JP3749240B2 - Dry crusher - Google Patents

Dry crusher Download PDF

Info

Publication number
JP3749240B2
JP3749240B2 JP2003335714A JP2003335714A JP3749240B2 JP 3749240 B2 JP3749240 B2 JP 3749240B2 JP 2003335714 A JP2003335714 A JP 2003335714A JP 2003335714 A JP2003335714 A JP 2003335714A JP 3749240 B2 JP3749240 B2 JP 3749240B2
Authority
JP
Japan
Prior art keywords
gas
jet
pipe
circulation
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003335714A
Other languages
Japanese (ja)
Other versions
JP2005095838A (en
Inventor
光雄 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2003335714A priority Critical patent/JP3749240B2/en
Publication of JP2005095838A publication Critical patent/JP2005095838A/en
Application granted granted Critical
Publication of JP3749240B2 publication Critical patent/JP3749240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Disintegrating Or Milling (AREA)

Description

この発明は、特に、希土類系―鉄―ボロン系磁性材料等のその粉末が非常に酸化し易い材料を微粉砕する乾式粉砕装置に関するものである。   In particular, the present invention relates to a dry pulverizing apparatus for finely pulverizing a material such as a rare earth-iron-boron-based magnetic material whose powder is very easily oxidized.

この種の粉末が非常に酸化し易い材料を乾式により微粉砕する装置は、例えば、図3に示すように、非酸化性ガスaが循環可能な無端管路1にガス圧縮手段2とジェット気流粉砕手段3を直列に介設した構成であり、一般には、そのガス圧縮手段2に圧縮機(コンプレッサ)、ジェット気流粉砕手段3にはジェットミルが使用される(特許文献1、2参照)。
特開昭62−197167号公報 特開平11−156224号公報
For example, as shown in FIG. 3, an apparatus for finely pulverizing a material that easily oxidizes this kind of powder is provided with an endless pipe 1 through which a non-oxidizing gas a can be circulated and a gas compression means 2 and a jet stream. The crushing means 3 is interposed in series. Generally, a compressor (compressor) is used as the gas compression means 2 and a jet mill is used as the jet airflow crushing means 3 (see Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 62-197167 JP-A-11-156224

この乾式粉砕装置は、無端管路1に適宜な手段により、窒素ガスなどの不活性ガス(非酸化性ガス)aが供給され、そのガスaが、圧縮機2により昇圧されてジェットミル3内にジェット流として噴出し、ジェットミル3内に送り込まれた被処理物が、その噴出流による相互の衝突・摩擦により粉砕されてそのガスaの循環流に乗り、その途中において、その所要大きさの微粉砕物等を捕集する(特許文献1、2及び後述の実施例参照)。   In this dry pulverization apparatus, an inert gas (non-oxidizing gas) a such as nitrogen gas is supplied to the endless pipe 1 by an appropriate means, and the gas a is pressurized by the compressor 2 and is injected into the jet mill 3. The object to be treated which is ejected as a jet stream and fed into the jet mill 3 is crushed by mutual collision and friction caused by the ejected stream and rides on the circulating flow of the gas a. (See Patent Documents 1 and 2 and Examples described later).

この乾式粉砕装置において、一般に、圧縮機2は、停止した場合、その内部セパレーターのガスを放出しないと再起動できないため、停止と同時に、そのガスを圧縮機2外に放出するようになっている。放出すれば、高価な非酸化性ガスが無駄となり、コストアップにつながる。
このため、同図に示すように、無端管路1に圧縮機2に対するバイパス回路4を形成し、ジェットミル3の停止状態若しくはジェットミル3における非酸化性ガス使用量が減少した場合、その回路4にガスaを流通させて、圧縮機2の運転をその都度停止させる必要がないようにしている(特許文献1 図面及び第2頁右欄第25行〜第36行参照)。
In this dry pulverization apparatus, generally, when the compressor 2 is stopped, it cannot be restarted unless the gas of the internal separator is released, so that the gas is released to the outside of the compressor 2 at the same time as the stop. . If released, expensive non-oxidizing gas is wasted, leading to an increase in cost.
For this reason, as shown in the figure, when the bypass circuit 4 for the compressor 2 is formed in the endless pipe 1 and the jet mill 3 is stopped or the amount of non-oxidizing gas used in the jet mill 3 decreases, the circuit 4 circulates gas a so that it is not necessary to stop the operation of the compressor 2 each time (refer to Patent Document 1 drawing and page 2, right column, lines 25 to 36).

また、乾式粉砕装置の起動時、そのバイパス回路4にガスaを流通させて昇圧し、一定圧後にジェットミル3にその高圧ガスaを送り込むようにしたものもある(特許文献2 図1及び段落0015参照)。   In addition, when the dry pulverizing apparatus is activated, there is also a type in which the gas a is circulated through the bypass circuit 4 to increase the pressure, and the high pressure gas a is sent to the jet mill 3 after a certain pressure (Patent Document 2 FIG. 1 and paragraph). 0015).

特許文献1記載の技術は、上記バイパス回路4にレギュレーター5を介設するとともに、ジェットミル3後段の無端管路1内の窒素ガス(非酸化性ガス)圧を圧力計6により検出している。そして、ジェットミル3を停止する場合には、レギュレーター5を作動させてバイパス回路4にガスaを流通させるとともに減圧させる循環管路を形成して、圧縮機2の運転をその都度停止させる必要がないようにしている。
このレギュレーター5によって減圧するのは、循環管路における圧力損失はあるものの、全く減圧しないと、徐々にその循環管路内のガス圧が上昇し、圧縮機2が作動し得ない(作動に支障が生じる)状態になるからである。
In the technique described in Patent Document 1, a regulator 5 is provided in the bypass circuit 4, and the pressure of a nitrogen gas (non-oxidizing gas) in the endless pipe 1 after the jet mill 3 is detected by a pressure gauge 6. . When the jet mill 3 is to be stopped, it is necessary to operate the regulator 5 to form a circulation line that causes the gas a to flow through the bypass circuit 4 and to reduce the pressure, and to stop the operation of the compressor 2 each time. I am trying not to.
The pressure is reduced by the regulator 5 although there is a pressure loss in the circulation line. However, if the pressure is not reduced at all, the gas pressure in the circulation line gradually increases and the compressor 2 cannot be operated (the operation is hindered). This is because a state occurs).

しかし、この技術は、そのバイパス時、ジェットミル3側の無端管路1にはガスaが流通しないため、例えば、管路1に介設された捕集機にそのガスaが流通しないこととなり、その管路1には少なからずガスリークがあるため、管路1内の窒素ガス量が徐々に減少し、その減少につれて、空気(酸素)が管路1内に流入し、捕集微粉末が酸化されて不良品になる恐れがある。
また、多くの空気が管路1内に流入すれば、微粉末が爆発する恐れがある。
However, in this technique, since the gas a does not flow through the endless pipe line 1 on the jet mill 3 side during the bypass, for example, the gas a does not flow through the collector installed in the pipe line 1. Since there is not a little gas leak in the pipe line 1, the amount of nitrogen gas in the pipe line 1 gradually decreases, and as it decreases, air (oxygen) flows into the pipe line 1 and the collected fine powder There is a risk of oxidation resulting in defective products.
In addition, if a large amount of air flows into the pipeline 1, the fine powder may explode.

また、通常、圧縮機2は、ジェットミル3が必要とするガス圧及びガス量より多い吐出量を有するものが使用されるため、このバイパス回路4は、その必要以上のガスを減圧して循環管路1に戻す作用も行う。この減圧はエネルギーの無駄である。   In general, since the compressor 2 having a gas pressure and a discharge amount larger than the gas amount required by the jet mill 3 is used, the bypass circuit 4 circulates by reducing the gas more than necessary. The action of returning to the pipeline 1 is also performed. This decompression is a waste of energy.

特許文献2の技術においても、ガスaのバイパス回路循環時には、ジェットミル(粉砕機)3側の管路にはガスaが流通しないため、特許文献1の技術と同様の問題が生じる。   Also in the technique of Patent Document 2, since the gas a does not flow through the pipeline on the jet mill (pulverizer) 3 side when the gas a is circulated in the bypass circuit, the same problem as that of the technique of Patent Document 1 occurs.

この発明は、上記両技術の問題点を解決しつつ、圧縮機の運転を必要以上に止める必要がないようにすることを課題とする。   This invention makes it a subject to make it unnecessary to stop the operation | movement of a compressor more than necessary, solving the problem of both said technologies.

上記課題を達成するために、この発明は、上記レギュレーター5を設けるのではなく、粉砕機の停止中においても、無端管路を循環するガスを、その粉砕機内を支障がないように流通させるようにしたのである。
すなわち、この発明に係わるジェットミル等のジェット気流粉砕手段は、粉砕部と分級部とからなり、停止すると、その粉砕部に被処理物(原料)が自重により堆積し、一方、分級部には、完全に停止するまでのガス流により被処理物が次段の捕集機等に運ばれるため、被処理物は殆ど滞留しない。
このため、上記ガス圧縮手段の後段で上記ジェット気流粉砕手段の前段の無端管路からガス流分岐管路を分岐してそのガス流分岐管路を前記ジェット気流粉砕手段内の分級部と粉砕部の間に接続したのである。
In order to achieve the above object, the present invention does not provide the regulator 5 but allows the gas circulating through the endless pipe to flow through the pulverizer without any trouble even when the pulverizer is stopped. It was.
That is, the jet airflow pulverizing means such as a jet mill according to the present invention comprises a pulverization part and a classification part, and when stopped, the object to be treated (raw material) is deposited by its own weight on the pulverization part, Since the object to be processed is transported to the next collector by the gas flow until it completely stops, the object to be processed hardly stays.
For this reason, the gas flow branching pipe is branched from the endless pipe before the jet airflow crushing means at the subsequent stage of the gas compression means, and the gas flow branching pipe is divided into the classification section and the crushing section in the jet airflow crushing means. Between them.

このように、ジェット気流粉砕手段の停止時、そのガス流分岐管路を循環管路とすれば、そのガス流分岐管路の循環管路はジェット気流粉砕手段の運転時の循環管路と略同様な管路構造となり、循環管路のガス圧もガス圧縮手段の作動に支障が生じる程度まで上昇することがない。また、ジェット気流粉砕手段の運転時と同様に、無端管路の略全長を非酸化性ガスが循環するため、その管路に介設された捕集機内の被処理物(微紛末)の酸化は極力抑制されると共に、酸素の流入による爆発の恐れもない。   Thus, when the jet stream crushing means is stopped, if the gas flow branch line is a circulation line, the circulation line of the gas flow branch line is substantially the same as the circulation line during operation of the jet stream crushing means. A similar pipe structure is formed, and the gas pressure in the circulation pipe does not rise to the extent that the operation of the gas compression means is hindered. Moreover, since the non-oxidizing gas circulates over substantially the entire length of the endless pipe line as in the operation of the jet airflow crushing means, the object to be treated (fine powder) in the collector installed in the pipe line is circulated. Oxidation is suppressed as much as possible, and there is no risk of explosion due to the inflow of oxygen.

なお、この発明においては、ジェット気流粉砕手段の点検や、ガス流分岐管路を介した循環管路によるガス循環が1時間を越えると予想される場合には、ガス圧縮手段を停止させる。   In the present invention, the gas compression means is stopped when the inspection of the jet airflow crushing means and the gas circulation through the circulation line via the gas flow branch line are expected to exceed one hour.

この発明は、ジェット気流粉砕手段の停止時においても、ジェット気流粉砕手段の運転時の循環管路と略同様な管路構造としたので、その停止時、捕集機内の被処理物が酸化して不良品となる恐れもなく、また、その被処理物が爆発する恐れもない。   Since the present invention has a pipe structure substantially similar to the circulation pipe line when the jet airflow crushing means is operating even when the jet airflow crushing means is stopped, the object to be treated in the collector is oxidized when the jet airflow crushing means is stopped. There is no risk of becoming a defective product, and there is no risk of explosion of the workpiece.

この発明の実施形態の一例としては、図1に示すように、従来と同様に、非酸化性ガスaが循環可能な無端管路1内にガス圧縮手段2とジェット気流粉砕手段3を直列に介設した乾式粉砕装置とする。そのジェット気流粉砕手段3は、分級部32と粉砕部31からなっている。
上記ガス圧縮手段2の後段でジェット気流粉砕手段3の前段の無端管路1からガス流分岐管路10を分岐し、そのガス流分岐管路10をジェット気流粉砕手段3内の分級部32と粉砕部31の間に接続し、そのガス流分岐管路10に開閉弁11を介設する。ガス流分岐管路10の分岐点とジェット気流粉砕手段3の間の管路1には開閉弁12を設ける。
なお、この無端管路1には、従来と同様に、サイクロン、バグフィルタ等の捕集機などの乾式粉砕装置として必要な種々の機器を設ける(後述の実施例参照)。
As an example of the embodiment of the present invention, as shown in FIG. 1, a gas compression means 2 and a jet airflow crushing means 3 are connected in series in an endless pipe 1 through which a non-oxidizing gas a can be circulated as shown in FIG. An intervening dry pulverizer is used. The jet airflow crushing means 3 includes a classification unit 32 and a crushing unit 31.
The gas flow branching pipe 10 is branched from the endless pipe 1 upstream of the jet airflow crushing means 3 at the subsequent stage of the gas compression means 2, and the gas flow branching pipe 10 is connected to the classification unit 32 in the jet airflow crushing means 3. It connects between the grinding | pulverization parts 31, and the opening-and-closing valve 11 is installed in the gas flow branch line 10. As shown in FIG. An open / close valve 12 is provided in the pipe line 1 between the branch point of the gas flow branch pipe 10 and the jet airflow crushing means 3.
The endless pipe 1 is provided with various devices necessary as a dry pulverization apparatus such as a collector such as a cyclone and a bag filter, as in the prior art (see examples described later).

この実施形態は、通常運転時、開閉弁11を閉じ、開閉弁12を開放した状態で、ガス圧縮手段2及びジェット気流粉砕手段3を作動させて、窒素ガスなどの非酸化性ガスaを無端管路1内に循環させると共に(ガスaの実線矢印の循環)、ジェット気流粉砕を行い、その微粉末(製品)を捕集するとともに、微細なダストを捕捉する。   In this embodiment, during normal operation, the on-off valve 11 is closed and the on-off valve 12 is opened, and the gas compression means 2 and the jet airflow crushing means 3 are operated to endless non-oxidizing gas a such as nitrogen gas. While circulating in the pipeline 1 (circulation of the solid line arrow of gas a), jet airflow crushing is performed to collect the fine powder (product) and capture fine dust.

原料供給の一時中断等、何らかの事情により、ジェット気流粉砕手段3が停止した場合、又は停止させる場合、手動又は自動的に、開閉弁11を開放するとともに開閉弁12を閉じて、分岐ガス流分岐管路10を介した循環管路1を形成する(ガスaの破線矢印の循環)。
この管路は、ジェット気流粉砕手段3の運転時の循環管路と略同様な管路構造となり、循環管路のガス圧もガス圧縮手段2の作動に支障が生じる程度まで上昇することがない。また、ジェット気流粉砕手段3の運転時と同様に、無端管路1の略全長を非酸化性ガスが循環するため、その管路1に介設された捕集機内の被処理物(微紛末)の酸化は極力抑制されると共に、酸素の流入による爆発の恐れもない。さらに、ジェット気流粉砕手段3内にもその上方(分級部32と粉砕部31の間)から非酸化性ガスaが流入されて、その内部は非酸化性ガスaが充満しているため、内部に滞留する被処理物も酸化せず、不良品となることもない。
When the jet air flow crushing means 3 is stopped or stopped due to some reason such as temporary interruption of the supply of raw materials, the on-off valve 11 and the on-off valve 12 are closed manually or automatically to branch the branch gas flow. A circulation line 1 is formed via the line 10 (circulation of broken arrows of gas a).
This pipeline has a pipeline structure substantially similar to the circulation pipeline during operation of the jet airflow crushing means 3, and the gas pressure in the circulation pipeline does not rise to such an extent that the operation of the gas compression means 2 is hindered. . Similarly to the operation of the jet airflow crushing means 3, since the non-oxidizing gas circulates over the substantially entire length of the endless pipe 1, the object to be treated (fine powder) in the collector provided in the pipe 1 is circulated. The oxidation of the powder is suppressed as much as possible, and there is no risk of explosion due to the inflow of oxygen. Further, the non-oxidizing gas a is also flown into the jet airflow crushing means 3 from above (between the classification unit 32 and the crushing unit 31), and the inside is filled with the non-oxidizing gas a. The processing object staying in the substrate is not oxidized and does not become a defective product.

このジェット気流粉砕手段3を一時停止から運転再開するには、開閉弁11を閉じるとともに開閉弁12を開放して通常の無端管路1のガスaの循環ラインに復帰させて、ジェット気流粉砕手段3を再起動させる。   In order to resume the operation of the jet airflow crushing means 3 from the temporary stop, the on-off valve 11 is closed and the on-off valve 12 is opened to return to the normal gas a circulation line of the endless pipe 1. 3 is restarted.

このように、ジェット気流粉砕手段3の運転時と一時停止時におけるガス循環管路が略同一構造に形成されることにより、その一時停止時におけるガス循環管路においてもその全長にガスが循環しているため、その回路の圧が低下することがない(正圧が破れることがない)。すなわち、ガス循環管路でガスリークが生じても、ガスは、その循環により補充されるので、管路内の圧力は低下することがない。
これに対し、図3の従来例は、バイパス回路4の使用時の循環管路は、ジェットミル3の全体及び各種の捕集機をガスaが流れないため、その部分において、ガスリークなどにより、管路圧が低下する恐れがある。すなわち、両循環管路の切換により、一方の管路にはガスが流れないので、ガスが徐々にリークして大気圧まで低下し、両循環管路間に大きな差圧が生じる恐れがある。
As described above, the gas circulation conduits during the operation and the temporary stop of the jet airflow crushing means 3 are formed in substantially the same structure, so that the gas circulates over the entire length of the gas circulation conduit during the temporary stop. Therefore, the pressure of the circuit does not decrease (the positive pressure is not broken). That is, even if a gas leak occurs in the gas circulation pipe, the gas is replenished by the circulation, so that the pressure in the pipe does not decrease.
On the other hand, in the conventional example of FIG. 3, the circulation line when the bypass circuit 4 is used does not flow the gas a through the entire jet mill 3 and various collectors. There is a risk that the line pressure will decrease. That is, since the gas does not flow through one of the two pipelines by switching between the two circulation pipelines, the gas gradually leaks and drops to the atmospheric pressure, which may cause a large differential pressure between the two circulation pipelines.

したがって、通常、試運転当初などの運転初期、この循環管路1とは別の管路(図2の符号28参照)からジェット気流粉砕手段3内に非酸化性ガスを流入(循環)させ、そのジェット気流粉砕手段3内にその差圧分の非酸化性ガスが流入して所定の酸素濃度に達した時点で、ガス圧縮手段2による循環管路に切り換えて、通常運転に入る。このとき、この実施形態は、従来例は、切換循環管路間に大きな差圧が生じるのに比べ、その差圧が殆ど生じないため、その切り換え時間も短かくなり、運転開始時の非酸化性ガスの置換作業も短時間で行うことができる等、その作業が簡単となる。   Therefore, normally, in the initial stage of operation such as the initial stage of test operation, non-oxidizing gas is allowed to flow (circulate) into the jet airflow crushing means 3 from a pipe (see reference numeral 28 in FIG. 2) different from the circulation pipe 1. When the non-oxidizing gas corresponding to the differential pressure flows into the jet airflow crushing means 3 and reaches a predetermined oxygen concentration, the operation is switched to the circulation line by the gas compression means 2 and the normal operation is started. At this time, in this embodiment, compared with the conventional example, a large differential pressure is generated between the switching circulation pipes, so that the differential pressure hardly occurs. Therefore, the switching time is shortened, and non-oxidation at the start of operation is performed. The work of replacing the reactive gas can be performed in a short time, and the work is simplified.

また、ジェット気流粉砕手段3の運転時と一時停止時の両ガス循環管路が略同一構造に形成されることは、運転時の計器で持って、酸素量、温度などを計測することができることとなり、例えば、被処理物の酸化による発熱があっても、その発熱を常備の計測器で検出することができる。
これに対し、図3の従来例では、例えば、管路1の温度上昇をガス圧縮手段側の管路(図3の右側管路)で検出している場合には、ジェット気流粉砕手段3側の管路(図3の左側管路)の発熱を検出できない。
In addition, the fact that both gas circulation pipes during the operation and temporary stop of the jet airflow crushing means 3 are formed in substantially the same structure can be measured by measuring the amount of oxygen, temperature, etc. Thus, for example, even if there is heat generation due to oxidation of the object to be processed, the heat generation can be detected by a permanent measuring instrument.
On the other hand, in the conventional example of FIG. 3, for example, when the temperature rise of the pipe 1 is detected by the pipe on the gas compression means side (the right pipe in FIG. 3), the jet airflow crushing means 3 side The heat generation in the pipe (the left pipe in FIG. 3) cannot be detected.

図2により具体的な一実施例を示し、この実施例も、上記図1の実施形態と同様に、窒素ガス(非酸化性ガス)aが循環可能な無端管路1内にガス圧縮手段となるコンプレッサ2とジェット気流粉砕手段となる竪型ジェットミル3を直列に介設した乾式粉砕装置である。   FIG. 2 shows a specific example. This example also has a gas compression means in the endless pipe 1 through which nitrogen gas (non-oxidizing gas) a can circulate, as in the embodiment of FIG. This is a dry pulverizing apparatus in which a compressor 2 and a vertical jet mill 3 serving as jet airflow pulverizing means are connected in series.

そのコンプレッサ2は、ジェットミル3に高圧の窒素ガスaを供給するものであり、例えば、7〜8kg/cm2 Gの高圧窒素ガスaを吐出する。コンプレッサ2の前後には低圧タンク21と高圧タンク22が設けられている。低圧タンク21は、バッファ装置の働きをしてコンプレッサ2に窒素ガスaを安定して供給する役目を担い、この低圧タンク21に流入する無端管路1内の窒素ガスaは、途中におけるジェットミル3内への噴出や被処理物(原料)bの投入等により圧力損失が生じ、例えば、0.10〜0.15kg/cm2 Gとなる。高圧タンク22は、ジェットミル3及び無端管路1に高圧の窒素ガスaを安定して供給する役目を担い、コンプレッサ2からの高圧窒素ガスaが流入するため、その内部ガス圧力は、例えば、7〜8kg/cm2 Gとなる。 The compressor 2 supplies high-pressure nitrogen gas a to the jet mill 3, and discharges high-pressure nitrogen gas a of 7 to 8 kg / cm 2 G, for example. A low-pressure tank 21 and a high-pressure tank 22 are provided before and after the compressor 2. The low-pressure tank 21 functions as a buffer device to stably supply the nitrogen gas a to the compressor 2, and the nitrogen gas a in the endless pipe 1 flowing into the low-pressure tank 21 is a jet mill in the middle. The pressure loss occurs due to the injection into 3 or the introduction of the workpiece (raw material) b, for example, 0.10 to 0.15 kg / cm 2 G. The high-pressure tank 22 plays a role of stably supplying the high-pressure nitrogen gas a to the jet mill 3 and the endless pipe 1, and since the high-pressure nitrogen gas a from the compressor 2 flows in, the internal gas pressure is, for example, 7 to 8 kg / cm 2 G.

ジェットミル3は、有底の筒状体からなり、その筒状体の底中央に噴出ノズル13と下部周囲等間隔位置にジェットノズル14をそれぞれ設け、そのジェットノズル14は筒状体の内部中央の一点にその噴射流が向くようになっている。各ノズル13,14は開閉弁12a、12bを介して無端管路1に介設され、噴出ノズル13は開閉弁12aを、ジェットノズル14は開閉弁12bをそれぞれ開放することにより、各ノズル13、14から筒状体内に窒素ガスaの噴出流が生じる。   The jet mill 3 is composed of a cylindrical body with a bottom. A jet nozzle 13 is provided at the center of the bottom of the cylindrical body, and jet nozzles 14 are provided at equal intervals around the lower part. The jet nozzle 14 is an inner center of the cylindrical body. The jet flow is suitable for one point. The nozzles 13 and 14 are provided in the endless pipe 1 via the on-off valves 12a and 12b, the ejection nozzle 13 opens the on-off valve 12a, and the jet nozzle 14 opens the on-off valve 12b, whereby each nozzle 13, From 14, a jet of nitrogen gas a is generated in the cylindrical body.

筒状体の上部の一側には原料bの投入口23が形成されて、この投入口23に循環管路1からの開閉弁25を介設した分岐管24が接続されており、開閉弁25を適宜に開放することにより、原料bが窒素ガスaとともにジェットミル3内に送り込まれる。
この送り込まれた原料bは、ジェットノズル14からの噴出流に巻き込まれ、その噴出流が筒状体の内部中央の一点に向くようになっているため、その中央部で原料bが相互の衝突・摩擦により粉砕されて微粉化する。このように、側面数箇所から窒素ガスaを噴流するので、その噴流窒素ガスaを多く必要とする。このため、コンプレッサ2のガスa吐出能力の略大部分を使用する。この原料bの流動領域が粉砕部31となる。流動作用に参加した窒素ガスaは粉砕部31上部の分級部32を経て筒状体の微紛出口26から流出する。
An inlet 23 for the raw material b is formed on one side of the upper part of the cylindrical body, and a branch pipe 24 having an opening / closing valve 25 from the circulation pipe 1 is connected to the inlet 23. By appropriately opening 25, the raw material b is fed into the jet mill 3 together with the nitrogen gas a.
The fed raw material b is entangled in the jet flow from the jet nozzle 14, and the jet flow is directed to one point in the inner center of the cylindrical body, so that the raw material b collides with each other at the central portion.・ Powder is pulverized by friction. Thus, since the nitrogen gas a is jetted from several places on the side surface, a large amount of the jet nitrogen gas a is required. For this reason, the most part of the gas a discharge capacity of the compressor 2 is used. The flow region of the raw material b becomes the pulverization unit 31. The nitrogen gas a participating in the flow action flows out from the fine powder outlet 26 of the cylindrical body through the classification unit 32 above the pulverization unit 31.

なお、酸化をきらう金属粉の粉砕においては、その原料bの比重が高く、サイズが大きいことから、ジェットミル(筒状体)3の底部に滞留して、筒状体側方のノズル14からのジェット噴流ではその滞留する原料bが舞い上がりにくく流動し難い(浮遊し難い)。しかし、筒状体下部の噴出ノズル13からの噴出流による攪拌により、その底部に滞留する原料bは容易に吹き上って(舞い上がって)、流動化する(浮遊する)。
このとき、一般に、ジェット噴流周囲の固気濃度(固体含有率)が高い程、ジェット噴流に原料bが巻き込まれ易くなり、粉砕効率が高まるので、下部の噴出ノズル13による流動化の促進により、その固気濃度が高まり、粉砕が円滑になされる(粉砕効率は向上する)。この噴出ノズル13からの噴出量は、コンプレッサ2のガス吐出量の内、粉砕に不必要な余分のガス量とする。
In the pulverization of the metal powder that does not oxidize, the specific gravity of the raw material b is high and the size is large, so that it stays at the bottom of the jet mill (tubular body) 3 and from the nozzle 14 on the side of the cylindrical body. In the jet jet, the staying raw material b hardly floats up and does not flow easily (it does not float easily). However, due to stirring by the jet flow from the jet nozzle 13 at the bottom of the cylindrical body, the raw material b staying at the bottom easily blows up (floats) and fluidizes (floats).
At this time, generally, the higher the solid gas concentration (solid content ratio) around the jet jet, the more easily the raw material b is caught in the jet jet, and the pulverization efficiency is increased. The solid-gas concentration is increased and the pulverization is performed smoothly (the pulverization efficiency is improved). The ejection amount from the ejection nozzle 13 is an excess gas amount unnecessary for pulverization out of the gas discharge amount of the compressor 2.

上記分級部32は分級ロータにより構成されており、この分級ロータ32は、流入窒素ガスaと共に入り込んだ微細化原料bにその旋回ガス流により遠心力を与え、その原料bの粒度の粗いものはその遠心力により外側に送られ、筒状体の内壁近傍を落下し、筒状体の底部に至り、再び吹き上げ流動作用を受けて、微細化作用を受ける(再粉砕される)。この繰り返しにより、原料bは徐々に微細化する。微紛は分級ロータ32の羽根を通過して微紛出口26に至る。   The classifying unit 32 is constituted by a classifying rotor, and the classifying rotor 32 applies centrifugal force to the refined raw material b introduced together with the inflowing nitrogen gas a by the swirling gas flow, and the raw material b having a coarse particle size is It is sent to the outside by the centrifugal force, falls near the inner wall of the cylindrical body, reaches the bottom of the cylindrical body, receives a flow action again, and receives a refining action (reground). By repeating this, the raw material b is gradually refined. The fine powder passes through the blades of the classification rotor 32 and reaches the fine powder outlet 26.

微紛出口26から低圧タンク21に至る管路1には、サイクロン7、バグフィルタ8及びアフタフィルタ9が順に介設されており、そのサイクロン7において、所要粒度の微紛を捕集して製品cを得る。バグフィルタ8は製品とならない微紛を捕捉し、アフタフィルタ9により、コンプレッサ2に流入してはいけない各種の微細ダストを捕捉する。   A cyclone 7, a bag filter 8 and an after filter 9 are sequentially provided in the pipe line 1 from the fine powder outlet 26 to the low-pressure tank 21. c is obtained. The bag filter 8 captures fine dust that is not a product, and the after filter 9 captures various fine dusts that should not flow into the compressor 2.

上記コンプレッサ2の後段でジェットミル3の前段の無端管路1から上記分岐管24とは異なる分岐管(ガス流分岐管路)10が分岐され、この分岐管10は開閉弁11が介設されてジェットミル3の筒状体上部の分級部32と粉砕部31の間に接続されている。その接続口15は分級ロータ32に向く上向きとする。これにより、この接続口15から流入する窒素ガスaは粉砕部31には極力至らず、筒状体底部に滞留する原料(被処理物)bに流動作用を生じさせない。   A branch pipe (gas flow branch pipe) 10 different from the branch pipe 24 is branched from the endless pipe 1 before the jet mill 3 at the rear stage of the compressor 2, and the branch pipe 10 is provided with an opening / closing valve 11. The jet mill 3 is connected between the classification unit 32 and the pulverization unit 31 at the upper part of the cylindrical body. The connection port 15 is upward facing the classification rotor 32. As a result, the nitrogen gas a flowing in from the connection port 15 does not reach the pulverization unit 31 as much as possible, and does not cause a fluid action on the raw material (object to be processed) b staying at the bottom of the cylindrical body.

高圧タンク22の後段には冷却器27が設けられており、この冷却器27により、コンプレッサ2の圧縮により高温になった窒素ガスaが粉砕に支障のない程度に冷やされる。その冷却器26の後段に窒素ガスaの取入管28が接続されており、運転初期における管路1内への窒素ガスaの供給、及び運転中の窒素ガス量の低下(酸素濃度の上昇)に基づいて適宜に窒素ガスaを管路1に供給する。その供給は、取込管28に介設された開閉弁(図示せず)により行う。   A cooler 27 is provided at the subsequent stage of the high-pressure tank 22, and the cooler 27 cools the nitrogen gas a that has become a high temperature due to compression of the compressor 2 to an extent that does not hinder the pulverization. The intake pipe 28 of the nitrogen gas a is connected to the rear stage of the cooler 26, supply of the nitrogen gas a into the pipe line 1 in the initial stage of operation, and decrease in the amount of nitrogen gas during operation (increase in oxygen concentration). As appropriate, nitrogen gas a is supplied to the pipe 1. The supply is performed by an on-off valve (not shown) provided in the intake pipe 28.

この実施例は、以上の構成であり、無端管路1に所要の窒素濃度のガスaが充満され、かつジェットミル3内底部に原料bを投入した状態において、通常運転時には、開閉弁11を閉じ、開閉弁12a、12bを開放し、コンプレッサ2及びジェットミル3の作動により(運転により)、窒素ガスaが無端管路1内を循環し(ガスaの実線矢印の循環)、ジェットミル3において、原料bが流動して粉砕されるとともに、その粉砕物の分級が行われ、その分級された微紛から、サイクロン7において製品cが捕集され、バグフィルタ8及びアフタフィルタ9において、微細なダストなどが捕捉される。この窒素ガスaの循環回路により、微細な製品cが生産される。   This embodiment has the above-described configuration. In the state where the endless pipe 1 is filled with a gas a having a required nitrogen concentration and the raw material b is charged into the inner bottom of the jet mill 3, the on-off valve 11 is set during normal operation. The valve is closed, the on-off valves 12a and 12b are opened, and the operation of the compressor 2 and the jet mill 3 (by operation) causes the nitrogen gas a to circulate in the endless pipe 1 (circulation in the solid arrow of the gas a). The raw material b flows and is pulverized, and the pulverized product is classified, and the product c is collected in the cyclone 7 from the classified fine powder, and the bag filter 8 and the afterfilter 9 are finely classified. Dust is captured. A fine product c is produced by the circulation circuit of the nitrogen gas a.

この運転中において、何らかの事情により、ジェットミル3が停止すると、手動又は自動的に、開閉弁11が開放するとともに開閉弁12a、12bが閉じて、分岐管10を介した循環管路1を形成する(ガスaの破線矢印の循環)。
この管路は、ジェットミル3の運転時の循環管路と略同様な管路構造となり、循環管路のガス圧もコンプレッサ2の作動に支障が生じる程度まで上昇することがない。また、ジェットミル3の運転時と同様に、無端管路1の略全長を窒素ガスaが循環するため、その管路1に介設されたサイクロン7等内の被処理物(微紛末)の酸化は極力抑制されると共に、酸素の流入による爆発の恐れもない。さらに、ジェットミル3内にもその上方に窒素ガスaが流入されて、その内部は窒素ガスaが充満しているため、内部に滞留する原料bも酸化せず、不良品となることもない。
During this operation, when the jet mill 3 stops for some reason, the on-off valve 11 is opened manually and automatically, and the on-off valves 12a, 12b are closed to form the circulation line 1 via the branch pipe 10. (Circulation of broken arrows of gas a).
This pipe line has a pipe line structure substantially similar to the circulation pipe line during operation of the jet mill 3, and the gas pressure in the circulation pipe does not rise to the extent that the operation of the compressor 2 is hindered. Similarly to the operation of the jet mill 3, since the nitrogen gas a circulates substantially the entire length of the endless pipe 1, an object to be processed (fine powder) in a cyclone 7 interposed in the pipe 1. The oxidation of is suppressed as much as possible, and there is no risk of explosion due to the inflow of oxygen. Furthermore, since the nitrogen gas a flows into the jet mill 3 and the inside thereof is filled with the nitrogen gas a, the raw material b staying therein is not oxidized and does not become a defective product. .

このジェットミル3を一時停止から運転再開するには、開閉弁11を閉じるとともに開閉弁12a、12bを開放して通常の無端管路1のガスaの循環ラインに復帰させて、ジェットミル3を再起動させる。   In order to restart the operation of the jet mill 3 from the temporary stop, the on-off valve 11 is closed and the on-off valves 12a and 12b are opened to return to the gas a circulation line of the normal endless pipe 1, and the jet mill 3 is Reboot.

なお、この実施例においても、酸素濃度検出器、管路内ガス圧力計などの従来の乾式粉砕装置に必要なものは図示しないが付設されており、また、特許文献2に記載のガス成分調整手段なども適宜に付設できることは勿論である。さらに、噴出ノズル13は底部に滞留する原料bの流動化用に用いたが、ジェットノズルとすることも可能である。その際、このノズル13も筒状体の内部中央の一点にその噴射流が向くようにする。   Also in this embodiment, what is necessary for a conventional dry pulverization apparatus such as an oxygen concentration detector and an in-pipe gas pressure gauge is provided although not shown, and the gas component adjustment described in Patent Document 2 is also provided. It goes without saying that means and the like can be appropriately attached. Furthermore, although the ejection nozzle 13 was used for fluidizing the raw material b staying at the bottom, it can be a jet nozzle. At this time, the nozzle 13 is also set so that the jet flow is directed to one point in the center of the cylindrical body.

この発明による被処理物としては、非酸化性ガスaの下(不活性ガス下)での粉砕が必要なものなら何れでも採用でき、例えば、希土類系―鉄(Fe)―ボロン(B)系磁性材料、希土類系―Fe―B―コバルト(Co)系磁性材料等を挙げることができる。また、この発明は、酸化性のないもの、例えば、蛍光塗料、セラミック、各種の金属粉、樹脂粉などの粉砕にも採用できる。   As the object to be treated according to the present invention, any material that needs to be pulverized under the non-oxidizing gas a (under an inert gas) can be used. For example, rare earth-iron (Fe) -boron (B) system Examples thereof include magnetic materials, rare earth-based-Fe-B-cobalt (Co) -based magnetic materials, and the like. The present invention can also be used for pulverization of non-oxidizing materials such as fluorescent paints, ceramics, various metal powders, and resin powders.

一実施形態の概略図Schematic of one embodiment 同実施形態のより具体的な実施例の概略図Schematic of a more specific example of the embodiment 従来例の概略図Schematic diagram of conventional example

符号の説明Explanation of symbols

1 無端管路(循環管路)
2 コンプレッサ(圧縮機、ガス圧縮手段)
3 ジェットミル(粉砕機 ジェット気流粉砕手段)
7 サイクロン(製品捕集機)
8 バグフィルタ
9 アフタフィルタ
10 分岐管(ガス流分岐管路)
11 開閉弁
12、12a、12b 開閉弁
13 噴出ノズル
14 ジェットノズル
15 分岐管接続口
31 粉砕部
32 分級ロータ(分級部)
a 窒素ガス(非酸化性ガス)
b 原料(被処理物)
c 製品
1 Endless pipe (circulation pipe)
2 Compressors (compressors, gas compression means)
3 Jet mill (crusher jet airflow crushing means)
7 Cyclone (product collector)
8 Bag filter 9 After filter 10 Branch pipe (gas flow branch pipe)
11 Open / Close Valve 12, 12a, 12b Open / Close Valve 13 Jet Nozzle 14 Jet Nozzle 15 Branch Pipe Connection Port 31 Grinding Portion 32 Classification Rotor (Classification Portion)
a Nitrogen gas (non-oxidizing gas)
b Raw material (processed object)
c Product

Claims (2)

非酸化性ガスaが循環可能な無端管路1にガス圧縮手段2とジェット気流粉砕手段3を直列に介設した乾式粉砕装置において、
上記ガス圧縮手段2の後段で上記ジェット気流粉砕手段3の前段の無端管路1からガス流分岐管路10を分岐してそのガス流分岐管路10を前記ジェット気流粉砕手段3内の分級部32と粉砕部31の間に接続し、そのガス流分岐管路10に開閉弁11を介設したことを特徴とする乾式粉砕装置。
In a dry pulverization apparatus in which a gas compression means 2 and a jet airflow pulverization means 3 are connected in series to an endless pipe 1 through which a non-oxidizing gas a can be circulated.
A gas flow branch pipe 10 is branched from an endless pipe 1 upstream of the jet airflow crushing means 3 after the gas compression means 2, and the gas flow branch pipe 10 is classified into the classification section in the jet airflow crushing means 3. 32. A dry pulverizer connected between the pulverizer 32 and the pulverizer 31 and having an on-off valve 11 interposed in the gas flow branch line 10.
上記ジェット気流粉砕手段3が竪型ジェットミルであって、そのジェットミル3の下部からも気流を噴出させ、その噴出量を、上記ガス圧縮手段2のガス吐出量の内、粉砕作用に不要な余分のガス量としたことを特徴とする請求項1に記載の乾式粉砕装置。   The jet airflow pulverizing means 3 is a vertical jet mill, and an airflow is also ejected from the lower part of the jet mill 3, and the amount of ejection is unnecessary for the pulverizing action of the gas discharge amount of the gas compressing means 2. The dry pulverization apparatus according to claim 1, wherein an excess gas amount is used.
JP2003335714A 2003-09-26 2003-09-26 Dry crusher Expired - Fee Related JP3749240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003335714A JP3749240B2 (en) 2003-09-26 2003-09-26 Dry crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003335714A JP3749240B2 (en) 2003-09-26 2003-09-26 Dry crusher

Publications (2)

Publication Number Publication Date
JP2005095838A JP2005095838A (en) 2005-04-14
JP3749240B2 true JP3749240B2 (en) 2006-02-22

Family

ID=34463026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003335714A Expired - Fee Related JP3749240B2 (en) 2003-09-26 2003-09-26 Dry crusher

Country Status (1)

Country Link
JP (1) JP3749240B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111604148A (en) * 2020-06-02 2020-09-01 台州普渡机械设备有限公司 Nitrogen circulating airflow material crushing system and working process thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5144044B2 (en) * 2006-09-05 2013-02-13 古河産機システムズ株式会社 Airflow type fine powder production equipment
KR100935692B1 (en) * 2007-05-11 2010-01-08 이건의 Apparatus for pulverization and dispersion by air injection with high-speed rotor for filtering particle
DE102011014643A1 (en) * 2011-03-21 2012-09-27 Roland Nied Operating procedure for a jet mill plant and jet mill plant
CN102728841B (en) * 2012-07-10 2014-06-04 交城县融和磁材有限公司 Airflow powder grinding device and method for sintered neodymium iron boron (NdFeB) permanent magnet material
CN103990805B (en) * 2014-05-11 2016-06-22 沈阳中北通磁科技股份有限公司 The milling method of a kind of permanent-magnet rare-earth NdFeB alloy and equipment
CN105964376A (en) * 2016-05-20 2016-09-28 江苏普隆磁电有限公司 Device for manufacturing magnetic powder particles
CN108405142A (en) * 2018-04-12 2018-08-17 吉林市凯尔维特机电设备有限责任公司 Double gas supply airflow millings
CN112844717A (en) * 2020-12-23 2021-05-28 赣州博立科技有限公司 Full-automatic vertical airflow mill equipment for grinding and grading metal powder by utilizing airflow
CN116078510A (en) * 2022-11-23 2023-05-09 苏州金远胜智能装备股份有限公司 Explosion-proof jet milling system and control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111604148A (en) * 2020-06-02 2020-09-01 台州普渡机械设备有限公司 Nitrogen circulating airflow material crushing system and working process thereof
CN111604148B (en) * 2020-06-02 2022-03-15 台州普渡机械设备有限公司 Nitrogen circulating airflow material crushing system and working process thereof

Also Published As

Publication number Publication date
JP2005095838A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP3749240B2 (en) Dry crusher
JPH10113572A (en) Apparatus for grinding material
CN108430643B (en) Grinding and drying facility
US6102990A (en) Multistep gas scrubber apparatus
JP5497443B2 (en) Material particle size selection and / or drying equipment
TWI499448B (en) Continuous fine ash depressurization system
EP3133265B1 (en) Apparatus and method for air particle separator in a gas turbine engine
CA2681853C (en) Method and apparatus for preparing pulverized coal used to produce synthesis gas
CN107099338B (en) Pulverized coal conveying device, pulverized coal gasification system and pulverized coal conveying method thereof
JP5144044B2 (en) Airflow type fine powder production equipment
JP2005087790A (en) Classification apparatus, classification method, grinding equipment and grinding method
US20080115479A1 (en) Pressurized coal gasifier and coal gasification combined cycle power plant
JP2005095827A (en) Crushing equipment, crushing method and fluidized bed type classifier
JPH04135654A (en) Grinder
JPH05312305A (en) Fine powder coal combustion device and its operating method
CN215429493U (en) Oxygenating device and jet mill system
LU100035B1 (en) Shaft Furnace Plant With Full Recovery Pressure Equalizing System
JP2006219217A (en) Separator of pneumatic transportation apparatus
SE458924B (en) TRANSPORTING DEVICE FOR PNEUMATIC TRANSPORTATION WITH PRESSURE REDUCING BODY INCLUDING STRIP
CN219971176U (en) Polyester chip conveying system
JP2005279779A (en) Blast apparatus using rotary blower
JPH0742910A (en) Ash treating device for boiler of pressurized fluidized bed type
JPH10300020A (en) Power generation system
JP2018507106A (en) Vertical roll mill
JP3322503B2 (en) Fluidized bed height control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051130

R150 Certificate of patent or registration of utility model

Ref document number: 3749240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees