for a milk-containing beverage with a milk solid content of 5% and a pH of 5.5. When the addition rate of CMC-Na (mixed product) is 1%, Table 9 shows that the addition rate of CMC-Na (mixed product) is 1% for a milk-containing beverage having a milk solid content of 5% and a pH of 6.5. The result is shown below.
[0038]
In Tables 2 to 9, regarding the evaluation results of the state of the milk-containing beverage, the numerical value on the left side of the oblique line (/) indicates the amount of sedimentation in the scale tube that is a measure of the aggregation of the milk protein, and the numerical value on the right side is the separation of the milk-containing beverage The amount of the supernatant liquid in the scale tube that is a measure of. In any case, the smaller the numerical value, the less the milk protein is aggregated or the milk-containing beverage is difficult to separate, indicating that the dispersion stability is excellent.
[0039]
[Table 2]
Figure 0003751948
[0040]
[Table 3]
Figure 0003751948
[0041]
[Table 4]
Figure 0003751948
[0042]
[Table 5]
Figure 0003751948
[0043]
[Table 6]
Figure 0003751948
[0044]
[Table 7]
Figure 0003751948
[0045]
[Table 8]
Figure 0003751948
[0046]
[Table 9]
Figure 0003751948
[0047]
【The invention's effect】
According to the CMC-Na (mixed product) of the present invention, it is possible to suppress changes in viscosity of milk-containing beverages over time, and to prevent separation of milk-containing beverages over time and aggregation of milk proteins. .

Claims (1)

(A)アルカリセルロース調製時の反応溶媒中のアルカリ濃度を30〜40重量%とし、エーテル化反応終了後の反応液のpHを8.0〜9.0に調整することによって製造されたエーテル化度が0.7〜1.0であり、2%水溶液粘度が2〜400mPa・sであるカルボキシメチルセルロースナトリウム70〜90重量%、
(B)エーテル化度が1.0〜1.2であり、2%水溶液粘度が500〜1000mPa・sであるカルボキシメチルセルロースナトリウム5〜15重量%、および
(C)エーテル化度が0.6以上かつ0.7未満であり、2%水溶液粘度が2〜200mPa・sであるカルボキシメチルセルロースナトリウム5〜15重量%からなる乳含有飲料用カルボキシメチルセルロースナトリウム。
(A) Etherification produced by adjusting the alkali concentration in the reaction solvent during preparation of alkali cellulose to 30 to 40% by weight and adjusting the pH of the reaction solution after completion of the etherification reaction to 8.0 to 9.0 Degree of 0.7-1.0, 2% aqueous solution viscosity of 2-400 mPa · s 70-90% by weight sodium carboxymethylcellulose,
(B) 5 to 15% by weight of sodium carboxymethylcellulose having a degree of etherification of 1.0 to 1.2, a 2% aqueous solution viscosity of 500 to 1000 mPa · s, and (C) a degree of etherification of 0.6 or more And the carboxymethylcellulose sodium for milk-containing drinks which consists of 5 to 15 weight% of carboxymethylcellulose sodium whose less than 0.7 and 2% aqueous solution viscosity is 2-200 mPa * s.
JP2003070762A 2003-03-14 2003-03-14 Sodium carboxymethylcellulose for milk-containing beverages Expired - Fee Related JP3751948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003070762A JP3751948B2 (en) 2003-03-14 2003-03-14 Sodium carboxymethylcellulose for milk-containing beverages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003070762A JP3751948B2 (en) 2003-03-14 2003-03-14 Sodium carboxymethylcellulose for milk-containing beverages

Publications (2)

Publication Number Publication Date
JP2004275072A JP2004275072A (en) 2004-10-07
JP3751948B2 true JP3751948B2 (en) 2006-03-08

Family

ID=33287429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003070762A Expired - Fee Related JP3751948B2 (en) 2003-03-14 2003-03-14 Sodium carboxymethylcellulose for milk-containing beverages

Country Status (1)

Country Link
JP (1) JP3751948B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6170287B2 (en) * 2012-08-14 2017-07-26 旭化成株式会社 Neutral beverage containing crystalline cellulose composite
CN111257176B (en) * 2019-11-15 2022-09-13 杭州娃哈哈科技有限公司 Method for rapidly evaluating protein stabilizing capacity of sodium carboxymethylcellulose in acidic milk beverage
JP7432221B2 (en) 2019-11-26 2024-02-16 高梨乳業株式会社 Method for producing acidic milk beverage

Also Published As

Publication number Publication date
JP2004275072A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
US20220110354A1 (en) Inhibited non-pregelatinized granular starches
CN103917109B (en) The method and composition of inducing satiety
JPH08509611A (en) Beverage stabilization system
WO1995027004A1 (en) Starch-based opacifying agent for foods and beverages
CN105188397A (en) Production of pulse protein product
CN109534978A (en) It is a kind of to improve the method for crystallising that Ethyl vanillin crystalline substance is practised by the way that polyvinylpyrrolidone is added
CN105188415A (en) Powderous vitamin E formulation
JP3751948B2 (en) Sodium carboxymethylcellulose for milk-containing beverages
US2400834A (en) Algin compound and preparation thereof
US3280102A (en) Preparation of carrageenan having improved water dispersibility
CN103458703B (en) Aerated food products comprising a protein-based reversible gel
JP3706454B2 (en) Acid milk beverage stabilizer and acid milk beverage
JP3462637B2 (en) Stabilizer, acidic milk drink and lactic acid bacteria drink using the same
KR101701830B1 (en) Iron caseinsuccinylate and method for the preparation thereof
US4062409A (en) Method for the production of fish meat powder retaining functional properties of fresh fish meat
JP2009112275A (en) Dispersion stabilizer for milk-containing beverage and milk-containing beverage
JP2009159819A (en) Alginic acid-containing acidic milk beverage
JP3009585B2 (en) Acidic milk beverage stabilizing composition and acidic milk beverage
JP3937095B2 (en) Method for producing acidic milk beverage
US2485934A (en) Alginate ice-cream stabilizing composition
JP2018059126A (en) Cellulose composite
JPS58138341A (en) Mixing of cheese with fruit juice
CN109892471B (en) Rice protein processing method and product
JPH06169737A (en) Cocoa drink
JPH08173135A (en) Alcoholic beverage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051208

R150 Certificate of patent or registration of utility model

Ref document number: 3751948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees