JP3747240B2 - Polycrystalline ceramic sintered body having electric conduction anisotropy and method for producing the same - Google Patents

Polycrystalline ceramic sintered body having electric conduction anisotropy and method for producing the same Download PDF

Info

Publication number
JP3747240B2
JP3747240B2 JP2001070536A JP2001070536A JP3747240B2 JP 3747240 B2 JP3747240 B2 JP 3747240B2 JP 2001070536 A JP2001070536 A JP 2001070536A JP 2001070536 A JP2001070536 A JP 2001070536A JP 3747240 B2 JP3747240 B2 JP 3747240B2
Authority
JP
Japan
Prior art keywords
sintered body
electrical conduction
polycrystalline
ceramic sintered
anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001070536A
Other languages
Japanese (ja)
Other versions
JP2002274942A (en
Inventor
哲郎 打越
義雄 目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2001070536A priority Critical patent/JP3747240B2/en
Publication of JP2002274942A publication Critical patent/JP2002274942A/en
Application granted granted Critical
Publication of JP3747240B2 publication Critical patent/JP3747240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、電気伝導異方性を有する多結晶セラミックス焼結体とその製造方法に関するものである。さらに詳しくは、この出願の発明は、電気伝導異方性をマクロ的に有し、しかも製造が容易である、高温作動型の固体電解質、具体的にはセンサーや固体燃料電池などへの応用が期待される電気伝導異方性を有する多結晶セラミックス焼結体とその製造方法に関するものである。
【0002】
【従来の技術とその課題】
電気伝導性セラミックスの中には、その結晶構造に由来して高い電気伝導異方性を有する(たとえば、電気伝導度に異方性を有する)ものがある。たとえば、La-Sr-Cu-O、Y-Ba-Cu-Oなどの酸化物超伝導体は、いずれも、ホール又は電子がドープされたCuO2面とブロック層とが交互に積層した層状構造を持っている。そして、それらの超伝導性は、CuO2面に沿って2次元的に現れる。
【0003】
また、たとえばβ″アルミナは、Na+などの可動陽イオンを含む伝導面とスピネルブロックとが積層した層状構造を持ち、その伝導面に沿った陽イオンの移動が高い伝導性を示す。
【0004】
しかしながら、以上の電気伝導異方性を有するセラミックスの原料粉末を焼結して得られる多結晶セラミックス焼結体は、たいていマクロ的な電気伝導異方性を示さない。
【0005】
この出願の発明は、以上の通りの事情に鑑みてなされたものであり、電気伝導異方性をマクロ的に有し、しかも製造が容易である、高温作動型の固体電解質、具体的にはセンサーや固体燃料電池などへの応用が期待される電気伝導異方性を有する多結晶セラミックス焼結体とその製造方法を提供することを課題としている。
【0006】
【課題を解決するための手段】
この出願の発明の発明者らは、前述の課題を解決するために鋭意検討した結果、結晶構造由来の高い電気伝導異方性を有する電気伝導性セラミックスの持つミクロ構造である規則的な層状構造を、電気伝導機構の異なる、すなわち荷電キャリアの異なるセラミックスを交互に規則的に積層して焼結し、マクロ的に模倣することにより、電気伝導異方性をマクロ的に有する多結晶セラミックス焼結体が得られ、しかもその製造は容易であることを見出し、この出願の発明を完成したのである。
【0007】
すなわち、この出願の発明は、マクロ的な一軸方向とこれに直交する平面内の一方向(ただし、xyz空間においては、z軸方向とxy平面内の一方向)とにおける電気伝導機構が異なる電気伝導異方性を有する多結晶セラミックス焼結体であることを特徴とする電気伝導異方性を有する多結晶セラミックス焼結体(請求項1)を提供する。
【0008】
この出願の発明は、請求項1に係る発明に関し、電気伝導異方性が、103オーダー以上の見かけの電気伝導度の差として現れること(請求項2)、安定化ジルコニア層とアルミナ層とが交互に積層された積層体が焼結されたこと(請求項3)を一態様として提供する。
【0009】
また、この出願の発明は、電気伝導機構の異なるセラミックス原料粒子の堆積による層を交互に形成させ、積層体を作製し、この積層体を焼結して請求項1又は2記載の電気伝導異方性を有する多結晶セラミックス焼結体を製造することを特徴とする電気伝導異方性を有する多結晶セラミックス焼結体の製造方法(請求項4)を提供する。
【0010】
さらにまた、この出願の発明は、請求項4に係る発明に関し、電気伝導機構の異なるセラミックス原料粒子が正又は負に帯電して分散したサスペンションを作製し、その内の一つのサスペンションに陽極及び陰極からなる一対の電極を浸漬し、定電流を通電し、電気泳動法により陰極又は陽極基板上にセラミックス原料粒子を堆積させ、層を形成させた後、電極を浸漬するサスペンションを替え、先に形成した層上に別のセラミックス原料粒子を堆積させ、この操作を交互に繰り返し、層間密着性が良好で、しかも層厚制御された積層体を作製すること(請求項5)、電気伝導機構の異なるセラミックス原料粒子が、安定化ジルコニア及びアルミナであり、請求項3記載の電気伝導異方性を有する多結晶セラミックス焼結体を製造すること(請求項6)をそれぞれ一態様として提供する。
【0011】
以下、実施例を示しつつ、この出願の発明の電気伝導異方性を有する多結晶セラミックス焼結体とその製造方法についてさらに詳しく説明する。
【0012】
【発明の実施の形態】
この出願の発明の電気伝導異方性を有する多結晶セラミックス焼結体は、前述の通り、マクロ的な一軸方向とこれに直交する平面内の一方向(ただし、xyz空間においては、z軸方向とxy平面内の一方向)とにおける電気伝導機構が異なる電気伝導異方性を有する多結晶セラミックス焼結体である。
【0013】
このようなマクロ的に電気伝導異方性を有する多結晶セラミックス焼結体では、前述の通り、電気伝導異方性が、103オーダー以上の見かけの電気伝導度の差として現れることがある。このように大きな電気伝導度の差として現れなくとも、電気伝導機構がマクロ的に異なる電気伝導異方性を有する多結晶セラミックスは、これまでに類を見ないものである。
【0014】
この出願の発明の電気伝導異方性を有する多結晶セラミックス焼結体は、次のようにして製造される。
すなわち、電気伝導機構の異なるセラミックス原料粒子の堆積による層を交互に形成させ、積層体を作製し、この積層体を焼結することにより製造される。
【0015】
たとえば、安定化ジルコニア層とアルミナ層とが交互に積層された積層体が焼結された多結晶セラミックス焼結体は、その平行方向(たとえばxy平面内方向)に高い電気伝導度を持つ一方、垂直方向(z軸方向)には低い電気伝導度しか示さない。これは、積層体における電気伝導機構が、前者はジルコニアに由来する酸素イオン伝導性であるのに対し、後者は、アルミナ由来のホール伝導性であるからである。
【0016】
このように、この出願の発明の多結晶セラミックス焼結体がマクロ的に有する電気伝導異方性は、異なる荷電キャリアに依存している。また、このマクロ的な電気伝導異方性は、一般に、高温においても十分発現する。したがって、この出願の発明の電気伝導異方性を有する多結晶セラミックス焼結体は、高温作動型の固体電解質などへの応用が期待される。たとえばxy平面内方向に酸素イオンを通しやすく、z軸方向に酸素イオンを通しにくい性質とする場合、酸素イオン導電性の違いによる酸素センサーや積層型固体燃料電池などが実現可能であり、その高性能化も十分望める。
【0017】
この出願の発明の電気伝導異方性を有する多結晶セラミックス焼結体の製造方法は、前述のように、電気伝導機構の異なるセラミックス原料粒子の堆積による層を交互に形成させ、積層体を作製し、この積層体を焼結するという簡便な手法を採用している。このため、電気伝導異方性をマクロ的に有する多結晶セラミックス焼結体を容易に製造することができる。
【0018】
この出願の発明の電気伝導異方性を有する多結晶セラミックス焼結体の製造方法では、作製する積層体は、電気伝導異方性が良好に発現される(たとえば、大きな電気伝導度の差として現れるなど)ためにも層間密着性が良好であり、しかも層厚制御(すなわち、層厚の一定化や層厚の調整などが可能)されたものであることが好ましい。これを容易に実現する方法として、電気泳動法が好ましく用いられる。すなわち、電気伝導機構の異なるセラミックス原料粒子が正又は負に帯電して分散したサスペンションを作製し、その内の一つのサスペンションに陽極及び陰極からなる一対の電極を浸漬し、定電流を通電する。すると、正又は負に帯電したセラミックス原料粒子は、陰極又は陽極基板上に堆積し、層を形成する。次いで、サスペンションを替え、同様の操作を行うと、先に形成した堆積層上に別のセラミックス原料粒子が堆積する。これらの操作を交互に繰り返すことにより、層間密着性が良好で、しかも層厚制御された積層体が得られる。このように電気泳動法に基づいて作製した積層体は、テープキャスト法やスリップキャスト法などに比べ、はるかに層間密着性に優れ、しかも層厚が制御可能となる。したがって、電気泳動法により作製した積層体から得られる多結晶セラミックス焼結体の電気伝導異方性は良好に発現する。
【0019】
また、この出願の発明の電気伝導異方性を有する多結晶セラミックス焼結体の製造方法では、円柱若しくは円筒形の基板を用い、同心円状に電気伝導機構の異なる原料粒子を堆積させることも可能であり、この場合、得られる多結晶セラミックス焼結体は、c軸方向とr方向との間で電気伝導機構が異なり、電気伝導度の差として現れる場合もある。
【0020】
次にこの出願の発明の電気伝導異方性を有する多結晶セラミックス焼結体とその製造方法の実施例を示す。
【0021】
【実施例】
平均粒径0.06μmの3mol%イットリア添加ジルコニア粉(以下、3Y-TZと記す)と、平均粒径0.26μmのアルミナ粉(以下、Al2O3と記す)とを原料粉とし、それぞれの粒子表面に吸着している不純物イオンを洗浄し、除去した。洗浄及び除去は、粉末を蒸留水中に投入、撹拌し、さらに遠心分離法により粉末を沈降、回収し、上澄み液を除去することにより行った。この操作は、遠心分離後の上澄み液の電気伝導度が蒸留水の電気伝導度にほぼ等しくなるまで繰り返し行った。回収した洗浄後の粉末は、次いで、大気中100℃において24時間乾燥した。
【0022】
この後、3Y-TZ及びAl2O3粉末をエタノール中に投入し、それぞれ5vol%のサスペンションに作製した。このサスペンションに酢酸を少量添加し、pHを4.0に調整するとともに、サスペンション中の3Y-TZ及びAl2O3粒子を正に帯電させた。
【0023】
次いで図1に示したように、3Y-TZのサスペンション(A)に一対の電極(陽極:ステンレス製、陰極:ニッケル製)を浸漬し、1mAの定電流を通電し、3Y-TZ粒子を陰極のニッケル基板上に電気泳動法により堆積させた。所定時間通電後、一旦通電を停止し、上記電極をすばやくAl2O3のサスペンション(B)中に浸漬し、同様の操作を行い、3Y-TZの層上にAl2O3粒子を堆積させ、層を形成させた。この電気泳動法に基づく3Y-TZ層、Al2O3層の積層操作を交互に繰り返し、陰極のニッケル基板上に層厚制御された3Y-TZ/Al2O3積層体を作製した。
【0024】
そして、3Y-TZ/Al2O3積層体が形成されたニッケル基板を直ちに液体窒素中に浸漬し、3Y-TZ/Al2O3積層体(1)をニッケル基板(2)から剥離した。剥離した3Y-TZ/Al2O3積層体(1)は、乾燥時の割れを防止するため、蓋付シャーレ中で2、3日かけてゆっくりと室温において乾燥させた。乾燥後、3Y-TZ/Al2O3積層体(1)を大気中1550℃で6時間焼結し、3Y-TZ/Al2O3多結晶セラミックス焼結体(3)が得られた。
【0025】
図2は、この3Y-TZ/Al2O3多結晶セラミックス焼結体(3)の断面を示した光学顕微鏡写真及び各層厚を示した模式図である。
この図2により、3Y-TZ層とAl2O3層との層厚が制御された3Y-TZ/Al2O3多結晶セラミックス焼結体であることが確認される。
【0026】
得られた3Y-TZ/Al2O3多結晶セラミックス焼結体に関し、その水平方向及び垂直方向の電気伝導度を大気中200〜1000℃において交流インピーダンス法により測定し、電気伝導異方性の評価を行った。測定した水平方向及び垂直方向の見かけの電気伝導度σapは、垂直方向に比べ水平方向が非常に高く、その差は、たとえば1000℃付近で103オーダーにも達する。
【0027】
なお、この出願において言及する見かけの電気伝導度σapとは、電気抵抗の実測値Rを[試料の長さl/断面積S]で除した電気抵抗率ρの逆数(1/ρ)から求めた電気伝導度を意味している。
【0028】
また、アレニウスプロットの傾きから求められる活性化エネルギーEは、水平方向で0.84eV、垂直方向では650℃付近を境にこれより高温側で1.81eV、低温側で0.15eVであった。これらの活性化エネルギーEの値から、3Y-TZ/Al2O3多結晶セラミックス焼結体における電気伝導機構が、水平方向では安定化ジルコニア中の酸素イオンの拡散、垂直方向では上記高温側でアルミナ中のホールの拡散(低温側は、これまでにもアルミナの電気伝導に関してしばしば報告されているようなアルミナ中の不純物による影響と考えられる)によるものと判明した。
【0029】
以上から、得られた3Y-TZ/Al2O3多結晶セラミックス焼結体は、水平方向と垂直方向とで電気伝導機構が異なり、両者間に103オーダー以上の見かけの電気伝導度の差も存在する、マクロ的な電気伝導異方性を有する多結晶セラミックス焼結体であることが確認された。
【0030】
もちろん、この出願の発明は、以上の実施形態及び実施例によって限定されるものではない。電気伝導機構の詳細をはじめ、セラミックス原料粒子の種類、サイズや各種操作及びその条件などの細部については様々な態様が可能であることは言うまでもない。
【0031】
【発明の効果】
以上詳しく説明した通り、この出願の発明によって、電気伝導異方性をマクロ的に有し、しかも製造が容易である多結晶セラミックス焼結体が得られる。この多結晶セラミックス焼結体の電気伝導異方性は、高温においても十分発現するため、高温作動型の固体電解質、具体的にはセンサーや固体燃料電池などへの応用が期待される。
【図面の簡単な説明】
【図1】実施例における3Y-TZ/Al2O3多結晶セラミックス焼結体の製造工程を模式的に示した工程図である。
【図2】実施例で作製した3Y-TZ/Al2O3多結晶セラミックス焼結体の断面を示した光学顕微鏡写真及び各層厚を示した模式図である。
【図3】実施例で作製した3Y-TZ/Al2O3多結晶セラミックス焼結体に関し、その水平方向及び垂直方向で測定した見かけの電気伝導度の温度依存性を示したグラフである。
【符号の説明】
A 3Y-TZのサスペンション
B Al2O3のサスペンション
13Y-TZ/Al2O3積層体
2 ニッケル基板
3 3Y-TZ/Al2O3多結晶セラミックス焼結体
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a polycrystalline ceramic sintered body having electrical conduction anisotropy and a method for producing the same. More specifically, the invention of this application has a macroscopic electric conduction anisotropy and is easy to manufacture, and can be applied to a high temperature operation type solid electrolyte, specifically, a sensor or a solid fuel cell. The present invention relates to a polycrystalline ceramic sintered body having expected electric conduction anisotropy and a method for producing the same.
[0002]
[Prior art and its problems]
Some electrically conductive ceramics have high electrical conductivity anisotropy (for example, anisotropy in electrical conductivity) due to their crystal structure. For example, oxide superconductors such as La-Sr-Cu-O and Y-Ba-Cu-O each have a layered structure in which CuO 2 surfaces doped with holes or electrons and block layers are alternately stacked. have. Their superconductivity appears two-dimensionally along the CuO 2 plane.
[0003]
For example, β ″ alumina has a layered structure in which a conductive surface containing a mobile cation such as Na + and a spinel block are stacked, and the cation moves along the conductive surface and exhibits high conductivity.
[0004]
However, a polycrystalline ceramic sintered body obtained by sintering the ceramic raw material powder having the above electric conduction anisotropy usually does not show macro electric conduction anisotropy.
[0005]
The invention of this application has been made in view of the circumstances as described above, and has a high-temperature operation type solid electrolyte that has electrical conduction anisotropy in a macro and is easy to manufacture, specifically, It is an object of the present invention to provide a polycrystalline ceramic sintered body having electrical conduction anisotropy expected to be applied to sensors, solid fuel cells, and the like, and a method for producing the same.
[0006]
[Means for Solving the Problems]
The inventors of the invention of this application, as a result of intensive studies to solve the above-mentioned problems, have found that the regular layered structure is a microstructure of an electrically conductive ceramic having a high electrical conductivity anisotropy derived from a crystal structure. Sintered polycrystalline ceramics with different electrical conduction mechanisms, that is, with different charge carriers alternately and sintered, and imitating them macroscopically to sinter polycrystalline ceramics with macroscopic electrical conduction anisotropy It was found that a body was obtained and that its production was easy, and the invention of this application was completed.
[0007]
That is, according to the invention of this application, the electrical conduction mechanisms in the macro uniaxial direction and the unidirectional direction in the plane perpendicular to the macro uniaxial direction (however, in the xyz space, the z axis direction and the xy plane in one direction) are different. A polycrystalline ceramic sintered body having electrical conduction anisotropy, characterized in that it is a polycrystalline ceramic sintered body having conductive anisotropy (claim 1).
[0008]
The invention of this application relates to the invention according to claim 1, wherein the electrical conductivity anisotropy appears as a difference in apparent electrical conductivity of 10 3 order or more (claim 2), the stabilized zirconia layer and the alumina layer One aspect is that the laminated body in which the layers are alternately laminated is sintered (claim 3).
[0009]
The invention of this application is also characterized in that a layered body is formed alternately by depositing ceramic raw material particles having different electrical conduction mechanisms, a laminated body is produced, and the laminated body is sintered. A method for producing a polycrystalline ceramic sintered body having electrical conduction anisotropy, characterized by producing a polycrystalline ceramic sintered body having anisotropy (Claim 4).
[0010]
Furthermore, the invention of this application relates to the invention according to claim 4, wherein a suspension in which ceramic raw material particles having different electric conduction mechanisms are positively or negatively charged and dispersed is manufactured, and an anode and a cathode are provided on one of the suspensions. After immersing a pair of electrodes, applying a constant current, depositing ceramic raw material particles on the cathode or anode substrate by electrophoresis, forming a layer, and then changing the suspension in which the electrodes are immersed is formed first Another ceramic raw material particle is deposited on the formed layer, and this operation is repeated alternately to produce a laminate with good interlayer adhesion and controlled layer thickness (Claim 5), and different electric conduction mechanisms. The ceramic raw material particles are stabilized zirconia and alumina, and the polycrystalline ceramic sintered body having electric conduction anisotropy according to claim 3 is produced ( Providing Motomeko 6) as an embodiment, respectively.
[0011]
Hereinafter, the polycrystalline ceramic sintered body having electrical conduction anisotropy and the method for producing the same according to the invention of this application will be described in more detail with reference to Examples.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the polycrystalline ceramic sintered body having the electric conduction anisotropy of the invention of this application has a macroscopic uniaxial direction and a unidirectional direction in a plane perpendicular thereto (however, in the xyz space, the z-axis direction). And one direction in the xy plane) are polycrystalline ceramic sintered bodies having different electric conduction anisotropy.
[0013]
In such a polycrystalline ceramic sintered body having macroscopic electrical conductivity anisotropy, as described above, the electrical conductivity anisotropy may appear as a difference in apparent electrical conductivity of the order of 10 3 or more. Even if it does not appear as such a large difference in electrical conductivity, polycrystalline ceramics having electrical conduction anisotropy with macroscopically different electrical conduction mechanisms is unprecedented.
[0014]
The polycrystalline ceramic sintered body having electric conduction anisotropy of the invention of this application is manufactured as follows.
That is, it is manufactured by alternately forming layers by depositing ceramic raw material particles having different electric conduction mechanisms, producing a laminate, and sintering the laminate.
[0015]
For example, a polycrystalline ceramic sintered body obtained by sintering a laminated body in which a stabilized zirconia layer and an alumina layer are alternately laminated has high electrical conductivity in its parallel direction (for example, in the xy plane direction) Only low electrical conductivity is shown in the vertical direction (z-axis direction). This is because the electrical conduction mechanism in the laminate is oxygen ion conductivity derived from zirconia while the latter is hole conductivity derived from alumina.
[0016]
Thus, the electrical anisotropy that the polycrystalline ceramic sintered body of the invention of this application has macroscopically depends on different charge carriers. In addition, this macro electric conduction anisotropy is generally sufficiently exhibited even at a high temperature. Therefore, the polycrystalline ceramic sintered body having the electric conduction anisotropy of the invention of this application is expected to be applied to a high temperature operation type solid electrolyte. For example, when oxygen ions are easily passed in the xy plane direction and oxygen ions are difficult to pass in the z-axis direction, an oxygen sensor or a stacked solid fuel cell due to a difference in oxygen ion conductivity can be realized. We can hope for performance.
[0017]
As described above, the method for producing a polycrystalline ceramic sintered body having electric conduction anisotropy according to the invention of this application forms layers by alternately forming layers of ceramic raw material particles having different electric conduction mechanisms. And the simple method of sintering this laminated body is employ | adopted. For this reason, a polycrystalline ceramic sintered body having macroscopic electric conduction anisotropy can be easily produced.
[0018]
The method for producing polycrystalline ceramic sintered body having electrical conductivity anisotropy of the invention of this application, the laminate for making the electrical conductivity anisotropy is well expressed (e.g., a large difference in electrical conductivity appearing like) was interlayer adhesion in order as is good, yet the layer thickness control (i.e., it is preferable that such a constant reduction and thickness adjustment of the layer thickness can) have been. As a method for easily realizing this, an electrophoresis method is preferably used. That is, a suspension in which ceramic raw material particles having different electrical conduction mechanisms are positively or negatively charged and dispersed is manufactured, a pair of electrodes consisting of an anode and a cathode are immersed in one of the suspensions, and a constant current is applied. Then, the positive or negatively charged ceramic raw material particles are deposited on the cathode or anode substrate to form a layer. Next, when the suspension is changed and the same operation is performed, another ceramic raw material particle is deposited on the previously formed deposition layer. By repeating these operations alternately, a laminate with good interlayer adhesion and controlled layer thickness can be obtained. Thus, the laminate produced based on the electrophoresis method has much better interlayer adhesion and can control the layer thickness as compared with the tape casting method and the slip casting method. Therefore, the electrical conductivity anisotropy of the polycrystalline ceramic sintered body obtained from the laminate produced by the electrophoresis method is well expressed.
[0019]
In the method for producing a sintered ceramic body having an electric conduction anisotropy of the invention of this application, it is also possible to deposit raw material particles having different electric conduction mechanisms concentrically using a cylindrical or cylindrical substrate. In this case, the obtained polycrystalline ceramic sintered body has a different electric conduction mechanism between the c-axis direction and the r-direction, and may appear as a difference in electric conductivity.
[0020]
Next, examples of the polycrystalline ceramic sintered body having electric conduction anisotropy and the manufacturing method thereof according to the invention of this application will be shown.
[0021]
【Example】
3 mol% yttria-added zirconia powder (hereinafter referred to as 3Y-TZ) having an average particle diameter of 0.06 μm and alumina powder (hereinafter referred to as Al 2 O 3 ) having an average particle diameter of 0.26 μm are used as raw material powders. The impurity ions adsorbed on the surface were washed and removed. Washing and removal were performed by putting the powder into distilled water and stirring, and further sedimenting and collecting the powder by a centrifugal separation method and removing the supernatant. This operation was repeated until the electrical conductivity of the supernatant after centrifugation was approximately equal to the electrical conductivity of distilled water. The collected powder after washing was then dried in air at 100 ° C. for 24 hours.
[0022]
Thereafter, 3Y-TZ and Al 2 O 3 powder were put into ethanol to prepare suspensions of 5 vol% each. A small amount of acetic acid was added to this suspension to adjust the pH to 4.0, and 3Y-TZ and Al 2 O 3 particles in the suspension were positively charged.
[0023]
Next, as shown in Fig. 1, a pair of electrodes (anode: made of stainless steel, cathode: made of nickel) was immersed in the suspension (A) of 3Y-TZ, and a constant current of 1 mA was applied, and 3Y-TZ particles were applied to the cathode. It was deposited on a nickel substrate by electrophoresis. After energizing for a predetermined time, stop energizing, and quickly immerse the electrode in the suspension of Al 2 O 3 (B) and perform the same operation to deposit Al 2 O 3 particles on the 3Y-TZ layer. A layer was formed. The 3Y-TZ / Al 2 O 3 layered body with a controlled layer thickness was fabricated on the cathode nickel substrate by alternately repeating the stacking operation of the 3Y-TZ layer and the Al 2 O 3 layer based on this electrophoresis method.
[0024]
Then, the nickel substrate on which the 3Y-TZ / Al 2 O 3 laminate was formed was immediately immersed in liquid nitrogen, and the 3Y-TZ / Al 2 O 3 laminate (1) was peeled from the nickel substrate (2). The peeled 3Y-TZ / Al 2 O 3 laminate (1) was slowly dried at room temperature over a couple of days in a petri dish with a lid in order to prevent cracking during drying. After drying, the 3Y-TZ / Al 2 O 3 laminate (1) was sintered in air at 1550 ° C. for 6 hours to obtain a 3Y-TZ / Al 2 O 3 polycrystalline ceramic sintered body (3).
[0025]
FIG. 2 is an optical micrograph showing a cross section of the 3Y-TZ / Al 2 O 3 polycrystalline ceramic sintered body (3) and a schematic diagram showing the thickness of each layer.
FIG. 2 confirms that the 3Y-TZ / Al 2 O 3 polycrystalline ceramic sintered body has a controlled layer thickness between the 3Y-TZ layer and the Al 2 O 3 layer.
[0026]
Regarding the obtained 3Y-TZ / Al 2 O 3 polycrystalline ceramics sintered body, the electrical conductivity in the horizontal and vertical directions was measured at 200 to 1000 ° C. in the atmosphere by the AC impedance method, and the electrical conductivity anisotropy was measured. Evaluation was performed. The measured apparent electrical conductivity σ ap in the horizontal and vertical directions is much higher in the horizontal direction than in the vertical direction, and the difference reaches, for example, 10 3 order around 1000 ° C.
[0027]
The apparent electrical conductivity σ ap referred to in this application is the reciprocal (1 / ρ) of the electrical resistivity ρ obtained by dividing the measured value R of the electrical resistance by [the length l of the sample / the cross-sectional area S]. It means the obtained electrical conductivity.
[0028]
The activation energy E obtained from the slope of the Arrhenius plot was 0.84 eV in the horizontal direction, 1.81 eV on the higher temperature side and about 0.15 eV on the lower temperature side, around 650 ° C. in the vertical direction. From these activation energy values, the electrical conduction mechanism in the 3Y-TZ / Al 2 O 3 polycrystalline ceramics sintered body is the diffusion of oxygen ions in the stabilized zirconia in the horizontal direction and the high temperature side in the vertical direction. It has been found that this is due to hole diffusion in alumina (the low temperature side is believed to be the effect of impurities in alumina as often reported for alumina electrical conduction so far).
[0029]
From the above, the obtained 3Y-TZ / Al 2 O 3 polycrystalline ceramic sintered body has different electrical conduction mechanisms in the horizontal and vertical directions, and the difference in apparent electrical conductivity of 10 3 order or more between the two. It was also confirmed that this is a polycrystalline ceramic sintered body having macroscopic electrical conduction anisotropy.
[0030]
Of course, the invention of this application is not limited by the above embodiments and examples. It goes without saying that various aspects are possible with respect to details such as the details of the electric conduction mechanism, the kind, size, various operations and conditions of the ceramic raw material particles.
[0031]
【The invention's effect】
As described above in detail, according to the invention of this application, a polycrystalline ceramic sintered body having macroscopic electric conduction anisotropy and easy to manufacture can be obtained. The electrical conductivity anisotropy of this polycrystalline ceramic sintered body is sufficiently developed even at a high temperature, so that it is expected to be applied to a high temperature operation type solid electrolyte, specifically, a sensor or a solid fuel cell.
[Brief description of the drawings]
FIG. 1 is a process diagram schematically showing a production process of a 3Y-TZ / Al 2 O 3 polycrystalline ceramic sintered body in an example.
FIG. 2 is an optical micrograph showing a cross section of a 3Y-TZ / Al 2 O 3 polycrystalline ceramic sintered body produced in an example and a schematic diagram showing the thickness of each layer.
FIG. 3 is a graph showing the temperature dependence of the apparent electrical conductivity measured in the horizontal and vertical directions for the 3Y-TZ / Al 2 O 3 polycrystalline ceramic sintered body produced in the example.
[Explanation of symbols]
A 3Y-TZ suspension
B Al 2 O 3 suspension
13Y-TZ / Al 2 O 3 laminate
2 Nickel substrate
3 3Y-TZ / Al 2 O 3 polycrystalline ceramic sintered body

Claims (6)

マクロ的な一軸方向とこれに直交する平面内の一方向(ただし、xyz空間においては、z軸方向とxy平面内の一方向)とにおける電気伝導機構が異なる電気伝導異方性を有する多結晶セラミックス焼結体であることを特徴とする電気伝導異方性を有する多結晶セラミックス焼結体。Polycrystal having electrical conduction anisotropy with different electrical conduction mechanisms in a macroscopic uniaxial direction and in one direction in a plane perpendicular to the macroscopic direction (however, in xyz space, the z-axis direction and one direction in the xy plane) A polycrystalline ceramic sintered body having electrical conduction anisotropy, which is a ceramic sintered body. 電気伝導異方性が、103オーダー以上の見かけの電気伝導度の差として現れる請求項1記載の電気伝導異方性を有する多結晶セラミックス焼結体。The polycrystalline ceramic sintered body having electric conduction anisotropy according to claim 1, wherein the electric conduction anisotropy appears as a difference in apparent electric conductivity of 10 3 or more. 安定化ジルコニア層とアルミナ層とが交互に積層された積層体が焼結された請求項1又は2記載の電気伝導異方性を有する多結晶セラミックス焼結体。The polycrystalline ceramic sintered body having electric conduction anisotropy according to claim 1 or 2, wherein a laminated body in which a stabilized zirconia layer and an alumina layer are alternately laminated is sintered. 電気伝導機構の異なるセラミックス原料粒子の堆積による層を交互に形成させ、積層体を作製し、この積層体を焼結して請求項1又は2記載の電気伝導異方性を有する多結晶セラミックス焼結体を製造することを特徴とする電気伝導異方性を有する多結晶セラミックス焼結体の製造方法。3. A multilayer ceramic body is formed by alternately forming layers of ceramic raw material particles having different electrical conduction mechanisms, and the multilayer body is sintered to sinter polycrystalline ceramics having electrical conduction anisotropy according to claim 1 or 2. A method for producing a sintered polycrystalline ceramic body having electrical conduction anisotropy, which comprises producing a bonded body. 電気伝導機構の異なるセラミックス原料粒子が正又は負に帯電して分散したサスペンションを作製し、その内の一つのサスペンションに陽極及び陰極からなる一対の電極を浸漬し、定電流を通電し、電気泳動法により陰極又は陽極基板上にセラミックス原料粒子を堆積させ、層を形成させた後、電極を浸漬するサスペンションを替え、先に形成した層上に別のセラミックス原料粒子を堆積させ、この操作を交互に繰り返し、層間密着性が良好で、しかも層厚制御された積層体を作製する請求項4記載の電気伝導異方性を有する多結晶セラミックス焼結体の製造方法。A suspension in which ceramic raw material particles with different electrical conduction mechanisms are positively or negatively charged and dispersed is manufactured, a pair of electrodes consisting of an anode and a cathode are immersed in one of the suspensions, a constant current is applied, and electrophoresis is performed. After depositing ceramic raw material particles on the cathode or anode substrate by the method and forming a layer, the suspension in which the electrode is immersed is changed, and another ceramic raw material particle is deposited on the previously formed layer, and this operation is alternately performed. 5. The method for producing a polycrystalline ceramic sintered body having electrical conduction anisotropy according to claim 4, wherein a laminate having good interlayer adhesion and having a controlled layer thickness is produced. 電気伝導機構の異なるセラミックス原料粒子が、安定化ジルコニア及びアルミナであり、請求項3記載の電気伝導異方性を有する多結晶セラミックス焼結体を製造する請求項4又は5記載の電気伝導異方性を有する多結晶セラミックス焼結体の製造方法。The electrically conductive anisotropic material according to claim 4 or 5, wherein the ceramic raw material particles having different electrical conduction mechanisms are stabilized zirconia and alumina, and the polycrystalline ceramic sintered body having electrical conduction anisotropy according to claim 3 is produced. For producing a sintered polycrystalline ceramics having a property.
JP2001070536A 2001-03-13 2001-03-13 Polycrystalline ceramic sintered body having electric conduction anisotropy and method for producing the same Expired - Lifetime JP3747240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001070536A JP3747240B2 (en) 2001-03-13 2001-03-13 Polycrystalline ceramic sintered body having electric conduction anisotropy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001070536A JP3747240B2 (en) 2001-03-13 2001-03-13 Polycrystalline ceramic sintered body having electric conduction anisotropy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002274942A JP2002274942A (en) 2002-09-25
JP3747240B2 true JP3747240B2 (en) 2006-02-22

Family

ID=18928395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001070536A Expired - Lifetime JP3747240B2 (en) 2001-03-13 2001-03-13 Polycrystalline ceramic sintered body having electric conduction anisotropy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3747240B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055042A (en) * 2001-08-07 2003-02-26 Murata Mfg Co Ltd Method for manufacturing barium titanate film and barium titanate film

Also Published As

Publication number Publication date
JP2002274942A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
JP6717889B2 (en) Method of manufacturing thin film lithium-ion microbattery and microbattery obtained by the method
JP6660736B2 (en) Manufacturing process of monolithic all solid state battery
Huang et al. Two-step sintering strategy to prepare dense Li-Garnet electrolyte ceramics with high Li+ conductivity
JP6644549B2 (en) Manufacturing method of all-solid-state battery of laminated structure
JP6173357B2 (en) High-capacity solid composite cathode, solid composite separator, solid lithium secondary battery, and production method thereof
US5380341A (en) Solid state electrochemical capacitors and their preparation
CN111279538B (en) All-solid lithium battery and manufacturing method thereof
KR102112746B1 (en) Electrode material and energy storage device
RU2006110158A (en) METHOD FOR PRODUCING A SOLID FUEL ELEMENT BASED ON OXIDE
JP6315769B2 (en) Solid ion capacitor and method of using solid ion capacitor
KR20100032356A (en) Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery
US20210351435A1 (en) Power storage device
SE447820B (en) PROCEDURE FOR PREPARING A CERAMIC ELEMENT OF TITANIDE Dioxide
JP2017199539A (en) Solid electrolyte structure, lithium battery, and method of manufacturing solid electrolyte structure
CN115803903A (en) Method for manufacturing assembly composed of separator and porous electrode, and electrochemical device comprising same
JP3747240B2 (en) Polycrystalline ceramic sintered body having electric conduction anisotropy and method for producing the same
JP6554267B2 (en) Solid ion capacitor
KR101447023B1 (en) Method of manufacturing porous composite thin film and the porous composite thin film for electrode
KR102466906B1 (en) power generator
CN112563040B (en) Ceramic double electric layer capacitor and preparation method thereof
Talebi et al. Electrophoretic deposition of YSZ electrolyte on porous NiO-YSZ substrate for solid oxide fuel cells
JP2595274B2 (en) Method of forming oxide-based superconductor layer
Yan et al. Perovskite solid-state electrolytes for lithium metal batteries. Batteries 2021, 7, 75
JP2002260953A (en) Laminated electronic component
US20200076001A1 (en) Method for the production of thin-film lithium-ion microbatteries and resulting microbatteries

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3747240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term