JP3750016B2 - Resin fuel tank structure and manufacturing method thereof - Google Patents

Resin fuel tank structure and manufacturing method thereof Download PDF

Info

Publication number
JP3750016B2
JP3750016B2 JP2002210925A JP2002210925A JP3750016B2 JP 3750016 B2 JP3750016 B2 JP 3750016B2 JP 2002210925 A JP2002210925 A JP 2002210925A JP 2002210925 A JP2002210925 A JP 2002210925A JP 3750016 B2 JP3750016 B2 JP 3750016B2
Authority
JP
Japan
Prior art keywords
tank
layer
joint
side weld
weld layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002210925A
Other languages
Japanese (ja)
Other versions
JP2004052659A (en
Inventor
奨英 小林
Original Assignee
株式会社エフティエス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エフティエス filed Critical 株式会社エフティエス
Priority to JP2002210925A priority Critical patent/JP3750016B2/en
Publication of JP2004052659A publication Critical patent/JP2004052659A/en
Application granted granted Critical
Publication of JP3750016B2 publication Critical patent/JP3750016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5324Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length
    • B29C66/53245Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length said articles being hollow
    • B29C66/53246Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length said articles being hollow said single elements being spouts, e.g. joining spouts to containers
    • B29C66/53247Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length said articles being hollow said single elements being spouts, e.g. joining spouts to containers said spouts comprising flanges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • B29C66/2422Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being circular, oval or elliptical
    • B29C66/24221Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being circular, oval or elliptical being circular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7234General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a barrier layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/23Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations
    • B29C66/232Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations said joint lines being multiple and parallel, i.e. the joint being formed by several parallel joint lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7172Fuel tanks, jerry cans

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂製燃料タンク構造体およびその製造方法、より詳しくはタンク本体と継手部材とが溶着された樹脂製燃料タンク構造体およびその製造方法に関する。
【0002】
【従来の技術】
この種の燃料タンク構造体として、特開2002−160537号公報には、耐燃料透過性の高いタンク側バリア層を持つタンク本体と、同様に耐燃料透過性の高い継手部材と、を備えてなる樹脂製燃料タンク構造体が記載されている。
【0003】
図6に、同公報記載の樹脂製燃料タンク構造体の断面図を示す。図に示すように、樹脂製燃料タンク構造体100は、タンク本体101と継手部材110とからなる。タンク本体101は、箱状を呈している。タンク本体101は、多層ブロー成形により形成されている。タンク本体101は、タンク側溶着層102とタンク側バリア層103とを有している。タンク側溶着層102は、溶着性の高いPE(ポリエチレン)により形成されている。タンク側バリア層103は、耐燃料透過性の高いPA(ポリアミド)により形成されている。タンク本体101には、タンク内外を連通する燃料注入口104が開設されている。タンク本体101上面であって、燃料注入口104の外周側には、リング溝105が凹設されている。
【0004】
継手部材110は、PEおよびPAからなるアロイ樹脂により形成されている。すなわち、継手部材110は、溶着性および耐燃料透過性を併有している。継手部材110は、フランジ部106と管部107とからなる。フランジ部106は、リング状を呈している。フランジ部106下面には、リングリブ108が突設されている。リングリブ108とリング溝105とは、レーザ溶着されている。このレーザ溶着により、リングリブ108とリング溝105、言い換えると継手部材110とタンク本体101とが接合されている。
【0005】
管部107は、円筒状を呈している。管部107は、フランジ部106から立設されている。管部107の内部には、管路109が形成されている。管路109は、上流側において、給油口(図略)と連通している。また、管路109は、下流側において、前記燃料注入口104と連通している。
【0006】
【発明が解決しようとする課題】
上述したように、継手部材110は、PEおよびPAからなるアロイ樹脂により形成されている。すなわち、リングリブ108は、アロイ樹脂により形成されている。一方、タンク側溶着層102は、PEにより形成されている。すなわち、リング溝105の溝側面は、PEにより形成されている。また、タンク側バリア層103は、PAにより形成されている。すなわち、リング溝105の溝底面は、PAにより形成されている。
【0007】
アロイ樹脂は、PEおよびPA双方の樹脂に対して溶着可能である。同公報記載の樹脂製燃料タンク構造体100においては、このアロイ樹脂の持つ特殊な溶着性を利用して、リングリブ108とリング溝105とをレーザ溶着している。そして、リングリブ108のリブ頂面とリング溝105の溝底面とをレーザ溶着することにより、溶着部分の耐燃料透過性を確保している。
【0008】
しかしながら、同公報記載の樹脂製燃料タンク構造体100によると、レーザ溶着前に予めリングリブ108を継手部材110に突設しておく必要があった。また、同様に、レーザ溶着前に予めリング溝105をタンク本体101に凹設しておく必要があった。このため、樹脂製燃料タンク構造体100製造時における工数が多かった。
【0009】
また、同公報記載の樹脂製燃料タンク構造体100によると、リングリブ108を持つ継手部材110と、リング溝105を持つタンク本体101とが揃って初めて溶着部分の耐燃料透過性を確保することができた。すなわち、継手部材110を、リング溝を持たないタイプのタンク本体に溶着しても、耐燃料透過性を確保することは困難であった。また、同様に、タンク本体101に、リングリブを持たないタイプの継手部材を溶着しても、耐燃料透過性を確保することは困難であった。また、溶着工法として広く適用されている熱板溶着の適用は構造上困難であった。このように、同公報記載の樹脂製燃料タンク構造体100は、あらゆるタイプの継手部材およびタンク本体を持つ樹脂製燃料タンク構造体として具現化するのが困難だった。言い換えると、同公報記載の樹脂製燃料タンク構造体100は、汎用性が低かった。
【0010】
本発明の樹脂製燃料タンク構造体およびその製造方法は、上記課題に鑑みて完成されたものである。すなわち、本発明は、汎用性が高い樹脂製燃料タンク構造体を提供することを目的とする。また、本発明は、工数の少ない樹脂製燃料タンク構造体の製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
(1)上記課題を解決するため、本発明の樹脂製燃料タンク構造体は、溶着性の高いタンク側溶着層と、該タンク側溶着層よりも内方に積層され耐燃料透過性の高いタンク側バリア層と、該タンク側溶着層および該タンク側バリア層を貫通して開設された取り付け口と、を有するタンク本体と、溶着性の高い継手側溶着層と該継手側溶着層よりも内方に積層され耐燃料透過性の高い継手側バリア層とを持つフランジ部と、該フランジ部から立設され前記取り付け口に連通する管路を持つ管部と、を有する継手部材と、を備えてなり、 該継手側溶着層と該タンク側溶着層とが溶着されて一体化された樹脂製燃料タンク構造体であって、前記タンク本体の内表面のみには前記取り付け口の周囲に前記タンク本体の内方からの押圧のみによる変形によって形成された凹部をもち、前記タンク側バリア層は、前記フランジ部に対してほぼ平行に延びる平行層部と、前記凹部に形成され該平行層部よりも該フランジ部に近接するとともに前記取り付け口を取り囲む近接層部と、を持つことを特徴とする。
【0012】
つまり、本発明の樹脂製燃料タンク構造体は、タンク本体と継手部材とを備えるものである。タンク本体は、タンク側溶着層とタンク側バリア層とを有している。タンク側バリア層は、タンク側溶着層よりも耐燃料透過性が高い。したがって、燃料は、主にタンク側溶着層を透過して、樹脂製燃料タンク構造体の内部から外部に漏出する。タンク側バリア層は、平行層部と近接層部とを有している。平行層部は、継手部材のフランジ部に対し、ほぼ平行に延在している。一方、近接層部は、フランジ部に対し、平行層部よりも近接している。このため、近接層部とフランジ部との間に介在するタンク側溶着層の層厚は、平行層部とフランジ部との間に介在するタンク側溶着層の層厚よりも、薄くなっている。言い換えると、近接層部とフランジ部との間の方が、平行層部とフランジ部との間よりも、燃料透過断面積が小さくなっている。すなわち、近接層部を配置すると、燃料透過断面積を小さくすることができる。この近接層部で、取り付け口を包囲することにより、本発明の樹脂製燃料タンク構造体では耐燃料透過性を確保している。
【0013】
本発明の樹脂製燃料タンク構造体によると、前出の図6に示すような、リングリブ108やリング溝105は不要である。このため、本発明の樹脂製燃料タンク構造体は汎用性が高い。また、リングリブ108やリング溝105が不要な分、構造が単純である。また、リングリブ108とリング溝105との嵌合性を考慮する必要がないため、言い換えるとフランジ部とタンク側溶着層とを単純に面合わせして溶着すればよいため、高い部品精度が要求されない。
【0015】
つまり、本構成は、フランジ部を、継手側溶着層と継手側バリア層とを含んで形成するものである。仮に、前出の図6に示すように、フランジ部106をPEおよびPAからなるアロイ樹脂により形成すると、フランジ部106自体の構造は単純になる。しかしながら、例えば、耐燃料透過性を高くするためにPAの配合率を高くすると、溶着性の高いPEの配合率を低くせざるを得ない。したがって、フランジ部106のタンク本体101に対する溶着強度が低くなる。また、反対に、溶着性を高くするためにPEの配合率を高くすると、PAの配合率を低くせざるを得ない。したがって、溶着部分の耐燃料透過性が低くなる。このように、仮にフランジ部をアロイ樹脂により形成すると、高い溶着性と高い耐燃料透過性とを両立することは困難である。
【0016】
これに対し、本構成のフランジ部は、継手側溶着層と継手側バリア層とを有している。すなわち、溶着性と耐燃料透過性とが、各々別々の層により、独立して担保されている。このため、高い溶着性と高い耐燃料透過性とを簡単に両立することができる。
【0017】
タンク本体のタンク側バリア層とタンク側溶着層、およびフランジ部の継手側バリア層と継手側溶着層は、タンク本体からフランジ部に向かう方向に、タンク側バリア層(平行層部、近接層部)→タンク側溶着層→継手側溶着層→継手側バリア層の順に配置されている。本構成によると、共に溶着性の高い継手側溶着層とタンク側溶着層とを溶着することで、高い溶着強度を確保することができる。また、本構成によると、共に耐燃料透過性の高い継手側バリア層と、タンク側バリア層の近接層部と、の間に介在する継手側溶着層およびタンク側溶着層の層厚を薄くすることで、高い耐燃料透過性を確保することができる。
【0018】
なお、上述した本発明の樹脂製燃料タンク構造体は、以下に示す本発明の樹脂製燃料タンク構造体の製造方法以外の製造方法により製造することも可能である。
【0019】
(3)また、上記課題を解決するため、本発明の樹脂製燃料タンク構造体の製造方法は、溶着性の高いタンク側溶着層と、該タンク側溶着層よりも内方に積層され耐燃料透過性の高いタンク側バリア層と、該タンク側溶着層および該タンク側バリア層を貫通して開設された取り付け口と、を有するタンク本体と、溶着性の高い継手側溶着層と該継手側溶着層よりも内方に積層され耐燃料透過性の高い継手側バリア層とを持つフランジ部と、該フランジ部から立設され前記取り付け口に連通する管路を持つ管部と、を有する継手部材と、を備えてなり、該継手側溶着層と該タンク側溶着層とが溶着されて一体化され、前記タンク本体の内表面のみには前記取り付け口の周囲に前記タンク本体の内方からの押圧のみによる変形によって形成された凹部をもち、前記タンク側バリア層は、前記フランジ部にほぼ平行に延びる平行層部と、前記凹部に形成され該平行層部よりも該フランジ部に近接するとともに前記取り付け口を取り囲む近接層部と、を持つ樹脂製燃料タンク構造体の製造方法であって、前記タンク側溶着層と前記タンク側バリア層とを有し、接合することにより前記タンク本体となる複数のタンク割体を作製するタンク割体作製工程と、該複数のタンク割体のうち前記取り付け口が開設されたタンク割体の該タンク側溶着層と、前記フランジ部の前記継手側溶着層と、を該取り付け口と前記管路とが連通するように当接させ加熱するとともに、前記フランジ部の外表面を保持具で保持し該タンク割体の内方から押圧具を押し当てることにより、該タンク側バリア層を該フランジ部の方向に湾曲させ、前記凹部及び前記近接層部を形成しながら該タンク側溶着層と該継手側溶着層とを溶着する継手部材溶着工程と、該継手部材が溶着されたタンク割体を含む前記複数のタンク割体を互いに接合するタンク割体接合工程と、を有することを特徴とする。
【0020】
つまり、本発明の樹脂製燃料タンク構造体の製造方法は、タンク割体作製工程と継手部材溶着工程とタンク割体接合工程と、を有するものである。タンク割体作製工程においては、複数のタンク割体を成形する。各々のタンク割体は、タンク側溶着層とタンク側バリア層とを有する。また、全てのタンク割体を合体させることにより、タンク本体が作製される。
【0021】
継手部材溶着工程においては、複数のタンク割体のうち取り付け口が開設されたタンク割体とフランジ部とを溶着する。具体的には、まず、タンク割体のタンク側溶着層と、フランジ部の継手側溶着層とを当接させる。このとき、タンク割体の取り付け口と、継手部材の管路とが連通するように、両部材を配置する。次いで、当接部分を加熱する。加熱により、タンク割体とフランジ部との当接部分が軟化する。したがって、タンク側溶着層と継手側溶着層との溶着が徐々に進行する。また、タンク割体の内面に押圧具を押し当てる。押圧具の押圧力により、軟化したタンク側バリア層は継手側バリア層の方向に湾曲する。そして、タンク側バリア層が湾曲した分だけ、タンク側バリア層湾曲部位と継手側バリア層との間に介在するタンク側溶着層および継手側溶着層を形成する樹脂が、湾曲部位と継手側バリア層との間から流出する。言い換えると、湾曲部位と継手側バリア層との間のタンク側溶着層および継手側溶着層の層厚が薄くなる。冷却後、このタンク側バリア層の湾曲部位が、近接層部となる。
【0022】
タンク割体接合工程においては、継手部材が溶着されたタンク割体を含む複数のタンク割体を互いに接合する。
【0023】
本発明の樹脂製燃料タンク構造体の製造方法によると、タンク割体とフランジ部との溶着と、タンク割体における近接層部の形成とを、同工程で行うことができる。このため、工数が少なくて済む。
【0028】
【発明の実施の形態】
以下、本発明の樹脂製燃料タンク構造体の実施の形態について説明する。なお、本発明の樹脂製燃料タンク構造体の製造方法の実施の形態についても併せて説明する。
【0029】
まず、本実施形態の樹脂製燃料タンク構造体の構成について説明する。本実施形態の樹脂製燃料タンク構造体は、キャニスタに連通している。図1に、本実施形態の樹脂製燃料タンク構造体の断面図を示す。図に示すように、本実施形態の樹脂製燃料タンク構造体1は、タンク本体2と継手部材3とからなる。
【0030】
タンク本体2は、複数のタンク割体が合体した箱状を呈している。タンク本体2の上壁には、取り付け口20が開設されている。タンク本体2は、タンク側溶着層21とタンク側バリア層22と最内層23とが、外−内方向に積層され形成されている。タンク側溶着層21および最内層23は、PEにより形成されている。タンク側バリア層22は、EVOH(エチレンビニルアルコール共重合体)により形成されている。タンク側バリア層22は、平行層部220と近接層部221とを備える。平行層部220は、継手部材3の後述するフランジ部30にほぼ平行に延在している。近接層部221は、平行層部220よりもフランジ部30に近接している。近接層部221は、取り付け口20を包囲して配置されている。
【0031】
継手部材3は、フランジ部30と管部31とからなる。フランジ部30は、リング状を呈している。フランジ部30は、最上層300と継手側バリア層301と継手側溶着層302とが、上−下方向に積層され形成されている。そして、継手側溶着層302と前記タンク側溶着層21とが溶着されることにより、継手部材3はタンク本体2に固定されている。最上層300および継手側溶着層302は、PEにより形成されている。継手側バリア層301は、PAにより形成されている。
【0032】
管部31は、二つの円筒が屈曲して連結されたL字筒状を呈している。すなわち、管部31は、フランジ部30を形成する継手側バリア層301が、まず上方に次いで側方に、延出することにより形成されている。管部31の先端外周面には、断面三角形状のファーツリー311が形成されている。また、管部31の先端は、ゴム製のエバポ配管4に圧入されている。ファーツリー311は、管部31先端がエバポ配管4から脱落するのを抑制している。一方、管部31の内周側には管路310が形成されている。管路310は、上流側において、前記取り付け口20と連通している。また、管路310は、下流側において、エバポ配管4を介してキャニスタと連通している。
【0033】
次に、本実施形態の樹脂製燃料タンク構造体における気化燃料の流れについて説明する。タンク本体2の内圧が所定値以上になると、バルブ(図略)が開き、気化燃料が取り付け口20→管路310→エバポ配管4内周側の順に流れる。そして、気化燃料はキャニスタに吸着される。
【0034】
次に、本実施形態の樹脂製燃料タンク構造体の製造方法について説明する。本実施形態の製造方法は、タンク割体作製工程と層間溶着工程とタンク割体接合工程と、を有する。図2に、本実施形態の製造方法の概略図を示す。
【0035】
タンク割体作製工程においては、まずタンク割体24とタンク割体25とをプレス成形により作製する。タンク割体24およびタンク割体25は、ともにトレイ状に成形される。また、タンク割体24には、成形時に取り付け口20が開設される。タンク割体24およびタンク割体25は、それぞれタンク側溶着層(図略)とタンク側バリア層(図略)と最内層(図略)とが積層され形成されている。
【0036】
層間溶着工程においては、タンク割体24と、予め作製された継手部材3のフランジ部30と、を溶着する。具体的には、まず、図3に示すように、金属製の保持具50、51を管部31に環装する。次いで、この状態のまま、保持具50、51ごと継手部材3をタンク割体24に近づける。それから、継手側溶着層302とタンク側溶着層21との当接部分を加熱する。加熱により、タンク割体24とフランジ部30との当接部分が軟化、溶融する。そして、フランジ部30の継手側溶着層302をタンク割体24のタンク側溶着層21に押圧することで、タンク側溶着層21と継手側溶着層302との溶着が行われる。また、溶着後、図4に示すように、タンク割体24の内面に、金属製であってリング状の押圧具52を押し当てる。押圧具52の押圧力により、軟化したタンク側バリア層22は継手側バリア層301の方向に湾曲する。ここで、タンク側バリア層22を形成するEVOH、継手側バリア層301を形成するPAよりも、タンク側溶着層21および継手側溶着層302を形成するPEの方が、軟化温度が低い。したがって、高温環境下においては、PEの方がEVOH、PAよりも流動性が高い。このため、タンク側バリア層22が湾曲した分だけ、タンク側バリア層22湾曲部位と継手側バリア層301との間に介在するタンク側溶着層21および継手側溶着層302を形成するPEが、タンク側バリア層22湾曲部位と継手側バリア層301との間から、流出する。言い換えると、タンク側バリア層22湾曲部位と継手側バリア層301との間のタンク側溶着層21および継手側溶着層302の層厚が薄くなる。層厚が所定厚となった後、図5に示すように押圧具52および保持具50、51を取り外す。そして、加熱部分を冷却し硬化させる。なお、タンク側バリア層22において、押圧具52により押された部位が、近接層部221になる。また、タンク側バリア層22において、押圧具52により押されない部位が、平行層部220になる。
【0037】
タンク割体接合工程においては、図2に戻って、タンク割体24の下端開口縁に表出するタンク側溶着層と、タンク割体25の上端開口縁に表出するタンク側溶着層と、を溶着する。このようにして、本実施形態の樹脂製燃料タンク構造体が製造される。
【0038】
次に、本実施形態の樹脂製燃料タンク構造体の効果について説明する。本実施形態の樹脂製燃料タンク1によると、タンク側バリア層22の近接層部221と継手側バリア層301との間に介在するタンク側溶着層21および継手側溶着層302の層厚が薄い。このため、耐燃料透過性が高い。
【0039】
また、本実施形態の樹脂製燃料タンク構造体1によると、前出の図6に示すような、リングリブ108やリング溝105は不要である。このため、本発明の樹脂製燃料タンク構造体は汎用性が高い。
【0040】
また、本実施形態の樹脂製燃料タンク構造体1によると、フランジ部30が、継手側溶着層302と継手側バリア層301と最上層300とから形成されている。継手側溶着層302は、タンク本体2との溶着性を確保している。継手側バリア層301は、耐燃料透過性を確保している。すなわち、溶着性と耐燃料透過性とが、各々別々の層により、独立して確保されている。このため、本実施形態の樹脂製燃料タンク構造体1によると、高い溶着性と高い耐燃料透過性とを簡単に両立することができる。
【0041】
また、本実施形態の樹脂製燃料タンク構造体1によると、近接層部221と継手側バリア層301との間に、薄いながらもタンク側溶着層21および継手側溶着層302が介在している。ここで、EVOH製のタンク側バリア層22と、PA製の継手側バリア層301との溶着性は低い。このため、タンク側バリア層22と継手側バリア層301とを直接溶着すると、この溶着界面が起点となりタンク本体2と継手部材3とが剥離するおそれがある。この点、本実施形態の樹脂製燃料タンク構造体1によると、上述したように、近接層部221と継手側バリア層301との間に、タンク側溶着層21および継手側溶着層302が介在している。したがって、これらタンク側溶着層21および継手側溶着層302により、高い溶着性が確保されている。
【0042】
次に、本実施形態の樹脂製燃料タンク構造体の製造方法の効果について説明する。本実施形態の樹脂製燃料タンク構造体1の製造方法によると、タンク割体24とフランジ部30との溶着と、タンク割体24における近接層部221の形成とを、同じ層間溶着工程で行うことができる。このため、工数が少なくて済む。
【0043】
また、タンク側溶着層21および継手側溶着層302は、ともに溶着性が高い。したがって、本実施形態の樹脂製燃料タンク構造体1の製造方法によると、溶着時間が短くて済む。また、溶着強度が高くなる。
【0044】
以上、本発明の樹脂製燃料タンク構造体およびその製造方法の実施の形態について説明した。しかしながら、実施の形態は上記形態に特に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することも可能である。
【0045】
例えば、本実施形態の樹脂製燃料タンク構造体1においては、継手部材3をキャニスタに連通させたが、例えば継手部材3を、フィラーパイプを介して、給油口に連通させる形態で実施してもよい。この場合は、取り付け口20および管路310を液体燃料が通ることになる。
【0046】
また、本実施形態の樹脂製燃料タンク構造体1においては、近接層部221を一つだけ配置した。しかしながら、複数の近接層部221を配置してもよい。こうすると、さらに耐燃料透過性が向上する。この場合、複数の近接層部221は、複数同心リング状の押圧具をタンク割体内面に押し当てることにより、溶着と同時に形成することができる。こうすると、製造時における工数が少なくて済む。
【0047】
また、本実施形態の樹脂製燃料タンク構造体1においては、フランジ部30を最上層300と継手側バリア層301と継手側溶着層302の三層構造とした。しかしながら、例えばフランジ部30をPAおよびPEを含むアロイ樹脂単層により形成してもよい。こうすると、フランジ部30の構成が簡単になる。なお、フランジ部30およびタンク本体2の積層数は特に限定しない。
【0048】
また、本実施形態の樹脂製燃料タンク構造体1の製造方法においては、タンク割体作製工程で、取り付け口20を成形と同時にタンク割体24に開設した。しかしながら、取り付け口20は、タンク割体24成形後にタンク割体24に穿設してもよい。
【0049】
また、本実施形態の樹脂製燃料タンク構造体1の製造方法においては、層間溶着工程で、まずタンク割体24とフランジ部30との当接部分を溶着してから、次にタンク割体24の内面に押圧具52を押し当てた。しかしながら、溶着と同時に押圧具52を押し当てておいてもよい。また、加熱を押圧具52により行ってもよい。また、熱板溶着に代えてその他溶着方法、例えばレーザ溶着を適用してもよい。
【0050】
また、本実施形態の樹脂製燃料タンク構造体1の製造方法においては、タンク割体の数を二つとした。しかしながら、タンク割体の数は特に限定しない。合体してタンク本体2が形成できればよい。
【0051】
【発明の効果】
本発明によると、汎用性が高い樹脂製燃料タンク構造体を提供することができる。また、本発明によると、工数の少ない樹脂製燃料タンク構造体の製造方法を提供することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態となる樹脂製燃料タンク構造体の断面図である。
【図2】 本発明の一実施形態となる製造方法の概略図である。
【図3】 本発明の一実施形態となる製造方法においてフランジ部をタンク割体に当接させている状態を示す断面図である。
【図4】 本発明の一実施形態となる製造方法においてタンク割体に押圧具を押し当てている状態を示す断面図である。
【図5】 本発明の一実施形態となる製造方法において保持具および押圧具を取り外している状態を示す断面図である。
【図6】 従来の樹脂製燃料タンク構造体の断面図である。
【符号の説明】
1:樹脂製燃料タンク構造体、2:タンク本体、20:取り付け口、21:タンク側溶着層、22:タンク側バリア層、220:平行層部、221:近接層部、23:最内層、24:タンク割体、25:タンク割体、3:継手部材、30:フランジ部、300:最上層、301:継手側バリア層、302:継手側溶着層、31:管部、310:管路、311:ファーツリー、4:エバポ配管、50:保持具、51:保持具、52:押圧具。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin fuel tank structure and a manufacturing method thereof, and more particularly to a resin fuel tank structure in which a tank body and a joint member are welded and a manufacturing method thereof.
[0002]
[Prior art]
As this type of fuel tank structure, Japanese Patent Application Laid-Open No. 2002-160537 includes a tank body having a tank-side barrier layer with high fuel permeability resistance, and a joint member with high fuel permeability resistance as well. A resin fuel tank structure is described.
[0003]
FIG. 6 shows a cross-sectional view of the resin fuel tank structure described in the publication. As shown in the figure, the resin fuel tank structure 100 includes a tank body 101 and a joint member 110. The tank body 101 has a box shape. The tank body 101 is formed by multilayer blow molding. The tank body 101 has a tank-side weld layer 102 and a tank-side barrier layer 103. The tank-side weld layer 102 is formed of PE (polyethylene) having high weldability. The tank side barrier layer 103 is made of PA (polyamide) having high fuel permeation resistance. The tank body 101 is provided with a fuel inlet 104 that communicates between the inside and outside of the tank. A ring groove 105 is formed on the upper surface of the tank body 101 on the outer peripheral side of the fuel injection port 104.
[0004]
The joint member 110 is made of an alloy resin made of PE and PA. That is, the joint member 110 has both weldability and fuel permeation resistance. The joint member 110 includes a flange portion 106 and a pipe portion 107. The flange portion 106 has a ring shape. A ring rib 108 projects from the lower surface of the flange portion 106. The ring rib 108 and the ring groove 105 are laser welded. By this laser welding, the ring rib 108 and the ring groove 105, in other words, the joint member 110 and the tank body 101 are joined.
[0005]
The tube portion 107 has a cylindrical shape. The pipe portion 107 is erected from the flange portion 106. A pipe line 109 is formed inside the pipe part 107. The pipe line 109 communicates with an oil supply port (not shown) on the upstream side. The pipe 109 communicates with the fuel injection port 104 on the downstream side.
[0006]
[Problems to be solved by the invention]
As described above, the joint member 110 is formed of an alloy resin made of PE and PA. That is, the ring rib 108 is made of an alloy resin. On the other hand, the tank-side weld layer 102 is formed of PE. That is, the groove side surface of the ring groove 105 is formed of PE. The tank side barrier layer 103 is formed of PA. That is, the groove bottom surface of the ring groove 105 is formed of PA.
[0007]
The alloy resin can be welded to both PE and PA resins. In the resin fuel tank structure 100 described in the publication, the ring rib 108 and the ring groove 105 are laser welded using the special weldability of the alloy resin. Further, by laser welding the rib top surface of the ring rib 108 and the groove bottom surface of the ring groove 105, the fuel permeation resistance of the welded portion is ensured.
[0008]
However, according to the resin fuel tank structure 100 described in the publication, it is necessary to project the ring rib 108 on the joint member 110 in advance before laser welding. Similarly, the ring groove 105 needs to be provided in the tank body 101 in advance before laser welding. For this reason, the man-hour at the time of manufacture of the resin-made fuel tank structure 100 was large.
[0009]
Further, according to the resin fuel tank structure 100 described in the publication, the fuel permeation resistance of the welded portion can be ensured only when the joint member 110 having the ring rib 108 and the tank body 101 having the ring groove 105 are aligned. did it. That is, even if the joint member 110 is welded to a tank body of a type that does not have a ring groove, it is difficult to ensure fuel permeation resistance. Similarly, it is difficult to ensure fuel permeation resistance even when a joint member of a type having no ring rib is welded to the tank body 101. In addition, the application of hot plate welding, which is widely applied as a welding method, has been structurally difficult. Thus, the resin fuel tank structure 100 described in the publication is difficult to be realized as a resin fuel tank structure having all types of joint members and a tank body. In other words, the resin fuel tank structure 100 described in the publication has low versatility.
[0010]
The resin fuel tank structure and the manufacturing method thereof according to the present invention have been completed in view of the above problems. That is, an object of the present invention is to provide a resin fuel tank structure having high versatility. It is another object of the present invention to provide a method for manufacturing a resin fuel tank structure with less man-hours.
[0011]
[Means for Solving the Problems]
(1) In order to solve the above problems, a resin fuel tank structure according to the present invention includes a tank-side weld layer having a high weldability and a tank having a high fuel permeation resistance laminated inward from the tank-side weld layer. A tank body having a side barrier layer, and a tank-side weld layer and an attachment port opened through the tank-side barrier layer; A joint-side weld layer having a high weldability and a joint-side barrier layer having a higher fuel permeation resistance laminated inward than the joint-side weld layer A joint member having a flange portion and a pipe portion standing from the flange portion and having a pipe line communicating with the attachment port; A resin fuel tank structure in which the joint-side weld layer and the tank-side weld layer are welded and integrated, and only the inner surface of the tank body is provided around the attachment port. Having a recess formed by deformation only by pressing from the inside of the tank body, The tank-side barrier layer includes a parallel layer portion extending substantially parallel to the flange portion, Formed in the recess And a proximity layer portion that is closer to the flange portion than the parallel layer portion and surrounds the attachment port.
[0012]
That is, the resin fuel tank structure of the present invention includes a tank body and a joint member. The tank body has a tank-side weld layer and a tank-side barrier layer. The tank side barrier layer has higher fuel permeation resistance than the tank side weld layer. Therefore, the fuel mainly passes through the tank-side weld layer and leaks from the inside of the resin fuel tank structure to the outside. The tank side barrier layer has a parallel layer part and a proximity layer part. The parallel layer portion extends substantially parallel to the flange portion of the joint member. On the other hand, the proximity layer portion is closer to the flange portion than the parallel layer portion. For this reason, the layer thickness of the tank side weld layer interposed between the proximity layer portion and the flange portion is thinner than the layer thickness of the tank side weld layer interposed between the parallel layer portion and the flange portion. . In other words, the fuel permeation cross-sectional area is smaller between the proximity layer portion and the flange portion than between the parallel layer portion and the flange portion. That is, when the proximity layer portion is disposed, the fuel permeation cross-sectional area can be reduced. By enclosing the attachment port with this proximity layer portion, the fuel permeation resistance is ensured in the resin fuel tank structure of the present invention.
[0013]
According to the resin fuel tank structure of the present invention, the ring rib 108 and the ring groove 105 as shown in FIG. 6 are unnecessary. For this reason, the resin fuel tank structure of the present invention is highly versatile. Further, the structure is simple because the ring rib 108 and the ring groove 105 are unnecessary. Moreover, since it is not necessary to consider the fitting property between the ring rib 108 and the ring groove 105, in other words, the flange portion and the tank-side weld layer may be simply face-to-face and welded, so that high component accuracy is not required. .
[0015]
That is, this structure forms a flange part including a joint side welding layer and a joint side barrier layer. If the flange 106 is formed of an alloy resin made of PE and PA as shown in FIG. 6, the structure of the flange 106 itself becomes simple. However, for example, if the blending ratio of PA is increased in order to increase the fuel permeation resistance, the blending ratio of PE having high weldability must be decreased. Therefore, the welding strength of the flange portion 106 to the tank main body 101 is lowered. On the other hand, if the blending ratio of PE is increased in order to increase the weldability, the blending ratio of PA must be decreased. Therefore, the fuel permeation resistance of the welded portion is lowered. Thus, if the flange portion is formed of an alloy resin, it is difficult to achieve both high weldability and high fuel permeability.
[0016]
On the other hand, the flange part of this structure has a joint side welding layer and a joint side barrier layer. That is, weldability and fuel permeation resistance are independently secured by separate layers. For this reason, it is possible to easily achieve both high weldability and high fuel permeability.
[0017]
The tank-side barrier layer and the tank-side weld layer of the tank body, and the joint-side barrier layer and the joint-side weld layer of the flange portion are arranged in the direction from the tank body toward the flange portion. ) → tank side weld layer → joint side weld layer → joint side barrier layer. According to this configuration, a high welding strength can be secured by welding the joint-side welding layer and the tank-side welding layer, both of which have high weldability. Further, according to this configuration, the thicknesses of the joint-side weld layer and the tank-side weld layer interposed between the joint-side barrier layer having high fuel permeation resistance and the adjacent layer portion of the tank-side barrier layer are reduced. Thus, high fuel permeation resistance can be ensured.
[0018]
The above-described resin fuel tank structure of the present invention can be manufactured by a manufacturing method other than the manufacturing method of the resin fuel tank structure of the present invention described below.
[0019]
(3) Moreover, in order to solve the said subject, the manufacturing method of the resin fuel tank structure of this invention is laminated | stacked inside the tank side welding layer with high weldability, and this tank side welding layer, and is fuel-proof. A tank body having a highly permeable tank-side barrier layer, and a tank-side weld layer and an attachment port opened through the tank-side barrier layer; A joint-side weld layer having a high weldability and a joint-side barrier layer having a higher fuel permeation resistance laminated inward than the joint-side weld layer A joint member having a flange part and a pipe part standing from the flange part and having a pipe line communicating with the attachment port, The joint-side weld layer and the tank-side weld layer are welded and integrated, and only the inner surface of the tank body is formed by deformation only by pressing from the inside of the tank body around the attachment port. With a concave The tank-side barrier layer includes a parallel layer portion extending substantially parallel to the flange portion, Formed in the recess A method of manufacturing a resin fuel tank structure having a proximity layer portion that is closer to the flange portion than the parallel layer portion and surrounds the attachment port, the tank-side weld layer, the tank-side barrier layer, Tank splitting step for preparing a plurality of tank splits to be the tank main body by joining, and the tank side of the tank split in which the attachment port is opened among the plurality of tank splits A welded layer; The joint-side weld layer of the flange portion; And abutting and heating so that the attachment port and the pipe line communicate with each other, Hold the outer surface of the flange with a holder. By pressing a pressing tool from the inside of the tank split body, the tank-side barrier layer is bent in the direction of the flange portion, The recess and A joint member welding step for welding the tank side weld layer and the joint side weld layer while forming the proximity layer portion, and joining the plurality of tank split bodies including the tank split body to which the joint member is welded together And a tank split body joining step.
[0020]
That is, the manufacturing method of the resin fuel tank structure of the present invention includes a tank split body manufacturing step, a joint member welding step, and a tank split body joining step. In the tank split production process, a plurality of tank splits are formed. Each tank split has a tank-side weld layer and a tank-side barrier layer. Moreover, a tank main body is produced by uniting all the tank split bodies.
[0021]
In the joint member welding step, the tank split body in which the attachment port is opened and the flange portion are welded among the plurality of tank split bodies. Specifically, first, the tank side weld layer of the tank split, The weld side weld layer on the flange Abut. At this time, both members are arranged so that the attachment port of the tank split body and the pipe line of the joint member communicate with each other. Next, the contact portion is heated. The contact portion between the tank split body and the flange portion is softened by heating. Therefore, the tank side weld layer and Joint side weld layer Welding gradually proceeds. Moreover, a pressing tool is pressed against the inner surface of the tank split body. The tank side barrier layer softened by the pressing force of the pressing tool is Joint side barrier layer Curve in the direction of And the tank side barrier layer curve part and the tank side barrier layer curve part Joint side barrier layer Tank-side weld layer interposed between And joint-side welded layer The resin forming the Joint side barrier layer Flows out from between. In other words, Joint side barrier layer Tank side weld layer between And joint-side welded layer The layer thickness is reduced. After cooling, the curved portion of the tank-side barrier layer becomes the proximity layer portion.
[0022]
In the tank split joining step, a plurality of tank splits including the tank split with the joint member welded are joined together.
[0023]
According to the method for manufacturing a resin fuel tank structure of the present invention, welding of the tank split body and the flange portion and formation of the adjacent layer portion in the tank split body can be performed in the same step. For this reason, man-hours can be reduced.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the resin fuel tank structure of the present invention will be described below. An embodiment of the method for producing a resin fuel tank structure of the present invention will also be described.
[0029]
First, the configuration of the resin fuel tank structure of the present embodiment will be described. The resin fuel tank structure of the present embodiment communicates with the canister. FIG. 1 shows a cross-sectional view of the resin fuel tank structure of the present embodiment. As shown in the figure, the resin fuel tank structure 1 of this embodiment includes a tank body 2 and a joint member 3.
[0030]
The tank body 2 has a box shape in which a plurality of tank divisions are combined. An attachment port 20 is opened on the upper wall of the tank body 2. The tank body 2 is formed by laminating a tank-side welding layer 21, a tank-side barrier layer 22, and an innermost layer 23 in the outer-inward direction. The tank side welding layer 21 and the innermost layer 23 are formed of PE. The tank side barrier layer 22 is formed of EVOH (ethylene vinyl alcohol copolymer). The tank side barrier layer 22 includes a parallel layer portion 220 and a proximity layer portion 221. The parallel layer portion 220 extends substantially parallel to a flange portion 30 described later of the joint member 3. The proximity layer portion 221 is closer to the flange portion 30 than the parallel layer portion 220. The proximity layer portion 221 is disposed so as to surround the attachment port 20.
[0031]
The joint member 3 includes a flange part 30 and a pipe part 31. The flange portion 30 has a ring shape. The flange portion 30 is formed by laminating an uppermost layer 300, a joint-side barrier layer 301, and a joint-side weld layer 302 in an upward-downward direction. The joint member 3 is fixed to the tank body 2 by welding the joint-side weld layer 302 and the tank-side weld layer 21. The uppermost layer 300 and the joint side welding layer 302 are formed of PE. The joint side barrier layer 301 is made of PA.
[0032]
The pipe portion 31 has an L-shaped cylindrical shape in which two cylinders are bent and connected. That is, the pipe part 31 is formed by extending the joint side barrier layer 301 forming the flange part 30 first upward and then laterally. A far tree 311 having a triangular cross section is formed on the outer peripheral surface of the distal end of the tube portion 31. The tip of the pipe portion 31 is press-fitted into the rubber evaporation pipe 4. The fur tree 311 suppresses the tip of the pipe portion 31 from falling off the evaporation pipe 4. On the other hand, a pipe line 310 is formed on the inner peripheral side of the pipe part 31. The pipe line 310 communicates with the attachment port 20 on the upstream side. Further, the pipe line 310 communicates with the canister via the evaporation pipe 4 on the downstream side.
[0033]
Next, the flow of vaporized fuel in the resin fuel tank structure of the present embodiment will be described. When the internal pressure of the tank body 2 reaches a predetermined value or more, a valve (not shown) is opened, and vaporized fuel flows in the order of the attachment port 20 → the pipe 310 → the evaporation pipe 4 on the inner peripheral side. The vaporized fuel is adsorbed by the canister.
[0034]
Next, the manufacturing method of the resin fuel tank structure of this embodiment will be described. The manufacturing method of this embodiment has a tank split production process, an interlayer welding process, and a tank split joining process. In FIG. 2, the schematic of the manufacturing method of this embodiment is shown.
[0035]
In the tank split production process, first, the tank split 24 and the tank split 25 are prepared by press molding. Both the tank split body 24 and the tank split body 25 are formed in a tray shape. The tank split 24 is provided with an attachment port 20 at the time of molding. Each of the tank split body 24 and the tank split body 25 is formed by laminating a tank-side weld layer (not shown), a tank-side barrier layer (not shown), and an innermost layer (not shown).
[0036]
In the interlayer welding process, the tank split body 24 and the flange portion 30 of the joint member 3 prepared in advance are welded. Specifically, first, as shown in FIG. 3, the metal holders 50 and 51 are mounted on the pipe portion 31. Next, in this state, the joint member 3 together with the holders 50 and 51 is brought close to the tank split body 24. Then, the contact portion between the joint-side weld layer 302 and the tank-side weld layer 21 is heated. The contact portion between the tank split body 24 and the flange portion 30 is softened and melted by heating. And the tank side welding layer 21 and the joint side welding layer 302 are welded by pressing the joint side welding layer 302 of the flange part 30 against the tank side welding layer 21 of the tank split body 24. Moreover, after welding, as shown in FIG. 4, a metal-made ring-shaped pressing tool 52 is pressed against the inner surface of the tank split body 24. The softened tank-side barrier layer 22 is bent in the direction of the joint-side barrier layer 301 by the pressing force of the pressing tool 52. Here, PE that forms the tank-side weld layer 21 and the joint-side weld layer 302 has a softening temperature lower than EVOH that forms the tank-side barrier layer 22 and PA that forms the joint-side barrier layer 301. Therefore, PE has higher fluidity than EVOH and PA in a high temperature environment. For this reason, the PE that forms the tank-side weld layer 21 and the joint-side weld layer 302 interposed between the curved portion of the tank-side barrier layer 22 and the joint-side barrier layer 301 by the amount that the tank-side barrier layer 22 is curved, It flows out from between the curved part of the tank side barrier layer 22 and the joint side barrier layer 301. In other words, the thickness of the tank-side weld layer 21 and the joint-side weld layer 302 between the curved portion of the tank-side barrier layer 22 and the joint-side barrier layer 301 is reduced. After the layer thickness reaches the predetermined thickness, the pressing tool 52 and the holding tools 50 and 51 are removed as shown in FIG. Then, the heated part is cooled and cured. In the tank side barrier layer 22, the portion pressed by the pressing tool 52 becomes the proximity layer portion 221. In the tank-side barrier layer 22, a portion that is not pressed by the pressing tool 52 becomes the parallel layer portion 220.
[0037]
In the tank split joining step, returning to FIG. 2, the tank side weld layer exposed at the lower end opening edge of the tank split body 24, the tank side weld layer exposed at the upper end opening edge of the tank split body 25, To weld. Thus, the resin fuel tank structure of the present embodiment is manufactured.
[0038]
Next, the effect of the resin fuel tank structure of the present embodiment will be described. According to the resin fuel tank 1 of the present embodiment, the tank-side weld layer 21 and the joint-side weld layer 302 that are interposed between the proximity layer portion 221 of the tank-side barrier layer 22 and the joint-side barrier layer 301 are thin. . For this reason, the fuel permeation resistance is high.
[0039]
Further, according to the resin fuel tank structure 1 of the present embodiment, the ring rib 108 and the ring groove 105 as shown in FIG. 6 are not necessary. For this reason, the resin fuel tank structure of the present invention is highly versatile.
[0040]
Further, according to the resin fuel tank structure 1 of the present embodiment, the flange portion 30 is formed of the joint-side weld layer 302, the joint-side barrier layer 301, and the uppermost layer 300. The joint-side weld layer 302 ensures weldability with the tank body 2. The joint side barrier layer 301 ensures fuel permeation resistance. That is, weldability and fuel permeation resistance are independently ensured by separate layers. For this reason, according to the resin fuel tank structure 1 of the present embodiment, it is possible to easily achieve both high weldability and high fuel permeation resistance.
[0041]
Further, according to the resin fuel tank structure 1 of the present embodiment, the tank-side weld layer 21 and the joint-side weld layer 302 are interposed between the proximity layer portion 221 and the joint-side barrier layer 301, although they are thin. . Here, the weldability between the tank side barrier layer 22 made of EVOH and the joint side barrier layer 301 made of PA is low. For this reason, when the tank side barrier layer 22 and the joint side barrier layer 301 are welded directly, there is a possibility that the tank main body 2 and the joint member 3 may be separated from each other as a starting point. In this respect, according to the resin fuel tank structure 1 of the present embodiment, as described above, the tank-side weld layer 21 and the joint-side weld layer 302 are interposed between the proximity layer portion 221 and the joint-side barrier layer 301. is doing. Therefore, high weldability is ensured by the tank side weld layer 21 and the joint side weld layer 302.
[0042]
Next, the effect of the manufacturing method of the resin fuel tank structure of the present embodiment will be described. According to the method for manufacturing the resin fuel tank structure 1 of the present embodiment, welding of the tank split body 24 and the flange portion 30 and formation of the adjacent layer portion 221 in the tank split body 24 are performed in the same interlayer welding step. be able to. For this reason, man-hours can be reduced.
[0043]
Moreover, both the tank side weld layer 21 and the joint side weld layer 302 have high weldability. Therefore, according to the manufacturing method of the resin fuel tank structure 1 of the present embodiment, the welding time is short. In addition, the welding strength is increased.
[0044]
The embodiment of the resin fuel tank structure and the manufacturing method thereof according to the present invention has been described above. However, the embodiment is not particularly limited to the above embodiment. Various modifications and improvements that can be made by those skilled in the art are also possible.
[0045]
For example, in the resin fuel tank structure 1 of the present embodiment, the joint member 3 is communicated with the canister. However, for example, the joint member 3 may be communicated with the fuel filler port via the filler pipe. Good. In this case, the liquid fuel passes through the attachment port 20 and the pipe line 310.
[0046]
In the resin fuel tank structure 1 of the present embodiment, only one proximity layer portion 221 is disposed. However, a plurality of proximity layer portions 221 may be arranged. This further improves the fuel permeation resistance. In this case, the plurality of adjacent layer portions 221 can be formed simultaneously with welding by pressing a plurality of concentric ring-shaped pressing tools against the inner surface of the tank split body. In this way, man-hours at the time of manufacture can be reduced.
[0047]
In the resin fuel tank structure 1 of the present embodiment, the flange portion 30 has a three-layer structure including the uppermost layer 300, the joint-side barrier layer 301, and the joint-side weld layer 302. However, for example, the flange portion 30 may be formed of an alloy resin single layer containing PA and PE. If it carries out like this, the structure of the flange part 30 will become simple. In addition, the lamination | stacking number of the flange part 30 and the tank main body 2 is not specifically limited.
[0048]
Moreover, in the manufacturing method of the resin fuel tank structure 1 of the present embodiment, the attachment port 20 was opened in the tank split body 24 simultaneously with molding in the tank split body manufacturing step. However, the attachment port 20 may be formed in the tank split body 24 after the tank split body 24 is formed.
[0049]
Moreover, in the manufacturing method of the resin fuel tank structure 1 of the present embodiment, in the interlayer welding step, first, the contact portion between the tank split body 24 and the flange portion 30 is welded, and then the tank split body 24 is used. The pressing tool 52 was pressed against the inner surface of the. However, the pressing tool 52 may be pressed simultaneously with the welding. Further, the heating may be performed by the pressing tool 52. Further, instead of hot plate welding, other welding methods such as laser welding may be applied.
[0050]
Moreover, in the manufacturing method of the resin fuel tank structure 1 of the present embodiment, the number of tank splits is two. However, the number of tank divisions is not particularly limited. It is only necessary that the tank body 2 can be formed by uniting.
[0051]
【The invention's effect】
According to the present invention, a resin fuel tank structure having high versatility can be provided. Moreover, according to this invention, the manufacturing method of the resin fuel tank structure with few man-hours can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a resin fuel tank structure according to an embodiment of the present invention.
FIG. 2 is a schematic view of a production method according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a state in which the flange portion is in contact with the tank split body in the manufacturing method according to the embodiment of the present invention.
FIG. 4 is a cross-sectional view illustrating a state where a pressing tool is pressed against a tank split body in the manufacturing method according to the embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a state in which the holding tool and the pressing tool are removed in the manufacturing method according to the embodiment of the present invention.
FIG. 6 is a cross-sectional view of a conventional resin fuel tank structure.
[Explanation of symbols]
1: resin fuel tank structure, 2: tank body, 20: attachment port, 21: tank-side weld layer, 22: tank-side barrier layer, 220: parallel layer portion, 221: proximity layer portion, 23: innermost layer, 24: Tank split, 25: Tank split, 3: Joint member, 30: Flange, 300: Top layer, 301: Joint side barrier layer, 302: Joint side weld layer, 31: Pipe part, 310: Pipe line , 311: far tree, 4: evaporation piping, 50: holder, 51: holder, 52: pressing tool.

Claims (4)

溶着性の高いタンク側溶着層と、該タンク側溶着層よりも内方に積層され耐燃料透過性の高いタンク側バリア層と、該タンク側溶着層および該タンク側バリア層を貫通して開設された取り付け口と、を有するタンク本体と、
溶着性の高い継手側溶着層と該継手側溶着層よりも内方に積層され耐燃料透過性の高い継手側バリア層とを持つフランジ部と、該フランジ部から立設され前記取り付け口に連通する管路を持つ管部と、を有する継手部材と、を備えてなり、
該継手側溶着層と該タンク側溶着層とが溶着されて一体化された樹脂製燃料タンク構造体であって、
前記タンク本体の内表面のみには前記取り付け口の周囲に前記タンク本体の内方からの押圧のみによる変形によって形成された凹部をもち、
前記タンク側バリア層は、前記フランジ部に対してほぼ平行に延びる平行層部と、前記凹部に形成され該平行層部よりも該フランジ部に近接するとともに前記取り付け口を取り囲む近接層部と、を持つことを特徴とする樹脂製燃料タンク構造体。
A tank-side weld layer with high weldability, a tank-side barrier layer that is laminated inward than the tank-side weld layer and has high fuel permeability resistance, and opens through the tank-side weld layer and the tank-side barrier layer A tank body having a mounting opening,
A flange portion having a highly weldable joint-side weld layer and a joint-side barrier layer laminated inward of the joint-side weld layer and having a high fuel permeability resistance , and standing from the flange portion and communicated with the mounting port a joint member having a tubular portion, a having a conduit which, it includes a,
A resin fuel tank structure in which the joint-side weld layer and the tank-side weld layer are welded and integrated,
Only the inner surface of the tank body has a recess formed by deformation only by pressing from the inside of the tank body around the mounting opening,
The tank-side barrier layer includes a parallel layer portion that extends substantially parallel to the flange portion, a proximity layer portion that is formed in the recess and is closer to the flange portion than the parallel layer portion and surrounds the attachment port, A resin fuel tank structure characterized by having:
前記平行層部は前記近接層部の外周側に形成されている請求項1に記載の樹脂製燃料タンク構造体。The resin fuel tank structure according to claim 1, wherein the parallel layer portion is formed on an outer peripheral side of the proximity layer portion . 溶着性の高いタンク側溶着層と、該タンク側溶着層よりも内方に積層され耐燃料透過性の高いタンク側バリア層と、該タンク側溶着層および該タンク側バリア層を貫通して開設された取り付け口と、を有するタンク本体と、
溶着性の高い継手側溶着層と該継手側溶着層よりも内方に積層され耐燃料透過性の高い継手側バリア層とを持つフランジ部と、該フランジ部から立設され前記取り付け口に連通する管路を持つ管部と、を有する継手部材と、を備えてなり、
該継手側溶着層と該タンク側溶着層とが溶着されて一体化され、前記タンク本体の内表面のみには前記取り付け口の周囲に前記タンク本体の内方からの押圧のみによる変形によって形成された凹部をもち、
前記タンク側バリア層は、前記フランジ部にほぼ平行に延びる平行層部と、前記凹部に形成され該平行層部よりも該フランジ部に近接するとともに前記取り付け口を取り囲む近接層部と、を持つ樹脂製燃料タンク構造体の製造方法であって、
前記タンク側溶着層と前記タンク側バリア層とを有し、接合することにより前記タンク本体となる複数のタンク割体を作製するタンク割体作製工程と、
該複数のタンク割体のうち前記取り付け口が開設されたタンク割体の該タンク側溶着層と、前記フランジ部の前記継手側溶着層と、を該取り付け口と前記管路とが連通するように当接させ加熱するとともに、前記フランジ部の外表面を保持具で保持し該タンク割体の内方から押圧具を押し当てることにより、該タンク側バリア層を該フランジ部の方向に湾曲させ、前記凹部及び前記近接層部を形成しながら該タンク側溶着層と該継手側溶着層とを溶着する継手部材溶着工程と、
該継手部材が溶着されたタンク割体を含む前記複数のタンク割体を互いに接合するタンク割体接合工程と、
を有することを特徴とする樹脂製燃料タンク構造体の製造方法。
A tank-side weld layer with high weldability, a tank-side barrier layer that is laminated inward than the tank-side weld layer and has high fuel permeability resistance, and opens through the tank-side weld layer and the tank-side barrier layer A tank body having a mounting opening,
A flange portion having a highly weldable joint-side weld layer and a joint-side barrier layer laminated inward of the joint-side weld layer and having a high fuel permeability resistance , and standing from the flange portion and communicated with the mounting port A pipe member having a pipe line, and a joint member having
The joint-side weld layer and the tank-side weld layer are welded and integrated, and only the inner surface of the tank body is formed by deformation only by pressing from the inside of the tank body around the attachment port. With a concave
The tank-side barrier layer has a parallel layer portion that extends substantially parallel to the flange portion, and a proximity layer portion that is formed in the recess and is closer to the flange portion than the parallel layer portion and surrounds the attachment port. A method of manufacturing a resin fuel tank structure,
A tank split production step for producing a plurality of tank splits to be the tank body by joining the tank side weld layer and the tank side barrier layer; and
The tank side weld layer of the tank split body in which the attachment port is opened among the plurality of tank split bodies and the joint side weld layer of the flange portion so that the attachment port and the pipe line communicate with each other. The tank-side barrier layer is curved in the direction of the flange portion by holding the outer surface of the flange portion with a holder and pressing the pressure member from the inside of the tank split body. A joint member welding step for welding the tank-side weld layer and the joint-side weld layer while forming the concave portion and the proximity layer portion;
A tank split joining step for joining the plurality of tank splits including the tank split with the joint member welded thereto;
A method for producing a resin fuel tank structure characterized by comprising:
前記平行層部は前記近接層部の外周側に形成されている請求項3に記載の樹脂製燃料タンク構造体の製造方法。 The method for manufacturing a resin fuel tank structure according to claim 3, wherein the parallel layer portion is formed on an outer peripheral side of the adjacent layer portion .
JP2002210925A 2002-07-19 2002-07-19 Resin fuel tank structure and manufacturing method thereof Expired - Fee Related JP3750016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002210925A JP3750016B2 (en) 2002-07-19 2002-07-19 Resin fuel tank structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002210925A JP3750016B2 (en) 2002-07-19 2002-07-19 Resin fuel tank structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004052659A JP2004052659A (en) 2004-02-19
JP3750016B2 true JP3750016B2 (en) 2006-03-01

Family

ID=31934296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002210925A Expired - Fee Related JP3750016B2 (en) 2002-07-19 2002-07-19 Resin fuel tank structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3750016B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006088694A (en) * 2004-08-27 2006-04-06 Mitsubishi Gas Chem Co Inc Manufacturing method for hollow molded body
JP4905005B2 (en) * 2006-09-07 2012-03-28 トヨタ自動車株式会社 Member joining structure to fuel tank, fuel tank manufacturing method, and member joining method to fuel tank
JP4977750B2 (en) * 2009-12-24 2012-07-18 本田技研工業株式会社 Resin fuel tank
JP5636259B2 (en) 2009-12-24 2014-12-03 本田技研工業株式会社 General-purpose engine plastic fuel tank
JP6412850B2 (en) * 2015-11-27 2018-10-24 八千代工業株式会社 Manufacturing method of fuel tank
DE102017119706B4 (en) * 2017-08-28 2022-05-19 Kautex Textron Gmbh & Co. Kg Injection molding process and liquid container for a motor vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298542A (en) * 1988-10-03 1990-04-10 Kurata:Kk Resin hollow container with permeation resistance
JPH07148867A (en) * 1993-11-29 1995-06-13 Hideshi Iwata Plastic corrugated board and manufacture thereof
JP3776185B2 (en) * 1996-11-28 2006-05-17 日産自動車株式会社 Resin fuel container and manufacturing method thereof
JP2001063385A (en) * 1999-08-31 2001-03-13 Nissan Motor Co Ltd Fuel tank structure
JP2002160537A (en) * 2000-11-24 2002-06-04 Toyota Motor Corp Resin-made fuel tank

Also Published As

Publication number Publication date
JP2004052659A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
JP4026322B2 (en) Manufacturing method of welded joint for fuel tank
JP3623191B2 (en) Low-permeability accessory, low-permeability container using the accessory, and method for manufacturing the container
JP6871479B2 (en) Liquid containers for motor vehicles and methods for manufacturing liquid containers
US20070012374A1 (en) Resin pipe and resin molded component
JP6710058B2 (en) Filler tube and manufacturing method thereof
WO2017006863A1 (en) Method for producing filler tube
US20150001215A1 (en) Fueling device
JP3750016B2 (en) Resin fuel tank structure and manufacturing method thereof
JP2002160537A (en) Resin-made fuel tank
JP2008155587A (en) Manufacturing method of hollow resin molded product
JP6717224B2 (en) Refueling device
JP2018118498A (en) Method for manufacturing filler tube, and filler tube
JP2008155588A (en) Hollow resin molded product and its manufacturing method
US20200001544A1 (en) Method for installing filler tube and installation structure for filler tube
JP2020531741A (en) Liquid containers and methods for manufacturing liquid containers
US7565986B2 (en) Fuel system component and method of manufacture
JP6513759B2 (en) Resin tank
JP4356608B2 (en) Two-layer injection molded product and resin filler neck
JP2008030664A (en) Fuel tank and fuel tank structure
JP2019014292A (en) Internal column attachment structure
JP2013119342A (en) Component welding structure of fuel tank
JP6704886B2 (en) Resin fuel tank
JP4395267B2 (en) Synthetic resin fuel tank and manufacturing method thereof
WO2017056846A1 (en) Filler tube and method for manufacturing same
JP4905005B2 (en) Member joining structure to fuel tank, fuel tank manufacturing method, and member joining method to fuel tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees