JP3750922B2 - Hot water supply device - Google Patents

Hot water supply device Download PDF

Info

Publication number
JP3750922B2
JP3750922B2 JP2001164064A JP2001164064A JP3750922B2 JP 3750922 B2 JP3750922 B2 JP 3750922B2 JP 2001164064 A JP2001164064 A JP 2001164064A JP 2001164064 A JP2001164064 A JP 2001164064A JP 3750922 B2 JP3750922 B2 JP 3750922B2
Authority
JP
Japan
Prior art keywords
line
hot water
heat
branch point
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001164064A
Other languages
Japanese (ja)
Other versions
JP2002357329A (en
Inventor
東 健太郎 伊
田 洋 司 山
崎 邦 博 西
本 正 之 藤
木 究 鈴
健 一 田之頭
口 和 也 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2001164064A priority Critical patent/JP3750922B2/en
Publication of JP2002357329A publication Critical patent/JP2002357329A/en
Application granted granted Critical
Publication of JP3750922B2 publication Critical patent/JP3750922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Description

【0001】
【発明の属する技術分野】
コージェネレーションシステムの燃焼機関、燃料電池、その他の発熱機関等の発熱手段から供給された温水を蓄熱槽に蓄えて、給湯や暖房に使用する温水供給装置に関する。
【0002】
【従来の技術】
図15に示す従来の温水供給装置では、外部の発熱手段から供給された温水を蓄える蓄熱槽A10と、この温水を給湯用機器A12へ供給するに際して温水をさらに加熱する第1の補助熱源装置A20と、暖房用等に使用される熱媒に熱量を与える熱交換器A16と、熱交換器A16で昇温された熱媒をさらに加熱する第2の補助熱源装置A20と、これらの各装置を連通する配管とで主要部が構成されている。
蓄熱槽A10に蓄えられた温水は、一方は温水として給湯用機器A12に供給され、他方は熱交換器A16を介して暖房等A14の熱媒に熱量を供給して蓄熱槽A10に回収されるようになっている。
配管径路としては、蓄熱槽A10上部に接続される温水ラインAL10に分岐点AB1が設けられ、分岐点AB1からの一方が給湯系統のラインAL12Aとなって補助熱源装置A20を介して給湯用機器A12に連通され、分岐点AB1からの他方が暖房系統のラインAL16となって熱交換器A16、ラインAL18、温水循環手段A18、ラインAL19を介して蓄熱槽A10に回帰するよう構成されている。
上記配管径路構成において、給湯用機器A12への温水は第1の補助熱源装置A20を通過して加熱され、暖房側機器A14の熱媒は熱媒ラインALhによって熱交換器A16から受熱後に第2の補助熱源装置A30を通過してさらに加熱されるようになっている。
【0003】
このような、給湯系統と暖房系統のそれぞれに補助熱源装置A20、A30を設ける従来の構成では、2つの補助熱源装置A20、A30のための設置空間、設置コスト、保全コストを要するとともに、温水を加熱する必要がなくても補助熱源装置A20、A30が常時作動することによる無駄な放熱があった。
【0004】
【発明が解決しようとする課題】
本発明は上述した従来技術の問題点に鑑みて提案されたものであり、補助熱源を1基のみ設置すれば足り、蓄熱槽に十分な熱量が貯えられている場合には補助熱源を通過しない様に構成された温水供給装置の提供を目的としている。
【0005】
【課題を解決するための手段】
本発明によれば、 発熱手段に連通している蓄熱槽(10)と、その蓄熱槽(10)に連通している補助熱源手段(20)と、熱的負荷と連通している熱的負荷用熱交換器(16)と、前記補助熱源手段(20)および前記熱的負荷用熱交換器(16)と連通している給湯用機器(12)と、それらの機器(10、12、16、20)を連通する温水ラインと、その温水ラインに設けられて蓄熱槽(10)から供給される温水を流過せしめる温水循環手段(18)とを有する温水供給装置において、蓄熱槽(10)から流出する温水が流過する温水ライン(L10)は、第1の分岐点(B1)で補助熱源手段(20)が介装されるライン(L12)と、補助熱源手段(20)をバイパスするライン(L11)とに分岐し、補助熱源手段(20)が介装されるライン(L12)の第1の分岐点(B1)と第1の合流点(G1)との間の領域には第1の開閉弁(V1)が介装され、補助熱源手段(20)をバイパスするライン(L11)は第2の分岐点(B2)で給湯用機器(12)側に連通するライン(L13)と熱的負荷用熱交換器(16)側に連通するライン(L14)とに分岐し、第2の分岐点(B2)から給湯用機器(12)側に連通するライン(L13)には第2の開閉弁(V2)が介装され、第2の分岐点(B2)から熱的負荷用熱交換器(16)側に連通するライン(L14)には第3の開閉弁(V3)が介装され、補助熱源手段(20)が介装されるライン(L12)は第3の分岐点(B3)で給湯用機器(12)側に連通するライン(L15)と熱的負荷用熱交換器(16)側に連通するライン(L16)とに分岐し、第3の分岐点(B3)から給湯用機器(12)側に連通するライン(L15)には第4の開閉弁(V4)が介装されており、第3の分岐点(B3)から熱的負荷用熱交換器(16)側に連通するライン(L16)には第5の開閉弁(V5)が介装されており、第2の分岐点(B2)から給湯用機器(12)側に連通するライン(L13)と第3の分岐点(B3)から給湯用機器(12)側に連通するライン(L15)とは第2の合流点(G2)で合流して給湯用機器(12)に連通するライン(L17)となり、第2の分岐点(B2)から熱的負荷用熱交換器(16)側に連通するライン(L14)と第3の分岐点(B3)から熱的負荷用熱交換器(16)側に連通するライン(L16)とは第3の合流点(G3)で合流して熱的負荷用熱交換器(16)が介装されるライン(L18)となり、熱的負荷用熱交換器(16)が介装されるライン(L18)は第4の分岐点(B4)で蓄熱槽(10)に連通するライン(L19)と補助熱源手段(20)側に連通するライン(L20)とに分岐しており、第4の分岐点(B4)から蓄熱槽(10)に連通するライン(L19)には第6の開閉弁(V6)が介装されており、第4の分岐点(B4)から補助熱源手段(20)側に連通するライン(L20)は、前記第1の合流点(G1)で第1の分岐点(B1)から補助熱源手段(20)に連通するライン(L12)と合流すると共に、第7の開閉弁(V7)及び逆止弁(V8)が介装されている。
【0009】
上記構成によって、補助熱源手段(20)が1基だけで給湯及び暖房用熱量の供給をできる。さらに開閉弁の操作によって、給湯及び暖房用熱量の必要供給条件に応じた配管径路にして補助熱源手段を無駄なく利用する。また、上記構成の装置等にセンサを設け、開閉弁(V1〜V7)を自動制御させるようにすれば、オペレータからの入力による任意の運転モード選択で自動運転できる。
【0010】
【発明の実施の形態】
以下、図1から図14を参照して、本発明の実施形態について説明する。
【0011】
先ず、図1を参照して、本発明の第1実施形態を説明する。
図1において、コージェネレーションシステムの燃焼機関、燃料電池、その他の発熱機関(図示せず)は、蓄熱槽10に連通している。そして、蓄熱槽10内部の温水が保有する熱量を有効にするべく、温水ラインL10により蓄熱槽10外に供給される。
【0012】
温水ラインL10は、例えばガスバーナ等で構成される補助熱源手段20を経由して、分岐点B3にて、給湯用機器側の温水ラインL17と熱的負荷用熱交換器側の温水ラインL16とに分岐する。
温水ラインL17は、給湯用機器12(図面では符号のみ表示する)に連通する。
一方、温水ラインL16は熱的負荷用熱交換器16を通過して、ラインL18を流過し且つそこに介装された温水循環手段18によりヘッドを付加され、温水ラインL19(温水戻りライン)を介して蓄熱槽10に戻される。
【0013】
ここで、熱交換器16は、図示しない熱媒ラインを介して、暖房等14(図1〜図3では図示せず:熱的負荷)と熱的に連通している。
また、温水循環手段18は、例えばポンプの様な流体機器により構成されており、図1で示す温水回路、すなわち、蓄熱槽10、補助熱源手段20、熱交換器16、温水ラインL10、L16、L18、L19により構成される回路において、温水を流過せしめる作用を奏する。
【0014】
図1の実施形態において、蓄熱槽10内の温水の温度が十分に高い場合には、補助熱源手段20で補助加熱すること無く、温水をそのまま給湯用機器12或いは熱交換器16に供給して、利用する。
これに対して、蓄熱槽10内の温水温度が比較的低温である場合には、ラインL10を流過する温水は、補助熱源手段20を通過する際に加熱されて、昇温する。
【0015】
図1において、温水を給湯用機器12でのみ利用する場合は、温水循環手段18を停止した状態で、給湯用機器12側の開閉手段(例えば蛇口:図示せず)を開放すればよい。
一方、図1において、温水の保有する熱量を熱交換器16でのみ利用する場合は、給湯用機器12側の開閉手段を閉鎖した状態で、温水循環手段18を駆動すればよい。
そして、給湯用機器12及び熱的負荷用熱交換器16の双方で温水を利用する場合には、給湯用機器12側の開閉手段を開放しつつ、温水循環手段18を駆動すればよい。
なお、給湯用機器12側の開閉手段を閉鎖し、且つ、温水循環手段18を停止すれば、蓄熱槽10内の温水は、図1の温水回路内を流過しない。
【0016】
次に、図2及び図3を参照して、本発明の第2実施形態を説明する。
図2及び図3において、温水ラインL18は、循環手段18と蓄熱槽10の間の分岐点B4で、蓄熱槽10に連通する温水ラインL19と、分岐ラインL20とに分岐している。
【0017】
分岐ライン(或いはバイパスライン)L20は、分岐点B4と、蓄熱槽10と補助熱源手段20との間の領域の合流点G1とを連通している。ここで、蓄熱槽10と補助熱源手段20とを連通する温水ラインは、合流点G1から蓄熱槽10側が符号「L10」で示され、合流点G1から補助熱源手段20側が符号「L12」で示される。
分岐ラインL20には逆止弁V8が介装されている。この分岐ラインL20を設けることにより、ラインL18を流れる温水の温度が低い場合や、蓄熱槽内の温度が低い場合等では、蓄熱槽10をバイパスして、補助熱源手段20による加熱のみで、給湯用機器12或いは熱交換器16による熱量の需要を賄うようにすることが出来る。
【0018】
ここで、熱交換器16を通過した温水を、蓄熱槽10に連通する戻りラインL19側に流すか、或いは、バイパスラインL20に流過せしめるかについては、図2で示す様に、ラインL19に介装した開閉弁V6と、バイパスラインL20に介装した開閉弁V7とを開閉制御することにより、選択することが可能である。
すなわち、温水を戻りラインL19に流す場合は、弁V6を開放し、弁V7を閉鎖する。一方、温水をバイパスラインL20に流す場合は、弁V6を閉鎖し、弁V7を開放すれば良い。
【0019】
或いは、図3で示すように、分岐点B4に三方弁V30を設け、三方弁V30の開閉制御により、温水を戻りラインL19側(蓄熱槽10側)に流すか、或いは、バイパスラインL20に流過せしめるかを選択することが出来る。
【0020】
図2及び図3で示す第3実施形態におけるその他の構成及び作用効果は、図1の実施形態と同様である。
また、図2と図3とは、2つの開閉弁V6,V7を設けるか(図2)、三方弁V30を設けるか(図3)の相違を除き、構成及び作用効果は同様である。
【0021】
以下、図4〜図14を参照して、本発明の第3実施形態を説明する。
本発明の全体構成を示す図4において、例えば、コージェネレーションシステムの燃焼機関、燃料電池、その他の発熱機関等の図示しない熱源には、その熱源から供給される温水を蓄える蓄熱槽10が連通されている。
【0022】
この蓄熱槽10に、温水を使用する給湯用機器の給湯装置12が後記する温水回路によって連通され、温水の熱量を使用する熱的負荷の暖房装置14が蓄熱槽10側に回帰する後記の温水回路に設けられた熱的負荷用熱交換器16を介して熱的に連通されている。
給湯装置12に通じる温水回路と、暖房装置14に通じる温水回路とは、補助熱源手段である補助熱源装置20を介するラインで共通して構成されている。
【0023】
以下、上記各装置を含む温水回路について説明する。
蓄熱槽10の端部10aに温水が流出する温水ラインL10が連通され、ラインL10は第1の分岐点B1でラインL11とラインL12に分岐されている。
その一方のラインL12は、第1の開閉弁V1に連通され、第1の開閉弁V1にはラインL12の1部であるラインL12Aが連通されている。ラインL12Aは、第1の合流点G1を経て、さらに補助熱源装置20を介して第3の分岐点B3に連通されている。熱源装置20は、図示ではガス燃焼器となっているが、電熱その他でもよい。
【0024】
第3の分岐点B3で2分された一方は、ラインL15となって第4の開閉弁V4を介して第2の合流点G2に連通され、ここからラインL17によって給湯装置12に連通されている。
第1の分岐点B1で分岐された他方のラインL11は、分岐点B2を経て第2の開閉弁V2に連通され、第2の開閉弁V2からラインL13によって前記第2の合流点G2に連通されている。
【0025】
前記第3の分岐点B3で分岐された他方は、ラインL16となって第5の開閉弁V5を介して合流点G3に連通され、第2の分岐点B2から分岐し第3の開閉弁V3を介したラインL14と合流して、ラインL18となって熱的負荷用熱交換器(以降、熱交換器と略記する。)16を介装する。
熱交換器16を経たラインL18は、熱交換器16を通過する温水を循環させるための温水循環手段であるポンプ18を介して、第4の分岐点B4に連通されている。
【0026】
第4の分岐点B4で2分されたラインL18の一方は、ラインL20となって第7の開閉弁V7及び逆止弁V8を介して、蓄熱槽10をバイパスする要領で、前記合流点G1に連通されている。
第4の分岐点B4で2分されたラインL18の他方は、ラインL19となって第6の開閉弁V6を介して蓄熱槽10の端部10bに連通されている。
【0027】
前記配管ライン構成において、ラインL10、ラインL12及び補助熱源装置20を連通するラインL12A、ラインL11が、給湯用温水ラインと暖房用温水ラインの共通ラインとなっている。
【0028】
前記熱交換器16に、暖房装置14に連通するラインLhが熱的に接触している。熱的接触の方法は、図示の例では、回流する温水の低温側に熱媒Wwの入り口15iが取り付けられ、高温側に出口15oが取り付けられる向流型に配置されている。符号14Aは、暖房用熱媒Wwを循環させるポンプである。
【0029】
上記構成の温水供給装置の作用を、図5〜図12によって説明する。
図5は、補助熱源装置20を使用して蓄熱槽10からの温水を加熱昇温させてから、暖房及び給湯を行う場合の状態を示す図で、図4も参照して、第2の開閉弁V2と第3の開閉弁V3と第6の開閉弁V6とが閉止された作動状態である。
蓄熱槽10には、図示しない温水回路(燃料電池等の発熱手段と貯湯槽とを連通する図示しない回路)より温水が供給されている。或いは、図示しない回路(例えば水道配管)により、蓄熱槽10へ上水が供給されて常時蓄熱槽内の温水量が所定レベルを保持するよう作動している。
【0030】
蓄熱槽10の端部10aから吐出された温水は、蓄熱槽10内の水頭(ヘッド)によってラインL10、第1の分岐点B1、ラインL12、第1の開閉弁V1、ラインL12Aを経由し、合流点G1で後記の暖房用回流と合流して補助熱源装置20で加熱され昇温し、第3の分岐点B3で分岐して、その一方はラインL15により第4の開閉弁V4、ラインL17を経由して給湯装置12に向かう。
【0031】
第3の分岐点B3で分岐した温水の他方はラインL16によって、第5の開閉弁V5を経由し、熱交換器16で暖房装置14の熱媒Wwに授熱し、ポンプ18、分岐点B4、第7の開閉弁V7及び逆止弁V8を経由して合流点G1に戻る。
【0032】
上記の温水径路により給湯装置12で必要とする温水の温度と量が保証され、熱交換器16で授熱する熱量が保証される。そして、熱交換器16で授熱した温水は蓄熱槽10をバイパスして補助熱源装置20に回流するので、暖房用温水には補助熱源装置20では授熱量だけの熱量補完だけでよい。従って大量の蓄熱槽10内の温水で冷却される熱損失がない。また、蓄熱槽10を冷却系の排熱装置の1部として使用する発熱手段に対しては、蓄熱槽10内の温水温度を昇温させることをさけるようにもなっている。
【0033】
図6は、補助熱源装置20を使用しないで蓄熱槽10内の温水をそのまま給湯及び暖房に使用する場合の作用を示している。
図4も参照して、図6は、第1の開閉弁V1と第4の開閉弁V4と第5の開閉弁V5と第7の開閉弁V7が閉止された場合の作動状態である。
蓄熱槽10の端部10aから吐出された温水は、蓄熱槽10内の水頭(ヘッド)によってラインL10、第1の分岐点B1、ラインL11を経て第2の分岐点B2で分岐する。その一方は、第2の開閉弁V2、ラインL13、第2の合流点G2、ラインL17を経て給湯装置12に向かう。
【0034】
第2の分岐点B2で分岐した温水の他方は、ラインL14、第3の開閉弁V3、第3の合流点G3、ライン18を経て熱交換器16で暖房装置14用の熱媒Wwに授熱する。授熱後の温水は、ポンプ18、第4の分岐点B4、第6の開閉弁V6を経て蓄熱槽10の端部10bに戻る。
【0035】
このように、蓄熱槽10内の温水温度が給湯及び暖房に必要な温度を満たしていれば、補助熱源装置20を休止させて加熱熱量を省くことができる。
【0036】
図7は、暖房にのみ補助熱源装置20を使用して、給湯には蓄熱槽10内の温水をそのまま使用する場合の作用を示している。
図4も参照して、図7は、第1の開閉弁V1と第4の開閉弁V4と第3の開閉弁V3と第6の開閉弁V6が閉止された場合の作動状態である。
蓄熱槽10の端部10aから吐出された温水は、蓄熱槽10内の水頭(ヘッド)によってラインL10、第1の分岐点B1、ラインL11、第2の分岐点B2、第2の開閉弁V2、第2の合流点G2を経てラインL17によって給湯装置12に向かう。
【0037】
一方、暖房用温水は、蓄熱槽10と関係なく補助熱源装置20の熱量のみで下記のように授熱する。
補助熱源装置20で加熱され昇温した回流温水は、第3の分岐点B3、ラインL16、第5の開閉弁V5、第3の合流点G3、ライン18を経て熱交換器16で暖房装置14用の熱媒Wwに授熱する。授熱後の温水は、ポンプ18、第4の分岐点B4、ラインL20、第7の開閉弁V7、逆止弁V8、合流点G1を経て補助熱源装置20に戻る。
【0038】
このように、蓄熱槽10内の温水温度が給湯に必要な温度を満たしていれば、補助熱源装置20をバイパスさせ、暖房用温度に高温が必要な場合は補助熱源装置20を使用して加熱熱量を限定的に供給することで、熱量の無駄を省くことができる。
【0039】
図8は、給湯にのみ補助熱源装置20を使用して、暖房には蓄熱槽10内の温水をそのまま使用する場合の作用を示している。
図4も参照して、図8は、第2の開閉弁V2と第5の開閉弁V5と第7の開閉弁V7が閉止された場合の作動状態である。
【0040】
蓄熱槽10の端部10aから吐出された温水は、蓄熱槽10内の水頭(ヘッド)によりラインL10によって第1の分岐点B1に到り、ラインL11とラインL12に分岐する。
ラインL11に分岐した温水は暖房用となって第2の分岐点B2、ラインL14、第3の開閉弁分V3、第3の合流点G3、ライン18を経て熱交換器16で暖房装置14用の熱媒Wwに授熱する。授熱後の温水は、ポンプ18、第4の分岐点B4、第6の開閉弁V6を経て蓄熱槽10に戻る。
【0041】
一方、第1の分岐点B1でラインL12に分岐した給湯用温水は、第1の開閉弁V1、第1の合流点G1を経て補助熱源装置20で加熱され昇温して第3の分岐点B3、第4の開閉弁V4、第2の合流点G2、ラインL17を経て給湯装置12に向かう。
【0042】
このように、蓄熱槽10内の温水温度が暖房に必要な温度を満たしていれば、補助熱源装置20をバイパスさせ、給湯用温度に高温が必要な場合は補助熱源装置20を使用して加熱熱量を限定的に供給することで、熱量の無駄を省くことができる。
【0043】
図9は、給湯に補助熱源装置20を使用して高温水を供給する一方、暖房への熱量授受が不要な場合の作用を示している。
図4も参照して、図9は、第2の開閉弁V2と第3の開閉弁V3と第5の開閉弁V5と第6の開閉弁V6と第7の開閉弁V7が閉止された場合の作動状態である。
【0044】
蓄熱槽10の端部10aから吐出された温水は、蓄熱槽10内の水頭(ヘッド)によってラインL10で第1の分岐点B1、ラインL12A、第1の合流点G1を経て補助熱源装置20で加熱され昇温して第3の分岐点B3、第4の開閉弁V4、第2の合流点G2、ラインL17を経て給湯装置12に向かう。
暖房用の径路は、すべて閉止される。
【0045】
このように、暖房用熱量の授受が不要な場合には暖房用の温水回路を閉止して温水移動による無駄な放熱と回流動力を省き、蓄熱槽10内の温水温度が給湯に必要な温度を満たしていない場合のみ補助熱源装置20を使用して加熱熱量を限定的に付与しポンプ18を停止させて、熱量、電気等の無駄を省くことができる。
【0046】
図10は、給湯に蓄熱槽10内の温水をそのまま供給するのみで、暖房への熱量授受が不要な場合の作用を示している。
図4も参照して、図10は、第1の開閉弁V1と第3の開閉弁V3と第4の開閉弁V4と第5の開閉弁V5と第6の開閉弁V6と第7の開閉弁V7が閉止された場合の作動状態である。
【0047】
蓄熱槽10の端部10aから吐出された温水は、蓄熱槽10内の水頭(ヘッド)によってラインL10で第1の分岐点B1、ラインL11、第2の分岐点B2、ラインL13、第2の合流点G2、ラインL17を経て給湯装置12に向かう。
暖房用の径路は、すべて閉止される。
【0048】
このように、暖房用熱量の授受が不要な場合には暖房用の温水回路を閉止して温水移動による無駄な放熱と回流動力を省き、蓄熱槽10内の温水温度が給湯に必要な温度を満たしている場合には補助熱源装置20を使用せず、ポンプ18を停止させて熱量、電気等の無駄を省くことができる。
図11は、暖房にのみ補助熱源装置20を使用して、給湯には温水を供給しない場合の作用を示している。
図4も参照して、図11は、第1の開閉弁V1と、第2の開閉弁V2と第3の開閉弁V3と第4の開閉弁V4と第6の開閉弁V6が閉止された場合の作動状態である。
【0049】
暖房用温水は、蓄熱槽10と関係なく補助熱源装置20の熱量のみで下記のように授熱する。
補助熱源装置20で加熱され昇温した回流温水は、第3の分岐点B3、ラインL16、第5の開閉弁V5、第3の合流点G3、ライン18を経て熱交換器16で暖房装置14用の熱媒Wwに授熱する。授熱後の温水は、ポンプ18、第4の分岐点B4、ラインL20、第7の開閉弁V7、逆止弁V8、合流点G1を経て補助熱源装置20に戻る。
【0050】
このように、暖房用熱媒に蓄熱槽10内の水温以上の高温熱量が必要な場合は補助熱源装置20を使用して加熱熱量を限定的に供給することで、熱量の無駄を省くことができる。
【0051】
図12は、蓄熱槽10内の温水温度で暖房用熱媒Wwを加熱できる場合で、補助熱源装置20を使用しないで蓄熱槽10内の温水をそのまま暖房に使用し、給湯が不要の場合を示している。
図4も参照して、図12は、第1の開閉弁V1と第2の開閉弁V2と第4の開閉弁V4と第5の開閉弁V5と第7の開閉弁V7が閉止された場合の作動状態である。
【0052】
蓄熱槽10の端部10aから吐出された温水は、蓄熱槽10内の水頭(ヘッド)によってラインL10、第1の分岐点B1、ラインL11を経て第2の分岐点B2に到る。ここからラインL14、第3の開閉弁V3、第3の合流点G3、ライン18を経て熱交換器16で暖房装置14用の熱媒Wwに授熱する。授熱後の温水は、ポンプ18、第4の分岐点B4、第6の開閉弁V6を経て蓄熱槽10の端部10bに戻る。
【0053】
このように、蓄熱槽10内の温水温度が暖房に必要な温度であれば、補助熱源装置20を休止させて加熱熱量を省くことができる。
【0054】
図13は、図4における全ての開閉弁V1〜V7を自動化した構成図を示している。図4に付加する装置を主体にして、制御にかかわる構成を説明する。なお、第1〜第7の開閉弁V1〜V7を自動化させた自動開閉弁は、符号にAをつけて例えば第1の開閉弁V1を第1の自動開閉弁AV1のように置換して表す。
【0055】
図13において、蓄熱槽10の吐出側端部10a近傍に温水温度検知用の温度センサT1が装着され制御装置40に信号線31で連通されている。また、給湯用ラインL17に給湯温度を検出する温度センサT2が装着され、熱交換器16の熱媒入り口15iに通じるラインLhに熱媒Wwの温度を検知する温度センサT3が装着されて、それぞれ信号線32、33で運転モード入力手段30に連通されている。
【0056】
前記した第1の自動開閉弁AV1と制御装置40とは制御線41で連通され、第2の自動開閉弁AV2と制御装置40とは制御線42で連通され、同要領で自動開閉弁AV3〜AV7はそれぞれ制御線43〜47で制御装置40に連通されている。
【0057】
運転モード入力手段30は、温度センサT2、T3の検知温度を受信して図13で構成される温水供給装置の機能をどのように使用するかを前記図5〜図12の運転モードの中から選択し、制御装置40に送信指示する機能を有して構成されている。または、オペレータからの手入力による図5〜図12の中の1つを制御装置40に送信指示する機能を有して構成されている。
【0058】
制御装置40は、信号線34を介して運転モード入力手段30の信号を受信して、温度センサT1からの蓄熱槽10の温水温度を勘案し、予め入力してある制御手順、データマップ、データ諸表を参照して、第1〜第7の自動開閉弁V1〜V7を開閉操作して所定の運転モードに制御する機能を有して構成されている。
【0059】
図13の作用を、図14に示すフローチャートによって説明する。
先ず、運転モード入力手段30により、暖房運転を行うか、給湯を行うか、暖房運転及び給湯を同時に行うかを決定し、その決定結果を制御装置40に読みこませる(ステップS1)。
次に、ステップS2において、制御装置40が温度センサT1からの蓄熱槽10の温水温度T1を読みこむ。
ステップS1の決定結果(暖房運転を行うか、給湯を行うか、或いは、暖房運転及び給湯を同時に行うか)と、蓄熱槽1の温水温度T1に基づいて、制御装置40は、補助熱源20を使用する必要があるか否かを判断することが出来る。そして、その時点においては、図5〜図12中のどの運転モードが適正であるかを決定することが出来る。
制御装置40の係る決定に従って、ステップS3では、決定された運転モード(図5〜図12中の1つの運転モード)に従って、第1〜第7の自動開閉弁V1〜V7の開閉を決定する。
ステップS4では、ステップS3で決定した各自動開閉弁の制御信号を制御装置40を出力して自動制御弁の開閉をさせる。
【0060】
図示の実施形態はあくまでも例示であり、本発明の技術的範囲を限定する趣旨の記述ではない旨を付記する。
【0061】
【発明の効果】
本発明の作用効果を、以下に列記する。
(1) 補助熱源手段を1基のみの設置で、給湯用機器及び暖房用等の熱的負荷を充足できる。
(2) 蓄熱槽内の温水が温度、水量で不充分であっても、給湯用機器及び暖房用等の熱的負荷を充足できる。
(3) 給湯用機器及び暖房用等の熱的負荷での温水利用条件によって、補助熱源手段の使用、不使用を含めて有効に使用できるので、無駄な熱量の使用が避けられる。
(4) 補助熱源手段を1基にしたので、補助熱源手段の設置スペース、設置コスト、保全コストが低減される。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示すブロック図。
【図2】本発明の第2実施形態を示すブロック図。
【図3】本発明の第3実施形態を示すブロック図。
【図4】本発明の第4実施形態を示すブロック図。
【図5】図4において、補助熱源装置を利用して給湯及び暖房給熱を行う状態を示す作動図。
【図6】図4において、補助熱源装置を利用せずに給湯及び暖房給熱を行う状態を示す作動図。
【図7】図4において、補助熱源装置を暖房のみに利用して、給湯には利用しない状態を示す作動図。
【図8】図4において、補助熱源装置を給湯のみに利用して、暖房には利用しない状態を示す作動図。
【図9】図4において、補助熱源装置を給湯のみに利用して、暖房回路を閉じて暖房不作動の状態を示す作動図。
【図10】図4において、補助熱源装置を利用しないで、給湯のみ行う状態を示す作動図。
【図11】図4において、補助熱源装置を暖房のみに利用して、給湯不作動の状態を示す作動図。
【図12】図4において、補助熱源装置を利用せずに暖房のみ行い、給湯不作動の状態を示す作動図。
【図13】図4における開閉弁を自動制御するよう構成した配管構成図。
【図14】図13の構成を自動運転させる作動フローチャート。
【図15】外部から供給される熱量を蓄熱槽に蓄え、給湯及び暖房用等に利用する従来の温水供給装置を示す構成図。
【符号の説明】
10・・・蓄熱槽
12・・・給湯用機器
14・・・(暖房用等の)熱的負荷
16・・・熱的負荷用熱交換器
18・・・温水循環手段(ポンプ)
20・・・補助熱源手段(補助熱源装置)
B1、B2、B3、B4・・・第1〜第4の分岐点
V1、V2、V3、V4、V5、V6、V7・・・第1〜第7の開閉弁
V8・・・逆止弁
L10〜L20・・・(配管)ライン
Lh・・・(暖房用等の)熱媒ライン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot water supply device that stores hot water supplied from a heat generating means such as a combustion engine, a fuel cell, and other heat generating engines of a cogeneration system in a heat storage tank and is used for hot water supply or heating.
[0002]
[Prior art]
In the conventional hot water supply device shown in FIG. 15, a heat storage tank A10 that stores hot water supplied from an external heating means, and a first auxiliary heat source device A20 that further heats the hot water when supplying the hot water to the hot water supply device A12. A heat exchanger A16 that gives heat to a heat medium used for heating and the like, a second auxiliary heat source device A20 that further heats the heat medium heated by the heat exchanger A16, and each of these devices The main part is comprised with the piping which communicates.
One of the hot water stored in the heat storage tank A10 is supplied to the hot water supply device A12 as hot water, and the other is supplied to the heat transfer tank A10 through the heat exchanger A16 and recovered in the heat storage tank A10. It is like that.
As a piping path, a branch point AB1 is provided in the hot water line AL10 connected to the upper part of the heat storage tank A10, and one side from the branch point AB1 becomes the line AL12A of the hot water supply system, and the hot water supply device A12 via the auxiliary heat source device A20. The other side from the branch point AB1 becomes a line AL16 of the heating system and is configured to return to the heat storage tank A10 via the heat exchanger A16, the line AL18, the hot water circulation means A18, and the line AL19.
In the pipe path configuration, the hot water to the hot water supply device A12 passes through the first auxiliary heat source device A20 and is heated, and the heat medium of the heating side device A14 is second after receiving heat from the heat exchanger A16 by the heat medium line ALh. The auxiliary heat source device A30 is further heated.
[0003]
In the conventional configuration in which the auxiliary heat source devices A20 and A30 are provided in each of the hot water supply system and the heating system, installation space, installation cost, and maintenance cost for the two auxiliary heat source devices A20 and A30 are required. Even if it is not necessary to heat, the auxiliary heat source devices A20, A30 are always radiated due to the constant operation.
[0004]
[Problems to be solved by the invention]
The present invention has been proposed in view of the above-mentioned problems of the prior art, and it is sufficient to install only one auxiliary heat source. When a sufficient amount of heat is stored in the heat storage tank, the auxiliary heat source does not pass. It aims at provision of the hot water supply device constituted like this.
[0005]
[Means for Solving the Problems]
According to the present invention, the heat storage tank (10) communicating with the heat generating means, the auxiliary heat source means (20) communicating with the heat storage tank (10), and the thermal load communicating with the thermal load A heat exchanger (16) for hot water supply, a hot water supply device (12) communicating with the auxiliary heat source means (20) and the heat exchanger for thermal load (16), and those devices (10, 12, 16) , 20), and a hot water supply device having a hot water circulation means (18) provided in the hot water line and allowing hot water supplied from the heat storage tank (10) to flow therethrough. The hot water line (L10) through which the hot water flowing out from the water bypasses the auxiliary heat source means (20) and the line (L12) where the auxiliary heat source means (20) is interposed at the first branch point (B1). Branch to line (L11), auxiliary heat source means (20) A first on-off valve (V1) is interposed in the region between the first branch point (B1) and the first junction (G1) of the line (L12) where the gas is interposed, and the auxiliary heat source means The line (L11) bypassing (20) is a line (L13) communicating with the hot water supply device (12) side at the second branch point (B2) and a line communicating with the heat load heat exchanger (16) side. The second on-off valve (V2) is interposed in the line (L13) that branches to (L14) and communicates from the second branch point (B2) to the hot water supply device (12) side. A line (L14) communicating from the point (B2) to the heat exchanger for thermal load (16) is provided with a third on-off valve (V3), and an auxiliary heat source means (20) is provided. (L12) is a heat exchanger for a thermal load and a line (L15) communicating with the hot water supply device (12) side at the third branch point (B3) 16) branch to a line (L16) communicating with the side, and a fourth open / close valve (V4) is connected to the line (L15) communicating from the third branch point (B3) to the hot water supply device (12) side. A fifth on-off valve (V5) is interposed in the line (L16) communicating from the third branch point (B3) to the heat load heat exchanger (16) side. The line (L13) communicating from the second branch point (B2) to the hot water supply device (12) side and the line (L15) communicating from the third branch point (B3) to the hot water supply device (12) side are the second. A line (L17) that joins at the joining point (G2) and communicates with the hot water supply device (12), and a line that communicates from the second branch point (B2) to the heat load heat exchanger (16) side ( L14) and a line (L16) communicating from the third branch point (B3) to the heat load heat exchanger (16) side Is joined at the third junction (G3) to become a line (L18) in which the heat load heat exchanger (16) is interposed, and a line in which the heat load heat exchanger (16) is interposed (L18) is branched at a fourth branch point (B4) into a line (L19) communicating with the heat storage tank (10) and a line (L20) communicating with the auxiliary heat source means (20) side. A sixth open / close valve (V6) is interposed in the line (L19) communicating from the branch point (B4) to the heat storage tank (10), and the auxiliary heat source means (20) from the fourth branch point (B4). The line (L20) communicating with the side merges with the line (L12) communicating with the auxiliary heat source means (20) from the first branch point (B1) at the first junction (G1), and An on-off valve (V7) and a check valve (V8) are interposed.
[0009]
With the above configuration, the amount of heat for hot water supply and heating can be supplied with only one auxiliary heat source means (20). Furthermore, by operating the on-off valve, the auxiliary heat source means is used without waste by making the piping route in accordance with the necessary supply conditions of the hot water supply and heating heat quantity. In addition, if a device is provided in the apparatus having the above-described configuration and the on-off valves (V1 to V7) are automatically controlled, automatic operation can be performed by selecting an arbitrary operation mode based on an input from an operator.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0011]
First, a first embodiment of the present invention will be described with reference to FIG.
In FIG. 1, a combustion engine, a fuel cell, and other heat generating engines (not shown) of the cogeneration system communicate with the heat storage tank 10. And in order to validate the calorie | heat amount which the warm water inside the thermal storage tank 10 holds, it is supplied out of the thermal storage tank 10 by the warm water line L10.
[0012]
The hot water line L10 is connected to a hot water line L17 on the hot water supply device side and a hot water line L16 on the heat exchanger for thermal load at a branch point B3 via the auxiliary heat source means 20 configured by, for example, a gas burner. Branch.
The hot water line L17 communicates with the hot water supply device 12 (only a symbol is shown in the drawing).
On the other hand, the hot water line L16 passes through the heat exchanger 16 for thermal load, passes through the line L18, and is added with a head by the hot water circulation means 18 interposed therein, and the hot water line L19 (hot water return line). Is returned to the heat storage tank 10.
[0013]
Here, the heat exchanger 16 is in thermal communication with a heating unit 14 (not shown in FIGS. 1 to 3: thermal load) via a heating medium line (not shown).
Further, the hot water circulation means 18 is constituted by a fluid device such as a pump, for example, and the hot water circuit shown in FIG. 1, that is, the heat storage tank 10, the auxiliary heat source means 20, the heat exchanger 16, the hot water lines L10 and L16, In the circuit constituted by L18 and L19, there is an effect of flowing warm water.
[0014]
In the embodiment of FIG. 1, when the temperature of the hot water in the heat storage tank 10 is sufficiently high, the hot water is supplied as it is to the hot water supply device 12 or the heat exchanger 16 without being auxiliary heated by the auxiliary heat source means 20. , Use.
On the other hand, when the temperature of the hot water in the heat storage tank 10 is relatively low, the hot water flowing through the line L10 is heated when passing through the auxiliary heat source means 20 to increase the temperature.
[0015]
In FIG. 1, when hot water is used only by the hot water supply device 12, the hot water circulation device 18 may be stopped and the open / close means (for example, a faucet: not shown) on the hot water supply device 12 side may be opened.
On the other hand, in FIG. 1, when the amount of heat held by the hot water is used only by the heat exchanger 16, the hot water circulation means 18 may be driven with the open / close means on the hot water supply equipment 12 side closed.
When both the hot water supply device 12 and the thermal load heat exchanger 16 use hot water, the hot water circulation means 18 may be driven while opening and closing the hot water supply device 12 side.
If the opening / closing means on the hot water supply device 12 side is closed and the hot water circulation means 18 is stopped, the hot water in the heat storage tank 10 does not flow through the hot water circuit of FIG.
[0016]
Next, a second embodiment of the present invention will be described with reference to FIGS.
2 and 3, the hot water line L18 branches at a branch point B4 between the circulation means 18 and the heat storage tank 10 into a hot water line L19 communicating with the heat storage tank 10 and a branch line L20.
[0017]
The branch line (or bypass line) L20 communicates the branch point B4 and the junction point G1 in the region between the heat storage tank 10 and the auxiliary heat source means 20. Here, the hot water line that connects the heat storage tank 10 and the auxiliary heat source means 20 is indicated by the symbol “L10” from the junction G1 to the heat storage tank 10 side, and the auxiliary heat source means 20 side from the junction G1 is indicated by the sign “L12”. It is.
A check valve V8 is interposed in the branch line L20. By providing the branch line L20, when the temperature of the hot water flowing through the line L18 is low, or when the temperature in the heat storage tank is low, the heat storage tank 10 is bypassed, and only the heating by the auxiliary heat source means 20 is used. The demand for the amount of heat by the equipment 12 or the heat exchanger 16 can be covered.
[0018]
Here, as shown in FIG. 2, as shown in FIG. 2, whether the hot water that has passed through the heat exchanger 16 is allowed to flow to the return line L19 that communicates with the heat storage tank 10 or to the bypass line L20. Selection can be made by controlling the opening / closing valve V6 interposed and the opening / closing valve V7 interposed in the bypass line L20.
That is, when flowing warm water into the return line L19, the valve V6 is opened and the valve V7 is closed. On the other hand, when flowing warm water into the bypass line L20, the valve V6 may be closed and the valve V7 may be opened.
[0019]
Alternatively, as shown in FIG. 3, a three-way valve V30 is provided at the branch point B4, and hot water is allowed to flow to the return line L19 side (the heat storage tank 10 side) or to the bypass line L20 by opening / closing control of the three-way valve V30. You can choose whether to pass.
[0020]
Other configurations and operational effects of the third embodiment shown in FIGS. 2 and 3 are the same as those of the embodiment of FIG.
Moreover, FIG. 2 and FIG. 3 are the same in structure and effect except the difference of whether two on-off valves V6 and V7 are provided (FIG. 2), or whether the three-way valve V30 is provided (FIG. 3).
[0021]
Hereinafter, a third embodiment of the present invention will be described with reference to FIGS.
In FIG. 4 showing the overall configuration of the present invention, for example, a heat storage tank 10 for storing hot water supplied from the heat source is communicated with a heat source (not shown) such as a combustion engine, a fuel cell, and other heat generating engines of a cogeneration system. ing.
[0022]
A hot water supply device 12 of a hot water supply device that uses hot water is connected to the heat storage tank 10 by a hot water circuit described later, and a heating device 14 of a thermal load that uses the amount of heat of the hot water returns to the heat storage tank 10 side as described later. It is in thermal communication via a heat load heat exchanger 16 provided in the circuit.
The hot water circuit leading to the hot water supply device 12 and the hot water circuit leading to the heating device 14 are configured in common on a line through the auxiliary heat source device 20 serving as auxiliary heat source means.
[0023]
Hereinafter, a hot water circuit including each of the above devices will be described.
A hot water line L10 through which hot water flows out is communicated with the end 10a of the heat storage tank 10, and the line L10 is branched into a line L11 and a line L12 at a first branch point B1.
One line L12 communicates with the first on-off valve V1, and the first on-off valve V1 communicates with a line L12A that is a part of the line L12. The line L12A communicates with the third branch point B3 via the auxiliary heat source device 20 via the first junction point G1. The heat source device 20 is a gas combustor in the drawing, but may be electric heat or the like.
[0024]
One of the two divided at the third branch point B3 becomes a line L15 and communicates with the second junction G2 via the fourth on-off valve V4, and from here communicates with the hot water supply device 12 via the line L17. Yes.
The other line L11 branched at the first branch point B1 communicates with the second on-off valve V2 via the branch point B2, and communicates with the second junction G2 via the line L13 from the second on-off valve V2. Has been.
[0025]
The other branched at the third branch point B3 becomes a line L16, communicates with the junction G3 via the fifth on-off valve V5, branches off from the second branch point B2, and the third on-off valve V3. Is joined to the line L14 through the line L18, and a heat exchanger for thermal load (hereinafter abbreviated as a heat exchanger) 16 is interposed.
The line L18 passing through the heat exchanger 16 is communicated with the fourth branch point B4 via a pump 18 that is a hot water circulation means for circulating hot water passing through the heat exchanger 16.
[0026]
One of the lines L18 divided into two at the fourth branch point B4 becomes a line L20 and bypasses the heat storage tank 10 via the seventh on-off valve V7 and the check valve V8, and the junction G1 It is communicated to.
The other of the line L18 divided into two by the 4th branch point B4 becomes the line L19, and is connected to the edge part 10b of the thermal storage tank 10 via the 6th on-off valve V6.
[0027]
In the piping line configuration, the line L12A and the line L11 that connect the line L10, the line L12, and the auxiliary heat source device 20 are common lines for the hot water supply hot water line and the heating hot water line.
[0028]
A line Lh communicating with the heating device 14 is in thermal contact with the heat exchanger 16. In the illustrated example, the thermal contact method is arranged in a counterflow type in which the inlet 15i of the heating medium Ww is attached to the low temperature side of the circulating hot water and the outlet 15o is attached to the high temperature side. Reference numeral 14A denotes a pump that circulates the heating medium Ww.
[0029]
The operation of the hot water supply apparatus having the above configuration will be described with reference to FIGS.
FIG. 5 is a diagram showing a state in which heating and hot water supply are performed after heating and heating the hot water from the heat storage tank 10 using the auxiliary heat source device 20, and referring to FIG. This is an operating state in which the valve V2, the third on-off valve V3, and the sixth on-off valve V6 are closed.
Hot water is supplied to the heat storage tank 10 from a hot water circuit (not shown) that connects a heating means such as a fuel cell and a hot water tank (not shown). Alternatively, clean water is supplied to the heat storage tank 10 by a circuit (for example, a water pipe) (not shown) so that the amount of warm water in the heat storage tank is always kept at a predetermined level.
[0030]
The hot water discharged from the end portion 10a of the heat storage tank 10 passes through the line L10, the first branch point B1, the line L12, the first on-off valve V1, and the line L12A by the head of the heat storage tank 10. It joins with the heating circulation described later at the junction G1, is heated by the auxiliary heat source device 20 to rise in temperature, branches at the third branch point B3, one of which is the fourth on-off valve V4, line L17 by the line L15. To the hot water supply device 12.
[0031]
The other of the hot water branched off at the third branch point B3 passes through the fifth on-off valve V5 via the line L16 and transfers heat to the heat medium Ww of the heating device 14 through the heat exchanger 16, and the pump 18, branch point B4, It returns to the junction G1 via the seventh on-off valve V7 and the check valve V8.
[0032]
The temperature and amount of hot water required by the hot water supply device 12 are guaranteed by the hot water path, and the amount of heat transferred by the heat exchanger 16 is guaranteed. And since the hot water heat-transferred with the heat exchanger 16 is bypassed the thermal storage tank 10 and is circulated to the auxiliary heat source device 20, the auxiliary heat source device 20 only needs to supplement the amount of heat by the auxiliary heat source device 20. Therefore, there is no heat loss that is cooled by the hot water in the large amount of heat storage tank 10. Further, for the heat generating means that uses the heat storage tank 10 as a part of the cooling heat exhaust device, the temperature of the hot water in the heat storage tank 10 is prevented from being raised.
[0033]
FIG. 6 shows the operation when the hot water in the heat storage tank 10 is used as it is for hot water supply and heating without using the auxiliary heat source device 20.
Referring also to FIG. 4, FIG. 6 shows an operating state when the first on-off valve V1, the fourth on-off valve V4, the fifth on-off valve V5, and the seventh on-off valve V7 are closed.
The hot water discharged from the end portion 10a of the heat storage tank 10 is branched at the second branch point B2 via the line L10, the first branch point B1, and the line L11 by the head of the heat storage tank 10. One of them goes to the hot water supply device 12 through the second on-off valve V2, the line L13, the second junction G2, and the line L17.
[0034]
The other of the hot water branched at the second branch point B2 is given to the heating medium Ww for the heating device 14 by the heat exchanger 16 via the line L14, the third on-off valve V3, the third junction G3, and the line 18. heat. The warm water after the heat transfer returns to the end portion 10b of the heat storage tank 10 through the pump 18, the fourth branch point B4, and the sixth on-off valve V6.
[0035]
Thus, if the temperature of the hot water in the heat storage tank 10 satisfies the temperature required for hot water supply and heating, the auxiliary heat source device 20 can be paused to save the heating heat.
[0036]
FIG. 7 shows the operation when the auxiliary heat source device 20 is used only for heating and the hot water in the heat storage tank 10 is used as it is for hot water supply.
Referring also to FIG. 4, FIG. 7 shows an operating state when the first on-off valve V1, the fourth on-off valve V4, the third on-off valve V3, and the sixth on-off valve V6 are closed.
The hot water discharged from the end portion 10a of the heat storage tank 10 is transferred to the line L10, the first branch point B1, the line L11, the second branch point B2, and the second on-off valve V2 by the head in the heat storage tank 10. It goes to the hot water supply apparatus 12 by the line L17 via the 2nd confluence | merging point G2.
[0037]
On the other hand, the heating hot water heats as follows only by the amount of heat of the auxiliary heat source device 20 regardless of the heat storage tank 10.
The circulating hot water heated and heated by the auxiliary heat source device 20 passes through the third branch point B 3, the line L 16, the fifth on-off valve V 5, the third junction point G 3, and the line 18, and then is heated by the heat exchanger 16. Heat is transferred to the heating medium Ww. The heated hot water returns to the auxiliary heat source device 20 through the pump 18, the fourth branch point B4, the line L20, the seventh on-off valve V7, the check valve V8, and the junction point G1.
[0038]
Thus, if the temperature of the hot water in the heat storage tank 10 satisfies the temperature required for hot water supply, the auxiliary heat source device 20 is bypassed, and when the heating temperature is high, the auxiliary heat source device 20 is used for heating. By supplying a limited amount of heat, waste of heat can be eliminated.
[0039]
FIG. 8 shows an operation when the auxiliary heat source device 20 is used only for hot water supply and the hot water in the heat storage tank 10 is used as it is for heating.
Referring also to FIG. 4, FIG. 8 shows an operating state when the second on-off valve V2, the fifth on-off valve V5, and the seventh on-off valve V7 are closed.
[0040]
The hot water discharged from the end portion 10a of the heat storage tank 10 reaches the first branch point B1 by the line L10 by the water head (head) in the heat storage tank 10, and branches into the line L11 and the line L12.
The hot water branched into the line L11 is used for heating and is used for the heating device 14 in the heat exchanger 16 via the second branch point B2, the line L14, the third on-off valve portion V3, the third junction G3, and the line 18. The heat medium Ww is heated. The hot water after heat transfer returns to the heat storage tank 10 through the pump 18, the fourth branch point B4, and the sixth on-off valve V6.
[0041]
On the other hand, the hot water for hot water supply branched to the line L12 at the first branch point B1 is heated by the auxiliary heat source device 20 through the first on-off valve V1 and the first junction point G1, and the temperature is raised. It heads for the hot water supply apparatus 12 through B3, the 4th on-off valve V4, the 2nd junction G2, and the line L17.
[0042]
As described above, if the temperature of the hot water in the heat storage tank 10 satisfies the temperature required for heating, the auxiliary heat source device 20 is bypassed, and when the hot water supply temperature is high, the auxiliary heat source device 20 is used for heating. By supplying a limited amount of heat, waste of heat can be eliminated.
[0043]
FIG. 9 shows the operation in the case where hot water is supplied using the auxiliary heat source device 20 for hot water supply and heat transfer to the heating is unnecessary.
Referring also to FIG. 4, FIG. 9 shows the case where the second on-off valve V2, the third on-off valve V3, the fifth on-off valve V5, the sixth on-off valve V6, and the seventh on-off valve V7 are closed. Is the operating state.
[0044]
The hot water discharged from the end portion 10a of the heat storage tank 10 passes through the first branch point B1, the line L12A, and the first junction point G1 in the line L10 by the head of the heat storage tank 10 and then in the auxiliary heat source device 20. The temperature is raised by heating, and the water is supplied to the hot water supply device 12 through the third branch point B3, the fourth on-off valve V4, the second junction point G2, and the line L17.
All heating paths are closed.
[0045]
As described above, when it is not necessary to exchange the amount of heat for heating, the heating hot water circuit is closed to eliminate wasteful heat dissipation and circulating fluid force due to hot water movement, and the hot water temperature in the heat storage tank 10 is set to a temperature required for hot water supply. Only when it is not satisfied, the auxiliary heat source device 20 can be used to limit the amount of heat to be applied and the pump 18 can be stopped to eliminate waste of heat, electricity, and the like.
[0046]
FIG. 10 shows the operation in the case where only the hot water in the heat storage tank 10 is supplied as it is to the hot water supply, and it is not necessary to transfer the amount of heat to the heating.
Referring also to FIG. 4, FIG. 10 shows a first on-off valve V1, a third on-off valve V3, a fourth on-off valve V4, a fifth on-off valve V5, a sixth on-off valve V6, and a seventh on-off valve. This is the operating state when the valve V7 is closed.
[0047]
The hot water discharged from the end portion 10a of the heat storage tank 10 is a first branch point B1, a line L11, a second branch point B2, a line L13, and a second line at a line L10 by a head in the heat storage tank 10. It heads for the hot water supply apparatus 12 through the junction G2 and the line L17.
All heating paths are closed.
