JP3746057B2 - Liquid storage tank leak detection system and leak detection method - Google Patents

Liquid storage tank leak detection system and leak detection method Download PDF

Info

Publication number
JP3746057B2
JP3746057B2 JP2004018853A JP2004018853A JP3746057B2 JP 3746057 B2 JP3746057 B2 JP 3746057B2 JP 2004018853 A JP2004018853 A JP 2004018853A JP 2004018853 A JP2004018853 A JP 2004018853A JP 3746057 B2 JP3746057 B2 JP 3746057B2
Authority
JP
Japan
Prior art keywords
liquid
data
liquid volume
change
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004018853A
Other languages
Japanese (ja)
Other versions
JP2005214667A (en
Inventor
信介 前芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Kiki Kogyo Co Ltd
Original Assignee
Showa Kiki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Kiki Kogyo Co Ltd filed Critical Showa Kiki Kogyo Co Ltd
Priority to JP2004018853A priority Critical patent/JP3746057B2/en
Publication of JP2005214667A publication Critical patent/JP2005214667A/en
Application granted granted Critical
Publication of JP3746057B2 publication Critical patent/JP3746057B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、ガソリンスタンド、工場等に設置されている液体貯蔵タンクからの液体の漏洩を検知する漏洩検知システムと漏洩検知方法に関する。なお、本願において「漏洩」とは、液体貯蔵タンクからの貯蔵液体の流出と、液体貯蔵タンクへの雨水、地下水等の流入の両方を意味し、「液量」とは「液面レベル」又は「液位」の意味も有するものとする。   The present invention relates to a leakage detection system and a leakage detection method for detecting leakage of liquid from a liquid storage tank installed in a gas station, a factory, or the like. In the present application, “leakage” means both outflow of stored liquid from the liquid storage tank and inflow of rainwater, groundwater, etc. into the liquid storage tank, and “liquid amount” means “liquid level” or It shall also have the meaning of “liquid level”.

地下などに埋設された液体貯蔵タンクは、長期に使用されるため、隔壁部の腐食により穴や亀裂等が発生し、又はその他の理由により、内部に貯蔵された液体が外部に流出し、又は外部から雨水、地下水等が流入することがある。   Since liquid storage tanks buried underground are used for a long time, holes or cracks occur due to corrosion of the partition wall, or the liquid stored inside flows out to the outside for other reasons, or Rainwater, groundwater, etc. may flow from the outside.

従来、このような漏洩を検知するため、ガス加圧法、液体加圧法、微加圧法、微減圧法等のバッチ検査が定期的に行われるようになっている。   Conventionally, in order to detect such leakage, batch inspections such as a gas pressurization method, a liquid pressurization method, a fine pressurization method, and a fine depressurization method are regularly performed.

定期点検の形で行われる上記のバッチ検査によれば、精度の高い漏洩検知を行うことができるが、通常、定期点検は1年に1回程度の間隔でしか実施されないため、その間に漏洩が発生した場合、これを早期に検知することはできない。   According to the above batch inspection performed in the form of periodic inspection, it is possible to detect leaks with high accuracy. However, since periodic inspections are usually performed only once a year, there is no leakage during that period. If it occurs, it cannot be detected early.

これに対して、特許文献1には、液体貯蔵タンクの液量の増減を検知するセンサーを使用して、液体貯蔵タンク内の液量の変動を長期的に記録、蓄積し、その液量変動データに基づいて漏洩を早期に検知する方法が開示されている。   On the other hand, Patent Document 1 uses a sensor that detects increase / decrease in the amount of liquid in the liquid storage tank to record and accumulate changes in the amount of liquid in the liquid storage tank over the long term. A method for early detection of leakage based on data is disclosed.

しかし、特許文献1の方法おいて液量変動データの収集のためには、液体貯蔵タンクの液量が長時間安定した状態である必要があり、そのため、液量変動データの収集は、液体貯蔵タンクを長時間使用しないとき、例えば、ガソリンスタンドの場合、営業時間以外の夜間・休日等に行う必要があった。したがって、24時間営業のガソリンスタンド等の場合、十分な長さの液量安定期が得られないことがあり、正確な漏洩検知を行うことができないという問題があった。
特開2001−97500号公報
However, in order to collect the liquid amount fluctuation data in the method of Patent Document 1, the liquid amount in the liquid storage tank needs to be in a stable state for a long time. When the tank is not used for a long time, for example, in the case of a gas station, it was necessary to perform it at night or on holidays other than business hours. Therefore, in the case of a gas station or the like that is open 24 hours, there is a problem that a sufficiently long liquid quantity stable period may not be obtained, and accurate leak detection cannot be performed.
JP 2001-97500 A

本発明が解決しようとする課題は、長時間の液量安定期が得られなくとも液量変化の傾向を把握でき、早期に漏洩を検知することができる液体貯蔵タンクの漏洩検知手段を提供することにある。   The problem to be solved by the present invention is to provide a leakage detection means for a liquid storage tank that can grasp the tendency of a change in the amount of liquid even if a stable period of liquid amount is not obtained for a long time and can detect a leak at an early stage. There is.

本発明の漏洩検知システムは、液体貯蔵タンクの液量を常時測定する液量センサーと、液量センサーによって測定した液量データとその測定時刻を蓄積するデータベースと、データベースに蓄積された液量データとその測定時刻から、液量の時間変化を示す連続した長期の液量変化データを生成すると共に、この連続した長期の液量変化データから液量の時間変化が実質的にないと判断される複数の液量安定期における液量変化データを抽出し、前記複数の液量安定期における液量変化データから液量変化傾向を求めて漏洩の有無を判定する演算部とを有するものである。 The leak detection system of the present invention includes a liquid amount sensor that constantly measures the liquid amount in the liquid storage tank, a liquid amount data measured by the liquid amount sensor and a database that accumulates the measurement time, and a liquid amount data that is accumulated in the database. From the measurement time, continuous long-term liquid volume change data indicating the liquid volume change over time is generated, and it is determined from the continuous long-term liquid volume change data that there is substantially no change in the liquid volume over time. A liquid volume change data in a plurality of liquid volume stable periods is extracted, and a calculation unit that obtains a liquid volume change tendency from the liquid volume change data in the liquid volume stable periods and determines the presence or absence of leakage.

本発明の漏洩検知方法は、液体貯蔵タンクの液量を液量センサーによって常時測定し、測定した液量データをその測定時刻と共にデータベースに蓄積し、データベースに蓄積された液量データとその測定時刻から、液量の時間変化を示す連続した長期の液量変化データを生成すると共に、この連続した長期の液量変化データから液量の時間変化が実質的にないと判断される複数の液量安定期における液量変化データを抽出し、各液量安定期における液量変化データから液量変化傾向を求めて漏洩の有無を検知するものである。 In the leakage detection method of the present invention, the liquid amount in the liquid storage tank is constantly measured by the liquid amount sensor, and the measured liquid amount data is stored in the database together with the measurement time. The liquid amount data stored in the database and the measurement time are stored in the database. From the continuous long-term liquid volume change data indicating the liquid volume change over time, a plurality of liquid volumes that are determined to be substantially free from temporal change in liquid volume from the continuous long-term liquid volume change data. Liquid quantity change data in the stable period is extracted, and the liquid quantity change tendency is obtained from the liquid quantity change data in each liquid quantity stable period to detect the presence or absence of leakage.

本発明では、漏洩がない状態での当該液体貯蔵タンクの液量安定期における液量の時間変化を示す液量変化基準データを求めて予めデータベースに蓄積し、漏洩検知用データ収集時の各液量安定期における液量変化データを液量変化基準データと比較することによって液量変化傾向を求めるようにすることができる。   In the present invention, liquid amount change reference data indicating the time change of the liquid amount during the liquid amount stabilization period of the liquid storage tank in a state where there is no leakage is obtained and stored in the database in advance, and each liquid at the time of collecting leakage detection data By comparing the liquid volume change data in the volume stabilization period with the liquid volume change reference data, the liquid volume change tendency can be obtained.

また、本発明において液量安定期は、各種の情報やデータから、液量の時間変化が実質的にないと判断される時期のことであるが、具体的には、データベース内の液量変化データを解析して液量の時間変化が所定値以内となっている場合や、液体貯蔵タンクへの荷卸しや給液の有無等の操業データから判断して、液体貯蔵タンクへの液体の出入りがない場合に液量安定期と判断される。また、液量変化を検出できない所定時間未満の液量安定期は除外し、液量変化を検出可能な所定時間以上にわたって液量の時間変化が実質的にない場合のみを液量安定期とすることもできる。   Further, in the present invention, the liquid volume stabilization period is a time when it is determined from various information and data that there is substantially no change in the liquid volume over time. Analyzing the data, if the change in liquid volume over time is within the specified value, or judging from operation data such as unloading to the liquid storage tank and the presence or absence of liquid supply, the liquid enters and exits the liquid storage tank When there is no liquid, it is determined that the liquid level is stable. In addition, the liquid volume stabilization period of less than the predetermined time during which the liquid volume change cannot be detected is excluded, and only when there is no substantial change in the liquid volume over the predetermined time over which the liquid volume change can be detected, the liquid volume stabilization period You can also.

本発明によれば、複数の液量安定期における液量変化データを総合的に解析し液量変化傾向を求めて漏洩有無の判定を行うので、長時間の液量安定期が得られなくても精度の高い漏洩有無の判定を行うことができる。   According to the present invention, since the liquid volume change data in a plurality of liquid volume stable periods is comprehensively analyzed to determine the liquid volume change tendency and the presence or absence of leakage is determined, a long liquid volume stable period cannot be obtained. Also, the presence / absence of leakage can be determined with high accuracy.

したがって、例えば、24時間営業のガソリンスタンドのように昼夜を問わず断続的に液体貯蔵タンクが使用される場合であっても、液量変化を検出可能な必要最低限の液量安定期が得られれば、漏洩有無の判定のためのデータを収集することができるので、液体貯蔵タンクの操業を阻害することなく早期に漏洩有無の判定を行うことができる。   Therefore, for example, even when a liquid storage tank is used intermittently regardless of day or night, such as a 24-hour gas station, a minimum liquid quantity stable period in which a liquid quantity change can be detected is obtained. If it is possible, data for determining the presence or absence of leakage can be collected, and therefore the presence or absence of leakage can be determined at an early stage without impeding the operation of the liquid storage tank.

このように、あらゆる使用形態の液体貯蔵タンクにおいて、連続した長期の液量変化データによる精度の高い漏洩有無の判定を行うことができるので、従来の定期点検を省略することも可能である。   As described above, since it is possible to determine the presence / absence of leakage with high accuracy based on continuous long-term liquid amount change data in the liquid storage tanks of all usage forms, it is possible to omit the conventional periodic inspection.

以下、図面に示す実施例に基づいて本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described based on examples shown in the drawings.

図1は、本発明の漏洩検知システムのシステム構成図である。   FIG. 1 is a system configuration diagram of a leak detection system of the present invention.

同図に示すように、本発明の漏洩検知システムは、液体貯蔵タンク1の液量を常時測定する液量センサー2と、液量センサー2によって測定した液量データとその測定時刻等を蓄積するデータベース3と、データベース3に蓄積されたデータを演算して漏洩の有無を判定する演算部4とからなる。そして、演算部4からの漏洩検知信号は、警報出力、表示手段5に送信されるようになっている。また、データベース3には、外部機器としてPOSシステム6及び計量機7が通信線8を介して接続されており、これらの外部機器からの各種データもデータベース3に蓄積されるようになっている。   As shown in the figure, the leak detection system of the present invention accumulates the liquid quantity sensor 2 that constantly measures the liquid quantity in the liquid storage tank 1, the liquid quantity data measured by the liquid quantity sensor 2, the measurement time, and the like. It comprises a database 3 and a calculation unit 4 that calculates the data stored in the database 3 and determines the presence or absence of leakage. The leak detection signal from the calculation unit 4 is transmitted to the alarm output / display means 5. In addition, a POS system 6 and a weighing machine 7 are connected to the database 3 via the communication line 8 as external devices, and various data from these external devices are also stored in the database 3.

液量センサー2としては、各種のセンサーを使用できるが、磁歪式センサー等の液位若しくは液量変化を高分解能で測定できるセンサーを用いることが好ましい。   Various sensors can be used as the liquid level sensor 2, but it is preferable to use a sensor capable of measuring a liquid level or a change in liquid level with high resolution, such as a magnetostrictive sensor.

データベース3は、コンピュータのメモリによって構成することができる。演算部4はコンピュータのCPUによって構成することができ、この演算部4は、後に詳述するように、データベース3に蓄積された液量データとその測定時刻から、液量の時間変化を示す液量変化データを生成すると共に、液量の時間変化が実質的にないと判断される複数の液量安定期における液量変化データを抽出する処理等を行う。そして、各液量安定期における液量変化データから液量変化傾向を求めて漏洩の有無を判定する。   The database 3 can be composed of a computer memory. The calculation unit 4 can be constituted by a CPU of a computer. As will be described in detail later, the calculation unit 4 is a liquid that indicates a change in the liquid amount over time from the liquid amount data accumulated in the database 3 and its measurement time. In addition to generating volume change data, a process of extracting liquid volume change data in a plurality of liquid volume stable periods in which it is determined that there is substantially no change in liquid volume over time is performed. And the liquid quantity change tendency is calculated | required from the liquid quantity change data in each liquid quantity stable period, and the presence or absence of leakage is determined.

以下、本発明の漏洩検知システムによる漏洩検知方法を説明する。   Hereinafter, the leak detection method by the leak detection system of this invention is demonstrated.

図2は、本発明の漏洩検知方法の全体工程を示すフロー図である。同図に示す漏洩検知方法では、まず、図1に示した液量センサー2によって漏洩検知対象の液体貯蔵タンク1の基準データを収集し(S1)、この基準データを解析して当該液体貯蔵タンクの液量安定期における液量変化基準データを求める(S2)。得られた基準データ及び液量変化基準データは何れも図1に示したデータベース3に蓄積される。   FIG. 2 is a flowchart showing the entire process of the leak detection method of the present invention. In the leak detection method shown in the figure, first, reference data of the liquid storage tank 1 subject to leak detection is collected by the liquid amount sensor 2 shown in FIG. 1 (S1), and the reference data is analyzed to analyze the liquid storage tank. Liquid quantity change reference data in the liquid quantity stable period is obtained (S2). The obtained reference data and liquid volume change reference data are both stored in the database 3 shown in FIG.

図3は、上述の基準データ収集工程を示すフロー図である。この基準データの収集は、定期点検等によって漏洩のないことが確認された状態で行う。   FIG. 3 is a flowchart showing the above-described reference data collection process. This reference data is collected in a state where it has been confirmed that there is no leakage by regular inspections.

基準データ収集工程では、まず、液量センサーによる液量の測定時間間隔が所定の時間(実施例では1秒)になっているか否かを確認する(S1−1)。次に、測定時刻データを取得し(S1−2)、液体貯蔵タンクの液量データと液相温度データの取り込みを開始する(S1−3,S1−4)。その後、液量データと液相温度データの取り込み中に、液体貯蔵タンクへの液体の供給(荷卸し)、排出(給液)等の事象の変化があるか否かを確認し(S1−5)、事象の変化があった場合、その事象データを取得し(S1−6)、液量データと液相温度データを測定時刻データ及び事象データと共にデータベースに蓄積する(S1−7)。このような基準データの収集を、その中で液量安定期と判断される部分の時間累計が所定時間(実施例では200時間)に達するまで継続し(S1−8)、所定時間に達したら基準データの収集を終了する(S1−9)。なお、液量安定期であるか否かの判断は、後述する方法によって行う。   In the reference data collecting step, first, it is confirmed whether or not the measurement time interval of the liquid amount by the liquid amount sensor is a predetermined time (1 second in the embodiment) (S1-1). Next, measurement time data is acquired (S1-2), and the capture of the liquid amount data and liquid phase temperature data of the liquid storage tank is started (S1-3, S1-4). Thereafter, it is confirmed whether or not there is a change in events such as supply (unloading) and discharge (liquid supply) of the liquid to the liquid storage tank while the liquid volume data and the liquid phase temperature data are being captured (S1-5). If the event has changed, the event data is acquired (S1-6), and the liquid volume data and the liquid phase temperature data are stored in the database together with the measurement time data and the event data (S1-7). The collection of the reference data is continued until the cumulative time of the portion determined as the liquid volume stabilization period reaches a predetermined time (200 hours in the embodiment) (S1-8). The collection of the reference data is finished (S1-9). The determination as to whether or not the liquid amount is stable is made by a method described later.

図4は、図3の基準データ収集工程で収集した基準データから、液量安定期における液量変化基準データを求める基準データ解析工程の流れを示すフロー図である。   FIG. 4 is a flowchart showing the flow of the reference data analysis step for obtaining the liquid amount change reference data in the liquid amount stable period from the reference data collected in the reference data collection step of FIG.

基準データ解析工程では、まず、収集した基準データから、液量の時間変化を示す液量変化データを生成する(S2−1)。これをグラフ化すると図5のようになる。次に、液量変化データを用いて、液量の時間変化が実質的にないと判断される時期を液量安定期として抽出する(S2−2)。実施例では、液量の時間変化が0.2L/h以内、且つ、その時間長さが30分以上となっている部分を液量安定期として抽出した。なお、この液量変化データを用いた抽出方法のほかに、別途POSシステム6や計量機7等(図1参照)によって収集されている液体貯蔵タンクからの給液の有無等の操業データから判断して、液体貯蔵タンクへの液体の出入りがないと判断される時期を液量安定期として抽出することもできる。   In the reference data analysis step, first, liquid amount change data indicating a time change of the liquid amount is generated from the collected reference data (S2-1). This is graphed as shown in FIG. Next, using the liquid volume change data, the time when it is determined that the liquid volume does not substantially change with time is extracted as the liquid volume stable period (S2-2). In the examples, the portion where the change in the liquid amount with time was within 0.2 L / h and the time length was 30 minutes or more was extracted as the liquid amount stable period. In addition to the extraction method using the liquid amount change data, judgment is made from operation data such as the presence / absence of liquid supply from the liquid storage tank separately collected by the POS system 6, the weighing machine 7, etc. (see FIG. 1). Thus, the time when it is determined that no liquid enters or leaves the liquid storage tank can be extracted as the liquid amount stable period.

次に、各液量安定期における液量変化データを抽出し(S2−3)、液量安定期における液量変化基準データを演算する(S2−4)。この液量変化基準データとは、単純には各液量安定期における液量変化データの平均であり、好ましくは、温度変化による液量変化を補正するため、前記液量変化データの平均を温度の関数として表したものとする。そして、この液量変化基準データをデータベースに蓄積し(S2−5)、基準データ解析を終了する(S2−6)。   Next, liquid volume change data in each liquid volume stable period is extracted (S2-3), and liquid volume change reference data in the liquid volume stable period is calculated (S2-4). The liquid volume change reference data is simply the average of the liquid volume change data in each liquid volume stable period, and preferably, the average of the liquid volume change data is the temperature in order to correct the liquid volume change due to the temperature change. As a function of. Then, the liquid amount change reference data is accumulated in the database (S2-5), and the reference data analysis is finished (S2-6).

図2に戻って、上述の基準データの収集と解析処理を予め行った後に、図1に示した液量センサー2によって実際の漏洩検知用データを収集し(S3)、そのデータを解析して漏洩の有無を判定する(S4)。   Returning to FIG. 2, after performing the above-described reference data collection and analysis process in advance, the actual leak detection data is collected by the liquid amount sensor 2 shown in FIG. 1 (S3), and the data is analyzed. The presence or absence of leakage is determined (S4).

図6は、漏洩検知用データ収集工程を示すフロー図である。   FIG. 6 is a flowchart showing a leakage detection data collection process.

漏洩検知用データ収集工程では、図3に示した基礎データ収集工程と同様であり、まず、液量センサーによる液量の測定時間間隔が所定の時間(実施例では1秒)になっているか否かを確認する(S3−1)。次に、測定時刻データを取得し(S3−2)、液体貯蔵タンクの液量データと液相温度データの取り込みを開始する(S3−3,S3−4)。その後、液量データと液相温度データの取り込み中に、液体貯蔵タンクへの液体の供給(荷卸し)、排出(給液)等の事象の変化があるか否かを確認し(S3−5)、事象の変化があった場合、その事象データを取得し(S3−6)、液量データと液相温度データを測定時刻データ及び事象データと共にデータベースに蓄積する(S3−7)。この漏洩検知用データの収集途中で、大幅に液量が変化する等の液量変化量に異常が認められた場合、漏洩警報等の警報を出力する(S3−8,S3−9)。このような漏洩検知用データの収集を、その時間累計が所定時間(実施例では20時間)に達するまで継続し(S3−10)、所定時間に達したら漏洩検知用データの収集を終了する(S3−11)。   The leak detection data collection process is the same as the basic data collection process shown in FIG. 3. First, whether or not the measurement time interval of the liquid volume by the liquid volume sensor is a predetermined time (1 second in the embodiment). (S3-1). Next, measurement time data is acquired (S3-2), and the acquisition of the liquid amount data and liquid phase temperature data of the liquid storage tank is started (S3-3, S3-4). Thereafter, it is confirmed whether or not there is a change in events such as liquid supply (unloading) and discharge (liquid supply) to the liquid storage tank while the liquid volume data and the liquid phase temperature data are being captured (S3-5). If the event has changed, the event data is acquired (S3-6), and the liquid volume data and the liquid phase temperature data are stored in the database together with the measurement time data and the event data (S3-7). In the middle of collecting the leakage detection data, if an abnormality is recognized in the liquid amount change amount such as a significant change in the liquid amount, an alarm such as a leakage alarm is output (S3-8, S3-9). Such collection of leakage detection data is continued until the accumulated time reaches a predetermined time (20 hours in the embodiment) (S3-10). When the predetermined time is reached, collection of leakage detection data is terminated ( S3-11).

図7は、図6の漏洩検知用データ収集工程で収集したデータから、液量安定期における液量変化データを求める漏洩検知用データ解析工程の流れを示すフロー図である。   FIG. 7 is a flowchart showing the flow of the leakage detection data analysis step for obtaining the liquid amount change data in the liquid amount stable period from the data collected in the leakage detection data collection step of FIG.

漏洩検知用データ解析工程では、収集した漏洩検知用データから、先に図5に示したような液量の時間変化を示す液量変化データを生成する(S4−1)。次に、液量変化データを用いて、液量の時間変化が実質的にないと判断される時期を液量安定期として抽出する(S4−2)。実施例では、液量の時間変化が0.4L/h以内、且つ、その時間長さが20分以上となっている部分を液量安定期として抽出した。なお、この液量変化データを用いた抽出方法のほかに、別途POSシステム6や計量機7等(図1参照)によって収集されている液体貯蔵タンクへの荷卸しや給液の有無等の操業データから判断して、液体貯蔵タンクへの液体の出入りがないと判断される時期を液量安定期として抽出することもできる。   In the leakage detection data analysis step, liquid amount change data indicating the time change of the liquid amount as shown in FIG. 5 is generated from the collected leakage detection data (S4-1). Next, using the liquid volume change data, the time when it is determined that the liquid volume does not substantially change with time is extracted as the liquid volume stable period (S4-2). In the example, the portion where the change in the liquid amount with time was within 0.4 L / h and the time length was 20 minutes or more was extracted as the liquid amount stable period. In addition to the extraction method using the liquid amount change data, operations such as unloading to the liquid storage tank and the presence / absence of liquid supply separately collected by the POS system 6, the weighing machine 7, etc. (see FIG. 1) Judging from the data, it is possible to extract the time when it is determined that the liquid does not enter or leave the liquid storage tank as the liquid quantity stable period.

次に、各液量安定期における液量変化データを抽出し(S4−3)、これを予めデータベースに蓄積しておいた液量変化基準データと比較する(S4−4)。具体的には、各液量変化データとの液量変化基準データとの差を演算する。そして、その比較結果をデータベースに蓄積し(S4−5)、漏洩検知用データ解析を終了する(S4−6)。   Next, liquid volume change data in each liquid volume stable period is extracted (S4-3), and this is compared with liquid volume change reference data stored in advance in the database (S4-4). Specifically, the difference between each liquid amount change data and the liquid amount change reference data is calculated. Then, the comparison result is accumulated in the database (S4-5), and the leakage detection data analysis is terminated (S4-6).

図2に戻って、漏洩検知用データ解析によって得られた各液量安定期における液量変化データとの液量変化基準データとの比較結果(差)を用いて、液量安定期における液量変化傾向を求めて、漏洩発生の可能性があるか否かの漏洩検知判定を行う(S5)。この漏洩検知判定では、液量安定期における液量変化データとの液量変化基準データとの差が所定値以上(実施例では0.38L/h以上)の場合に有意差有りとし、複数ある液量安定期において、所定比率以上(実施例では80%以上)に有意差が認められた場合に当該液体貯蔵タンクについて漏洩の可能性有りと判定し、この液体貯蔵タンクを漏洩の可能性有り候補としてデータベースに記憶する(S6)。   Returning to FIG. 2, using the comparison result (difference) between the liquid volume change data and the liquid volume change data in each liquid volume stability period obtained by the leakage detection data analysis, the liquid volume in the liquid volume stability period A change tendency is obtained, and leakage detection determination is made as to whether or not there is a possibility of occurrence of leakage (S5). In this leakage detection determination, there is a significant difference when the difference between the liquid amount change data in the liquid amount stable period and the liquid amount change reference data is a predetermined value or more (in the embodiment, 0.38 L / h or more), and there are a plurality of differences. If a significant difference is recognized at a predetermined ratio or more (80% or more in the embodiment) during the liquid volume stabilization period, it is determined that there is a possibility of leakage of the liquid storage tank, and there is a possibility of leakage of the liquid storage tank. The candidate is stored in the database as a candidate (S6).

その後、漏洩の可能性有りの液体貯蔵タンクについて、上述の漏洩検知用データ収集(S3)、漏洩検知用データ解析(S4)及び漏洩検知判定(S5)を所定回数(実施例では10回)繰り返し試行する(S7)。そして、その漏洩検知判定において漏洩の可能性有りとの判定が、所定回数の所定比率以上(実施例では10回中7回以上)の場合に、漏洩有りと判定し(S8,S9)、漏洩検知信号を発生する(S10)。この漏洩検知信号は、図1に示した警報出力、表示手段5に送信される。一方、漏洩の可能性有りとの判定が、所定回数の所定比率未満の場合は、漏洩なしと判定され(S11)、ステップS7、S8において収集したデータを初期化してステップS3に戻る。   Thereafter, for the liquid storage tank with the possibility of leakage, the above-described leakage detection data collection (S3), leakage detection data analysis (S4) and leakage detection determination (S5) are repeated a predetermined number of times (10 times in the embodiment). Try (S7). Then, in the leakage detection determination, if the determination that there is a possibility of leakage is not less than a predetermined number of times (in the embodiment, 7 times or more in 10), it is determined that there is leakage (S8, S9). A detection signal is generated (S10). This leakage detection signal is transmitted to the alarm output and display means 5 shown in FIG. On the other hand, if the determination that there is a possibility of leakage is less than a predetermined number of times, it is determined that there is no leakage (S11), the data collected in steps S7 and S8 is initialized, and the process returns to step S3.

以上の実施例では、漏洩がない状態での液量安定期における液量変化基準データを予め求め、この液量変化基準データと実際の液量安定期における液量変化データと比較することによって漏洩有無の判定を行うようにしたが、液量変化基準データとの比較は必ずしも必要ではない。この場合、上述のステップS5では、実際の液量安定期における液量変化データが所定値以上(例えば±0.38L/h以上)である場合に漏洩の可能性有りとしてカウントするようにする。   In the above embodiment, the liquid volume change reference data in the liquid volume stable period in the absence of leakage is obtained in advance, and the liquid volume change reference data is compared with the liquid volume change data in the actual liquid volume stable period. The presence / absence is determined, but comparison with the liquid amount change reference data is not always necessary. In this case, in step S5 described above, when the liquid amount change data in the actual liquid amount stable period is a predetermined value or more (for example, ± 0.38 L / h or more), it is counted that there is a possibility of leakage.

本発明は、ガソリンスタンド、工場等に設置されている、あらゆる液体貯蔵タンクからの液体の漏洩を検知する漏洩検知システムとして適用可能である。   The present invention is applicable as a leakage detection system that detects leakage of liquid from any liquid storage tank installed in a gas station, factory, or the like.

本発明の漏洩検知システムのシステム構成図である。It is a system configuration figure of a leak detection system of the present invention. 本発明の漏洩検知方法の全体工程を示すフロー図である。It is a flowchart which shows the whole process of the leak detection method of this invention. 本発明の漏洩検知方法における基準データ収集工程を示すフロー図である。It is a flowchart which shows the reference | standard data collection process in the leak detection method of this invention. 図3の基準データ収集工程で収集した基準データを解析する基準データ解析工程の流れを示すフロー図である。It is a flowchart which shows the flow of the reference | standard data analysis process which analyzes the reference | standard data collected by the reference | standard data collection process of FIG. 液量の時間変化を示す模式図である。It is a schematic diagram which shows the time change of a liquid quantity. 本発明の漏洩検知方法における漏洩検知用データ収集工程を示すフロー図である。It is a flowchart which shows the data collection process for leak detection in the leak detection method of this invention. 図6の漏洩検知用データ収集工程で収集したデータを解析する漏洩検知用データ解析工程の流れを示すフロー図である。It is a flowchart which shows the flow of the data analysis process for leak detection which analyzes the data collected in the data collection process for leak detection of FIG.

符号の説明Explanation of symbols

1 液体貯蔵タンク
2 液量センサー
3 データベース
4 演算部
5 警報出力、表示手段
6 POSシステム
7 計量機
8 通信線
DESCRIPTION OF SYMBOLS 1 Liquid storage tank 2 Liquid quantity sensor 3 Database 4 Calculation part 5 Alarm output and display means 6 POS system 7 Weighing machine 8 Communication line

Claims (4)

液体貯蔵タンクの液量を常時測定する液量センサーと、
液量センサーによって測定した液量データとその測定時刻を蓄積するデータベースと、
データベースに蓄積された液量データとその測定時刻から、液量の時間変化を示す連続した長期の液量変化データを生成すると共に、この連続した長期の液量変化データから液量の時間変化が実質的にないと判断される複数の液量安定期における液量変化データを抽出し、前記複数の液量安定期における液量変化データから液量変化傾向を求めて漏洩の有無を判定する演算部と、
を有する液体貯蔵タンクの漏洩検知システム。
A liquid volume sensor that constantly measures the liquid volume in the liquid storage tank;
A database for storing liquid volume data measured by a liquid volume sensor and its measurement time;
From the accumulated liquid volume data and the measurement time in the database, to generate a long-term liquid quantity variation data consecutive showing temporal changes of the liquid volume, the time change of the liquid amount from the continuous long-term liquid quantity variation data Calculation of liquid volume change data in a plurality of liquid volume stable periods judged to be substantially non-existent, calculation of liquid volume change data from the liquid volume change data in the plurality of liquid volume stable periods to determine the presence or absence of leakage And
A leak detection system for a liquid storage tank.
前記データベースには、漏洩がない状態での当該液体貯蔵タンクの液量安定期における液量の時間変化を示す液量変化基準データが蓄積されており、
前記演算部が、前記各液量安定期における液量変化データを前記液量変化基準データと比較することによって液量変化傾向を求めるものである請求項1に記載の液体貯蔵タンクの漏洩検知システム。
In the database, liquid amount change reference data indicating the time change of the liquid amount in the liquid amount stable period of the liquid storage tank in a state where there is no leakage is accumulated,
The liquid storage tank leakage detection system according to claim 1, wherein the calculation unit obtains a liquid amount change tendency by comparing the liquid amount change data in each liquid amount stable period with the liquid amount change reference data. .
液体貯蔵タンクの液量を液量センサーによって常時測定し、
測定した液量データをその測定時刻と共にデータベースに蓄積し、
データベースに蓄積された液量データとその測定時刻から、液量の時間変化を示す連続した長期の液量変化データを生成すると共に、この連続した長期の液量変化データから液量の時間変化が実質的にないと判断される複数の液量安定期における液量変化データを抽出し、
各液量安定期における液量変化データから液量変化傾向を求めて漏洩の有無を検知する液体貯蔵タンクの漏洩検知方法。
The liquid level in the liquid storage tank is constantly measured by the liquid level sensor,
The measured liquid volume data is stored in the database together with the measurement time,
From the stored liquid volume data and the measurement time in the database, to generate a long-term liquid quantity variation data consecutive showing temporal changes of the liquid volume, the time change of the liquid amount from the continuous long-term liquid quantity variation data Extract liquid volume change data in multiple liquid volume stable periods that are judged to be practically not,
A leakage detection method for a liquid storage tank that detects a liquid volume change tendency from liquid volume change data in each liquid volume stabilization period and detects the presence or absence of leakage.
漏洩がない状態での当該液体貯蔵タンクの液量安定期における液量の時間変化を示す液量変化基準データを予めデータベースに蓄積し、
前記各液量安定期における液量変化データを前記液量変化基準データと比較することによって液量変化傾向を求める請求項3に記載の液体貯蔵タンクの漏洩検知方法。
Accumulating liquid amount change reference data indicating the time change of the liquid amount in the liquid amount stabilization period of the liquid storage tank in a state where there is no leakage in the database in advance,
4. The liquid storage tank leak detection method according to claim 3, wherein a liquid volume change tendency is obtained by comparing liquid volume change data in each liquid volume stable period with the liquid volume change reference data.
JP2004018853A 2004-01-27 2004-01-27 Liquid storage tank leak detection system and leak detection method Expired - Lifetime JP3746057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004018853A JP3746057B2 (en) 2004-01-27 2004-01-27 Liquid storage tank leak detection system and leak detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004018853A JP3746057B2 (en) 2004-01-27 2004-01-27 Liquid storage tank leak detection system and leak detection method

Publications (2)

Publication Number Publication Date
JP2005214667A JP2005214667A (en) 2005-08-11
JP3746057B2 true JP3746057B2 (en) 2006-02-15

Family

ID=34903238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004018853A Expired - Lifetime JP3746057B2 (en) 2004-01-27 2004-01-27 Liquid storage tank leak detection system and leak detection method

Country Status (1)

Country Link
JP (1) JP3746057B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309625A (en) * 2007-06-14 2008-12-25 Showa Kiki Kogyo Co Ltd Leakage detecting system and leakage detecting method for liquid storage tank

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542576B2 (en) * 2007-09-11 2010-09-15 昭和機器工業株式会社 Liquid storage tank leak inspection method
JP5240676B2 (en) * 2010-01-22 2013-07-17 株式会社タツノ Leak detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309625A (en) * 2007-06-14 2008-12-25 Showa Kiki Kogyo Co Ltd Leakage detecting system and leakage detecting method for liquid storage tank

Also Published As

Publication number Publication date
JP2005214667A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
JP4591249B2 (en) Flowmeter
RU2513812C2 (en) System, method and carrier read by computer for calculation of well injection flow rates produced by electric submersible pumps
US7933724B2 (en) Method of tracking the performance of an industrial appliance
US7904229B2 (en) Method for determination of engine lubrication oil consumption
US20110054811A1 (en) Monitoring a filter used for filtering a fluid in an aircraft engine
JP2000227018A (en) System and method for deciding oil displacement interval
CN109668607B (en) Method for monitoring tiny leakage of gas meter
US20100199747A1 (en) Gas meter reading system
US20120253675A1 (en) Method and apparatus for remote siphon drainage type rainfall measurement with self-compensation function
EP2592395A1 (en) Determining a quantity of transported fluid
US20160019482A1 (en) Method and system for monitoring a production facility for a renewable fuel
JP4844005B2 (en) Flow measuring device
CN101535778A (en) Flow rate measurement device
JP3746057B2 (en) Liquid storage tank leak detection system and leak detection method
CN112283593A (en) Internet of things system for closing valve and detecting leakage of pipe network and leakage detection method thereof
KR20150067752A (en) An apparatus for inspecting manipulation of a lubricator and the inspecting method thereof
JP4415030B2 (en) Liquid storage tank leak detection system and leak detection method
CN1769852B (en) Data collection of integrated test platform of high-level hydraulic pressure
JP4542576B2 (en) Liquid storage tank leak inspection method
JP2008309625A (en) Leakage detecting system and leakage detecting method for liquid storage tank
US20140109654A1 (en) Method and Apparatus for Assessing the Consumption of a Medium in a Supply System
JPH08159967A (en) Management system for analyzer
KR100993527B1 (en) Actual operation time monitoring method using actual operation time monitor for heater
JPH07140033A (en) Leakage detection method for pipe line
JP4376590B2 (en) Tritium sampler

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051118

R150 Certificate of patent or registration of utility model

Ref document number: 3746057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250