[0048]
In this way, when it is not necessary to transfer the amount of heat for heating, the heating hot water circuit is closed to eliminate wasteful heat radiation and circulating fluid force due to hot water movement, and the hot water temperature in the heat storage tank 10 is set to a temperature required for hot water supply. When it is satisfied, the auxiliary heat source device 20 is not used, and the pump 18 is stopped, so that waste of heat, electricity, and the like can be eliminated.
FIG. 11 shows the operation when the auxiliary heat source device 20 is used only for heating and hot water is not supplied for hot water supply.
Referring also to FIG. 4, in FIG. 11, the first on-off valve V1, the second on-off valve V2, the third on-off valve V3, the fourth on-off valve V4, and the sixth on-off valve V6 are closed. The operating state of the case.
[0049]
The heating hot water heats as follows only by the amount of heat of the auxiliary heat source device 20 regardless of the heat storage tank 10.
The circulating hot water heated and heated by the auxiliary heat source device 20 passes through the third branch point B 3, the line L 16, the fifth on-off valve V 5, the third junction point G 3, and the line 18, and then is heated by the heat exchanger 16. Heat is transferred to the heating medium Ww. The heated hot water returns to the auxiliary heat source device 20 through the pump 18, the fourth branch point B4, the line L20, the seventh on-off valve V7, the check valve V8, and the junction point G1.
[0050]
As described above, when the heating heat medium needs a high-temperature heat quantity equal to or higher than the water temperature in the heat storage tank 10, by using the auxiliary heat source device 20 to supply the heating heat quantity in a limited manner, waste of heat quantity can be saved. it can.
[0051]
FIG. 12 shows a case where the heating medium Ww can be heated at the hot water temperature in the heat storage tank 10, and the hot water in the heat storage tank 10 is used for heating without using the auxiliary heat source device 20, and no hot water supply is required. Show.
Referring also to FIG. 4, FIG. 12 shows a case where the first on-off valve V1, the second on-off valve V2, the fourth on-off valve V4, the fifth on-off valve V5, and the seventh on-off valve V7 are closed. Is the operating state.
[0052]
The warm water discharged from the end portion 10a of the heat storage tank 10 reaches the second branch point B2 via the line L10, the first branch point B1, and the line L11 by the head of the heat storage tank 10. From here, the heat exchanger 16 heats the heat medium Ww for the heating device 14 through the line L14, the third on-off valve V3, the third junction G3, and the line 18. The warm water after the heat transfer returns to the end portion 10b of the heat storage tank 10 through the pump 18, the fourth branch point B4, and the sixth on-off valve V6.
[0053]
Thus, if the temperature of the hot water in the heat storage tank 10 is a temperature necessary for heating, the auxiliary heat source device 20 can be paused to save the amount of heating heat.
[0054]
FIG. 13 shows a configuration diagram in which all the on-off valves V1 to V7 in FIG. 4 are automated. A configuration related to control will be described mainly with the apparatus added to FIG. The automatic opening / closing valves in which the first to seventh opening / closing valves V1 to V7 are automated are represented by adding A to the reference numeral and replacing the first opening / closing valve V1, for example, with the first automatic opening / closing valve AV1. .
[0055]
In FIG. 13, a temperature sensor T <b> 1 for detecting hot water temperature is mounted in the vicinity of the discharge-side end portion 10 a of the heat storage tank 10, and communicates with the control device 40 through a signal line 31. Further, a temperature sensor T2 for detecting the hot water supply temperature is mounted on the hot water supply line L17, and a temperature sensor T3 for detecting the temperature of the heat medium Ww is mounted on the line Lh leading to the heat medium inlet 15i of the heat exchanger 16, respectively. The signal lines 32 and 33 communicate with the operation mode input means 30.
[0056]
The first automatic opening / closing valve AV1 and the control device 40 are connected by a control line 41, and the second automatic opening / closing valve AV2 and the control device 40 are connected by a control line 42. AV7 is connected to the control device 40 through control lines 43 to 47, respectively.
[0057]
The operation mode input means 30 receives the detected temperatures of the temperature sensors T2 and T3 and determines how to use the function of the hot water supply apparatus configured in FIG. 13 from among the operation modes in FIGS. It has a function of selecting and instructing transmission to the control device 40. Or it has a function which instruct | indicates transmission of one of FIGS. 5-12 by the manual input from an operator to the control apparatus 40, and is comprised.
[0058]
The control device 40 receives the signal of the operation mode input means 30 via the signal line 34, takes into account the hot water temperature of the heat storage tank 10 from the temperature sensor T1, and inputs the control procedure, data map, and data inputted in advance. Referring to the tables, the first to seventh automatic opening / closing valves V1 to V7 are opened / closed and controlled to a predetermined operation mode.
[0059]
The operation of FIG. 13 will be described with reference to the flowchart shown in FIG.
First, the operation mode input means 30 determines whether to perform heating operation, hot water supply, or heating operation and hot water supply at the same time, and causes the control device 40 to read the determination result (step S1).
Next, in step S2, the control device 40 reads the hot water temperature T1 of the heat storage tank 10 from the temperature sensor T1.
Based on the determination result of step S <b> 1 (whether heating operation is performed, hot water is supplied, or heating operation and hot water are performed simultaneously) and the hot water temperature T <b> 1 of the heat storage tank 1, the control device 40 controls the auxiliary heat source 20. It can be determined whether or not it is necessary to use it. At that time, it is possible to determine which operation mode in FIGS. 5 to 12 is appropriate.
In accordance with the determination made by the control device 40, in step S3, the opening / closing of the first to seventh automatic opening / closing valves V1 to V7 is determined according to the determined operation mode (one operation mode in FIGS. 5 to 12).
In step S4, the control signal of each automatic opening / closing valve determined in step S3 is output to the control device 40 to open / close the automatic control valve.
[0060]
It should be noted that the illustrated embodiment is merely an example, and is not a description to limit the technical scope of the present invention.
[0061]
【The invention's effect】
The effects of the present invention are listed below.
(1) The installation of only one auxiliary heat source means can satisfy thermal loads such as hot water supply equipment and heating.
(2) Even if the hot water in the heat storage tank is insufficient in temperature and amount of water, it can satisfy thermal loads such as hot water supply equipment and heating.
(3) Since it can be used effectively including use and non-use of auxiliary heat source means depending on hot water use conditions under hot load such as hot water supply equipment and heating, use of useless amount of heat can be avoided.
(4) Since one auxiliary heat source means is provided, the installation space, the installation cost, and the maintenance cost of the auxiliary heat source means are reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a first embodiment of the present invention.
FIG. 2 is a block diagram showing a second embodiment of the present invention.
FIG. 3 is a block diagram showing a third embodiment of the present invention.
FIG. 4 is a block diagram showing a fourth embodiment of the present invention.
FIG. 5 is an operation diagram showing a state in which hot water supply and heating / heat supply are performed using the auxiliary heat source device in FIG. 4;
6 is an operation diagram illustrating a state in which hot water supply and heating / heat supply are performed without using an auxiliary heat source device in FIG. 4;
7 is an operation diagram showing a state where the auxiliary heat source device is used only for heating and is not used for hot water supply in FIG. 4;
FIG. 8 is an operation diagram showing a state where the auxiliary heat source device is used only for hot water supply and is not used for heating in FIG.
FIG. 9 is an operation diagram showing a state in which heating is not performed by closing the heating circuit using the auxiliary heat source device only for hot water supply in FIG.
10 is an operation diagram showing a state in which only hot water supply is performed without using an auxiliary heat source device in FIG. 4;
FIG. 11 is an operation diagram showing a state in which hot water supply is not operated by using the auxiliary heat source device only for heating in FIG. 4;
12 is an operation diagram showing a state in which hot water is not operated and hot water supply is not operated in FIG. 4 without using an auxiliary heat source device.
13 is a piping configuration diagram configured to automatically control the on-off valve in FIG. 4;
14 is an operation flowchart for automatically operating the configuration of FIG. 13;
FIG. 15 is a configuration diagram showing a conventional hot water supply device that stores heat supplied from the outside in a heat storage tank and uses it for hot water supply, heating, and the like.
[Explanation of symbols]
10 ... Thermal storage tank
12 ... Hot water supply equipment
14 ... Thermal load (such as for heating)
16 ... Heat exchanger for thermal load
18 ... Hot water circulation means (pump)
20 ... Auxiliary heat source means (auxiliary heat source device)
B1, B2, B3, B4 ... 1st to 4th branch point
V1, V2, V3, V4, V5, V6, V7 ... first to seventh on-off valves
V8 ... Check valve
L10 to L20 ... (Piping) line
Lh ... Heating medium line (for heating etc.)

Claims (1)

発熱手段に連通している蓄熱槽(10)と、その蓄熱槽(10)に連通している補助熱源手段(20)と、熱的負荷と連通している熱的負荷用熱交換器(16)と、前記補助熱源手段(20)および前記熱的負荷用熱交換器(16)と連通している給湯用機器(12)と、それらの機器(10、12、16、20)を連通する温水ラインと、その温水ラインに設けられて蓄熱槽(10)から供給される温水を流過せしめる温水循環手段(18)とを有する温水供給装置において、蓄熱槽(10)から流出する温水が流過する温水ライン(L10)は、第1の分岐点(B1)で補助熱源手段(20)が介装されるライン(L12)と、補助熱源手段(20)をバイパスするライン(L11)とに分岐し、補助熱源手段(20)が介装されるライン(L12)の第1の分岐点(B1)と第1の合流点(G1)との間の領域には第1の開閉弁(V1)が介装され、補助熱源手段(20)をバイパスするライン(L11)は第2の分岐点(B2)で給湯用機器(12)側に連通するライン(L13)と熱的負荷用熱交換器(16)側に連通するライン(L14)とに分岐し、第2の分岐点(B2)から給湯用機器(12)側に連通するライン(L13)には第2の開閉弁(V2)が介装され、第2の分岐点(B2)から熱的負荷用熱交換器(16)側に連通するライン(L14)には第3の開閉弁(V3)が介装され、補助熱源手段(20)が介装されるライン(L12)は第3の分岐点(B3)で給湯用機器(12)側に連通するライン(L15)と熱的負荷用熱交換器(16)側に連通するライン(L16)とに分岐し、第3の分岐点(B3)から給湯用機器(12)側に連通するライン(L15)には第4の開閉弁(V4)が介装されており、第3の分岐点(B3)から熱的負荷用熱交換器(16)側に連通するライン(L16)には第5の開閉弁(V5)が介装されており、第2の分岐点(B2)から給湯用機器(12)側に連通するライン(L13)と第3の分岐点(B3)から給湯用機器(12)側に連通するライン(L15)とは第2の合流点(G2)で合流して給湯用機器(12)に連通するライン(L17)となり、第2の分岐点(B2)から熱的負荷用熱交換器(16)側に連通するライン(L14)と第3の分岐点(B3)から熱的負荷用熱交換器(16)側に連通するライン(L16)とは第3の合流点(G3)で合流して熱的負荷用熱交換器(16)が介装されるライン(L18)となり、熱的負荷用熱交換器(16)が介装されるライン(L18)は第4の分岐点(B4)で蓄熱槽(10)に連通するライン(L19)と補助熱源手段(20)側に連通するライン(L20)とに分岐しており、第4の分岐点(B4)から蓄熱槽(10)に連通するライン(L19)には第6の開閉弁(V6)が介装されており、第4の分岐点(B4)から補助熱源手段(20)側に連通するライン(L20)は、前記第1の合流点(G1)で第1の分岐点(B1)から補助熱源手段(20)に連通するライン(L12)と合流すると共に、第7の開閉弁(V7)及び逆止弁(V8)が介装されていることを特徴とする温水供給装置。  A heat storage tank (10) in communication with the heat generating means, an auxiliary heat source means (20) in communication with the heat storage tank (10), and a heat load heat exchanger (16 in communication with the thermal load) ), A hot water supply device (12) communicating with the auxiliary heat source means (20) and the heat load heat exchanger (16), and these devices (10, 12, 16, 20). In a hot water supply apparatus having a hot water line and a hot water circulation means (18) provided in the hot water line and allowing hot water supplied from the heat storage tank (10) to flow therethrough, the hot water flowing out of the heat storage tank (10) flows. The extra hot water line (L10) is divided into a line (L12) where the auxiliary heat source means (20) is interposed at the first branch point (B1) and a line (L11) bypassing the auxiliary heat source means (20). The line is branched and the auxiliary heat source means (20) is interposed. A first on-off valve (V1) is interposed in a region between the first branch point (B1) and the first junction (G1) of (L12), and bypasses the auxiliary heat source means (20). The line (L11) branches at the second branch point (B2) into a line (L13) communicating with the hot water supply device (12) side and a line (L14) communicating with the heat load heat exchanger (16) side. The second open / close valve (V2) is interposed in the line (L13) communicating from the second branch point (B2) to the hot water supply device (12) side, and heat is supplied from the second branch point (B2). The third on-off valve (V3) is interposed in the line (L14) communicating with the static load heat exchanger (16) side, and the line (L12) in which the auxiliary heat source means (20) is interposed is the third line (L12). Communicating with the line (L15) communicating with the hot water supply device (12) at the branch point (B3) and the heat exchanger for thermal load (16) A fourth open / close valve (V4) is interposed in the line (L15) that branches from the third branch point (B3) to the hot water supply device (12) side. The line (L16) communicating from the third branch point (B3) to the thermal load heat exchanger (16) side is provided with a fifth on-off valve (V5), and the second branch point ( The line (L13) communicating from the B2) to the hot water supply device (12) side and the line (L15) communicating from the third branch point (B3) to the hot water supply device (12) side are the second junction (G2). ) To form a line (L17) that communicates with the hot water supply device (12), and a third line (L14) that communicates from the second branch point (B2) to the heat load heat exchanger (16) side. The line (L16) communicating from the branch point (B3) to the thermal load heat exchanger (16) side is the third junction ( G3) joins to become a line (L18) in which the heat load heat exchanger (16) is interposed, and the line (L18) in which the heat load heat exchanger (16) is interposed is the fourth line (L18). The branch point (B4) branches into a line (L19) communicating with the heat storage tank (10) and a line (L20) communicated with the auxiliary heat source means (20), and heat is stored from the fourth branch point (B4). A sixth open / close valve (V6) is interposed in the line (L19) communicating with the tank (10), and the line (L20) communicates from the fourth branch point (B4) to the auxiliary heat source means (20) side. ) Merges with the line (L12) communicating with the auxiliary heat source means (20) from the first branch point (B1) at the first junction (G1), and with the seventh on-off valve (V7) and the reverse. A hot water supply device characterized in that a stop valve (V8) is interposed.
JP2001164064A 2001-05-31 2001-05-31 Hot water supply device Expired - Fee Related JP3750922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001164064A JP3750922B2 (en) 2001-05-31 2001-05-31 Hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001164064A JP3750922B2 (en) 2001-05-31 2001-05-31 Hot water supply device

Publications (2)

Publication Number Publication Date
JP2002357329A JP2002357329A (en) 2002-12-13
JP3750922B2 true JP3750922B2 (en) 2006-03-01

Family

ID=19006931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001164064A Expired - Fee Related JP3750922B2 (en) 2001-05-31 2001-05-31 Hot water supply device

Country Status (1)

Country Link
JP (1) JP3750922B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5285920B2 (en) * 2008-01-30 2013-09-11 リンナイ株式会社 Gas hot water heating system
JP5509740B2 (en) * 2009-09-02 2014-06-04 ダイキン工業株式会社 Hot water system
JP2013164208A (en) * 2012-02-10 2013-08-22 Tokyo Gas Co Ltd Cooling water generator and freeze prevention system
JP5686166B2 (en) * 2013-08-21 2015-03-18 ダイキン工業株式会社 Hot water system

Also Published As

Publication number Publication date
JP2002357329A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
US8136488B2 (en) Cooling system for a vehicle, and method for the operation of a cooling system
CN103723000B (en) The method of heat transfer system and its offer heat transfer for the road vehicle with passenger carriage
US8555826B2 (en) Cooler arrangement for a drive train in a motor vehicle
CN102032069B (en) Vehicle exhaust heat recovery system and method of managing exhaust heat
US7721683B2 (en) Integrated engine thermal management
US8678078B2 (en) Method and apparatus to transfer heat to automatic transmission fluid using engine exhaust gas feed stream
JP2015143100A (en) Ship, and thermal energy recovery method in ship
CA2183569C (en) Method and plant for use in stand-alone plants, preferably a wind/diesel-plant
US6491001B1 (en) Fluid circuit arrangement
JP2003240346A (en) Hot water supply system and its control method
JP3750922B2 (en) Hot water supply device
JP5311128B2 (en) Hot water storage hot water supply system
JP2010065544A (en) Hydraulic fluid temperature control system
JP5445811B2 (en) Cogeneration system and storage tank side unit
JP2012057932A (en) Heating medium supply apparatus
JP4850118B2 (en) Hot water supply piping heat insulation operation method in hot water storage type hot water supply system
JP2007016857A (en) Warm-up system for automatic transmission oil
JP4410956B2 (en) Waste heat recovery device
JP6458541B2 (en) Heat distribution unit for heating circuit
JP2002098411A (en) Hot water feeding device
JP3631521B2 (en) Cogeneration system cooling water circuit equipment
JP3773234B2 (en) Exhaust heat system of internal combustion engine and control method thereof
JP2004125256A (en) Exhaust heat recovering system and exhaust heat recovering method
JP4151442B2 (en) Waste heat utilization heating system
JP2551682Y2 (en) Hot water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3750922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees