JP3744089B2 - Magnetron sputtering film forming apparatus and film forming method - Google Patents

Magnetron sputtering film forming apparatus and film forming method Download PDF

Info

Publication number
JP3744089B2
JP3744089B2 JP32143796A JP32143796A JP3744089B2 JP 3744089 B2 JP3744089 B2 JP 3744089B2 JP 32143796 A JP32143796 A JP 32143796A JP 32143796 A JP32143796 A JP 32143796A JP 3744089 B2 JP3744089 B2 JP 3744089B2
Authority
JP
Japan
Prior art keywords
film
film thickness
film forming
magnetron sputtering
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32143796A
Other languages
Japanese (ja)
Other versions
JPH10158833A (en
Inventor
勝也 田淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP32143796A priority Critical patent/JP3744089B2/en
Publication of JPH10158833A publication Critical patent/JPH10158833A/en
Application granted granted Critical
Publication of JP3744089B2 publication Critical patent/JP3744089B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【0001】
【発明の属する技術分野】
例えば薄膜太陽電池などのように、半導体層の上に透明導電層を有する薄膜電子装置における透明導電層の形成方法に関する。
【0002】
【従来の技術】
半導体層の上に透明導電層を有する薄膜電子装置の代表例としてアモルファスシリコン(以下a−Siという)半導体層を光電変換層とする太陽電池がある。太陽電池の基本層構成は基板上の電極層、光電変換層および電極層の3層であり、基板が導電性であれば電極層の1つは省略することができる。
【0003】
a−Siよりなり、pin構造を持つ光電変換層の光入射側には、ITO(酸化インジウムスズ)、SnO2 またはZnOなどの透明導電材料よりなる透明電極層、対向側には金属よりなる背後電極層が形成されるのが一般的である。これらの電極層の成膜にはスパッタリングが用いられている。
電力用の太陽電池は大面積にわたって太陽光を吸収する必要があるため、基板として高分子材料あるいはステンレス鋼などの金属からなる長尺の可撓性基板が用いられる。長尺の可撓性基板上に複数の層を成膜する方式としては、各層に対応する成膜室内を連続移動する基板上に成膜するロールツーロール方式と、基板を各成膜室内で停止して成膜し、成膜後成膜室外へ送り出すステッピングロール方式とがある。ステッピングロール方式の成膜装置は、隣接する成膜室とのガス相互拡散がないことや装置がコンパクトにできることなどの点で優れている。
【0004】
ステッピングロール方式のスパッタリングによる均一成膜については次の方法が提案されている。図7は従来の磁石移動型のマグネトロンスパッタ装置の断面模式図である。成膜室V内では、陰極2上に置かれた被成膜基板1sは陽極3上のターゲット4に対向しており、陰極2、陽極3間に電圧を印加してグロー放電を発生させると共に、ターゲット4の裏側に設置された磁石5によって両電極間の電界に直行する磁界を印加して、基板1s表面上にターゲット材料よりなる膜を形成する。磁石の領域(グロー放電領域となる)は細長く、長方形の成膜領域の一辺より少し長く、他の一辺より短い。陽極3と磁石5とは駆動装置6のヘッド6aに取り付けられ、磁界(磁石)の領域の短辺方向に、成膜領域の幅だけ往復移動される。磁石5はN極、S極の一対または複数対からなっている。
【0005】
図8は磁石移動型のマグネトロンスパッタ装置における成膜中の膜厚の変化を示すグラフである。基板上の任意の観測点Pでは、グロー放電領域の通過毎に間欠的に成膜(グラフの太線部分)される。
ステッピングロール方式の成膜では、各成膜室内に止まる時間は一定なので、成膜領域全体で均一な膜厚を得るためには、マグネット往復移動回数に同期して所定の膜厚を得なければならない。このためには、マグネットの移動速度あるいは、放電パワーをこの条件に合うように制御しなければならない。
【0006】
このような従来のマグネトロンスパッタ装置では、成膜中に膜厚を計測して成膜速度または膜厚を確認する機構を有しないため、膜厚の制御方法としては、予め定められた成膜条件で成膜を行い、この膜厚を測定して単位時間当たりの成膜速度を求め、この値から所定の膜厚となるような成膜条件として、ターゲット使用の初期において成膜膜厚とマグネット往復移動回数を同期させていた
【0007】
【発明が解決しようとする課題】
しかしながら、ターゲットの使用時間が増加するに従い、その表面形状、表面清浄状態が変化し、成膜速度が変化するので、放電パワーを一定としても成膜速度が変化し、成膜時間を制御することによって所定の膜厚を再現性良く得ることは難しい。従って、放電パワーと成膜時間のみで制御した場合には、成膜バッチ間での膜厚にばらつきが生じてしまう。太陽電池の受光面側である透明電極は、反射防止膜的な役割も果たしており、その膜厚が最適値からずれると、短絡光電流が大きく減少し、特性低下の原因となる。
【0008】
本発明の目的は、透明導電膜の成膜中に膜厚監視および膜厚制御が可能であり、ターゲットの表面状態の変化にも関わらず一定の膜厚が得られるマグネトロンスパッタ成膜装置およびその成膜方法を提供することにある。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、磁界を作るための磁石が成膜領域を往復移動する駆動装置を備えたマグネトロンスパッタ成膜装置において、単色光ビームを成膜中の薄膜表面に向けて出射する光源と、前記単色光ビームの前記薄膜からの反射光を検出し検出信号を出力する光検出器と、この検出信号と予め採取してある前記単色光ビームと前記薄膜と同質の薄膜の膜厚との関係から前記成膜中の薄膜の膜厚と、この膜厚と所定の膜厚との比較から磁石の所定往復回数で所定の膜厚を得るための放電パワーの補正信号または磁石の移動速度の補正信号を出力するコントローラを備えていることとする。
【0010】
前記のマグネトロンスパッタ成膜装置における成膜方法において、前記放電パワーの補正信号は次式に対応することとする。
【0011】
【数3】

Figure 0003744089
前記のマグネトロンスパッタ成膜装置における成膜方法において、前記磁石の移動速度の補正信号は次式に対応することとする。
【0012】
【数4】
Figure 0003744089
前記単色光ビームの波長は前記所定膜厚より小さい膜厚で反射光強度が極小値または極大値となる波長であり、反射光強度の極小値または極大値となる時間での膜厚を求めることとする。
【0013】
前記薄膜は可視光に対して透光性であり、前記薄膜の下地は少なくともa−Si層あるいはa−Si系合金層を含む単層膜あるいは多層膜であり、a−Si層あるいはa−Si系合金層が最表面にあると良い。
前記薄膜はITO、SnO2 、ZnOのいずれかよりなる透明導電膜であると良い。
【0014】
前記単色光ビームの波長は700nm 未満であると良い。
前記単色光ビームYAGレーザーの第2高調波またはヘリウム−カドミウムレーザーであり、前記所定膜厚は60ないし100nm であると良い。
本発明によれば、上記の光源、光検出器とコントローラを備えたため、採取してある膜厚と反射率の関係のデータを用いて、測定時点での膜厚から成膜速度を得ることができ、これを用いて以降の成膜条件を制御することができるので、多数ステップ成膜後のターゲットの表面状態の変化などによる成膜速度の変化に対する制御を放電パワーまたは磁石の移動速度を変えることにより容易に行い、常に膜厚の精度を高く維持できることが期待される。
【0015】
直接、膜厚が求められない場合には、所定の膜厚より薄い膜厚で反射率の極小値、あるいは極大値をもたせるような波長の単色光ビームを用いて容易に極小値、あるいは極大値をもつ膜厚において膜厚判定を行うことができ、以下上記の成膜条件の制御を行うことができる。
a−Si上に可視光に対して透光性を有する薄膜を形成する場合、波長700nm未満の光を用いることにより、反射率の変化が大きく、膜厚判定がしやすくそのため膜厚制御の精度が良いことが期待できる。
【0016】
a−Si上に可視光に対して透光性を有する60〜100nm の薄膜を形成する場合、成膜表面に照射する光がYAGレーザーの第2高調波またはヘリウム−カドミウムレーザーであると、成膜膜厚より薄い膜厚で反射率の極小値をもつため、反射率の絶対値を求めることが難しい場合でも、容易に膜厚判定を行うことができ、放電パワー、成膜時間または磁石の移動速度を制御して膜厚を正確に制御することが可能である。
【0017】
【発明の実施の形態】
図5は本発明に係る成膜方法を電極成膜に適用した太陽電池の製造工程順の各工程後の断面図であり、(a)は基板への第1孔開孔工程、(b)は両面への金属電極形成工程、(c)は第2孔開孔工程、(d)はa−Siの形成工程、(e)は透明電極の形成工程、(f)は裏面電極の形成工程である。
【0018】
電気的絶縁性で可撓性の基板1sは厚さは約50μmの樹脂製のフィルムである。樹脂としてはポリイミド系、ポリエチレンナフタレート(略号PEN)、ポリエーテルサルフォン(略号PES)、ポリエチレンテレフタレート(略号PET)またはアラミド系を用いることができる。この基板1sの一部に複数個の基板を貫通する第1孔h1を開ける(工程(a))。第1孔h1の開孔はパンチを用いた機械的な開孔あるいはレーザー等のエネルギービームを用いて開孔できる。第1孔h1の大きさは、直径0.5 ないし1mm とした。
【0019】
基板1sの片面に第1電極層1a(この面を表側面とする)、反対側の面に第2電極層1b(この面を裏側面とする)として、Agを約100nm 〜約400nm の厚さにスパッタリングにより成膜した。Ag以外にもAl、Cu、Ti等の金属をスパッタリング、あるいは電子ビーム蒸着等により形成して金属電極としても良い。また、金属酸化膜と金属の多層膜を電極層として形成しても良い。成膜方式としては、成膜ゾーンにキャンロール部を持たないステッピングロール方式で成膜することが良い。キャンロール部で成膜するとヒーター基板間距離を実質的に0にすることができるが、貫通孔を有する基板では、貫通孔を通過した電極材料がキャンロール部に付着し、これが基板の別の部分と接することにより剥離し、基板への再付着により太陽電池の歩留まりが低下するからである。この工程により、第1電極層1a第1孔h1の側面で第2電極層1bと重なり互いに導通する(工程(b))。
【0020】
次に、基板1sおよび第1電極層1a、第2電極層1bを貫通する複数個の第2孔h2を第1孔h1以外の場所に開孔する。開孔方法は第1孔h1と同じである(工程(c))。
こうした工程を経た上で、光電変換層1pとなる薄膜半導体を表側面に形成する。例えば、a−Siを主成分とする光電変換層1pを、主原料ガスにSiH4 、H2 を用いプラズマCVD法により形成したが、光電変換層1pの材料としては、CuInSe2 CdTe、poly−Siなどがある(工程(d))。第2孔h1の内側で第1電極1aと第2電極1bは導通していない。
【0021】
光電変換層1pの上に、第3電極層1cとして透明電極層を成膜する。この層にはITO、SnO2 、ZnOなどの酸化物導電層を用いるのが一般的であり、本実施例ではスパッタリングによるITO膜を用いた。このとき、膜形成時にマスクで覆うなどして初めに形成した第1孔h1の周縁部分には第3電極層1cが成膜されないようにする(工程(e))。
【0022】
次に、裏側面に金属膜などの低抵抗導電膜からなる第4電極層1dを成膜する。第2孔h2内面は光電変換層1pにより既に覆われているので、この第4電極層1dは第2電極層1bおよび第3電極層1cとのみ導通しており、第1電極層1aとは導通していない(工程(f))。
図6は本発明に係る電極成膜方法を適用した太陽電池の直列接続後の図であり(a)は平面図であり(b)は(a)におけるXXに沿っての断面図である。
【0023】
上記工程後、太陽電池の直列接続を形成するために、表側面では太陽電池(第1電極層、光電変換層、第3電極層の3層)のみを、レーザなどを用いて、切断部1iで切断して互いに電気的に絶縁された個別太陽電池(ユニットセルU)に分割し、裏側面では切断部1jで切断して互いに電気的に絶縁された裏面電極E(第2電極層と第4電極層の積層)に分割する。こうして電極En-1,n −第1孔h1−ユニットセルUn 内の第1電極層1a−光電変換層1p−第3電極層1c−第2孔h2−電極En,n+1 からなる直列接続が完成する。
【0024】
上記の透明導電材料からなる第3電極層の成膜には、本発明に係る膜厚制御システムを備えたマグネトロンスパッタ成膜装置を用いた。
図1は本発明に係るマグネトロンスパッタ成膜装置の断面模式図である。膜厚監視のための光モニタ系と制御コントローラ以外は従来と同じ(図8)なので説明を省略する。
【0025】
成膜中の膜厚を監視するために、光源8aから放射された単色光ビーム8lは基板1s上の成膜中の電極層を透過して光電変換層で反射し光検出器8bに入射する。光検出器8bは検出光の強度を電気信号に変換し、コントローラ9に送る。
コントローラ9は、この電気信号から予め定めておいた手順に従い膜厚、膜厚の極大値、極小値、または設定膜厚との差などを演算し、これらに対応する電源7の出力制御信号または駆動装置の駆動速度信号などの制御信号を出力することができる。このようなマグネトロンスパッタ成膜装置により、磁石移動、放電パワーを制御することにより、長期間にわたり所定の膜厚を再現性良く得ることができる。
【0026】
以下にマグネトロンスパッタ成膜装置における、電極層の反射光と磁石移動および放電パワーの制御方法を、実施例で説明する。
実施例1
この実施例では、反射率の測定から直接膜厚が確定できる場合の成膜方法を実施した。
【0027】
図2はYAGレーザー光(波長530nm )に対するITO膜の反射率の膜厚依存性のグラフである。可撓性基板上にAgを100nm 、a−Siを500nm 成膜した後、ITOを成膜したときに、その成膜表面に波長530nm のYAGレーザーの第2高調波(波長530nm )を垂直入射させて反射率をまえもって測定しておいた。ITO膜が成膜されていない状態から、スパッタにより膜が形成されることにより、成膜表面での反射強度が低下し、ITO膜厚が約60nmで、反射強度の極小値が得られた。さらに、膜厚が増加すると、反射強度が増加、減少のパターンを繰り返し、約180nm 、300nm の膜厚に対して極小値となる。
【0028】
実際には基板への垂直入射は不可能なので、薄膜に入射した入射角の余弦の逆数に比例して光路長が長くなる。このため、横軸を入射角の余弦の逆数を乗じた値に読みなおす必要がある。
所定膜厚をt0 とし、ITO成膜の初期ステップでの成膜条件を放電パワーP0 、所定往復回数n0 および移動速度v0 とする。
【0029】
多数ステップ成膜後の現ステップで、成膜開始から磁石の往復移動回数n(1 <n<n0の整数)回後の時点での膜厚t(nm)は図2に示す反射率データより求めることができる。また、成膜速度は放電パワーに比例し、磁石の移動速度に反比例している。従って、この時点以降の放電パワーPまたは磁石移動速度vを変更することによって、精度良く所定の膜厚を得ることができる。
【0030】
先ず、磁石往復移動速度を一定(v0 )として、所定時間で所定の膜厚を得るための放電パワーPを求める。現ステップ内では、往復回数1からnまでと往復回数nからn0 までの成膜速度は変わらないとみなせるので、成膜速度に対応する(1)式から(2)式が得られる。
【0031】
【数5】
Figure 0003744089
従って膜厚t(往復回数n)以降は、コントローラで(2)式の演算を行い、その放電パワーP(W )を維持するように制御すればよい。
次に、他の成膜方法として、放電パワーはP0 のまま一定としておき、磁石移動速度vを制御して所定の膜厚を得ることもできることを示す。
【0032】
上記と同様に、(1)式から、(3)式が得られる。
【0033】
【数6】
Figure 0003744089
従って膜厚t(往復回数n)以降は、コントローラで(3)式の演算を行い、その移動速度(v)を維持するように制御すればよい。なお、nが小さいときには膜厚が小さく膜厚の推定精度が低く、一方nがn0 に近いとその後の補正量が大きく装置上の対応が困難になるので、n は中間の値がよい。
【0034】
透明導電材料として、ITOを用いた場合の初期ステップでの成膜条件(図5(e)の成膜)を次のように行った。基板温度250 ℃、圧力0.27Pa、Ar流量100sccm 、放電パワー600Wであり、目標膜厚は60nm とした。この時の所要成膜時間は11分であり、磁石の往復移動回数n0を11回とした(磁石の移動速度は1往復/分である)。多数ステップ後、n=5 のとき膜厚は所定値の95%であったが、(2)式に従い放電パワーを10% 増加して以降の成膜を行い、膜厚61nmを得た。また、(3)式に従い移動速度を9 % 減少して以降の成膜を行い、膜厚62nmを得た。
【0035】
上記のように、2通りの成膜方法により、ステップ数に依存せず、ITO膜厚を常に精度良く制御でき、特に長尺の基板への成膜に対して有効であった。
実施例2
実施例1の方法は、反射率の絶対値から膜厚判定、制御、確認を行う例であるが、反射率の絶対値を求めることが難しい場合についての方法を以下に示す。
【0036】
反射率の絶対値を求めることが難しい場合でも反射率の極小値、あるいは極大値となる時間を求めることは容易である。所定の膜厚より薄い膜厚ときに反射率が極小値、あるいは極大値となるような波長の単色光を成膜表面に照射する事によって、極小値、あるいは極大値をもつ膜厚において以下に述べる膜厚判定を行い、この値を用いて、実施例1のどちらかの成膜方法により膜厚を制御することにより正確な膜厚制御が可能である。
【0037】
磁石の通過に対して、一定の時刻で反射光強度(反射率でもよい)を観測すると、反射光強度も離散した値が得られる。ある連続した3つの測定値の増加方向の符号が変化すれば、極値を越えたことになる。例として極小反射の場合を説明する。
任意の対象ステップにおいて、時間は成膜開始(磁石移動開始)を0とする。等しい時間々隔とするため磁石の往路(または復路)のみの、時間 T- 、T0、 T+ で反射光強度を測定し R- 、R0、 R+ を得たとする。これらの値から極小反射率のときの膜厚tm を用いて、時間 T+ での膜厚t+ を求める。この膜厚t+ が正常な場合の時間 T+ と膜厚との関係からずれていれば、実施例1と同じ方法により、以降の放電パワーまたは磁石の移動速度を制御することができる。
【0038】
但し、膜厚t+ を簡単に求めるため反射率カーブの極小付近を下に凸な簡単な関数で近似する必要があり、ここでは2次関数を採用した。初等演算の結果、(4)式を得た。
【0039】
【数7】
Figure 0003744089
図3はヘリウム−カドミウムレーザー光(波長442nm )に対するITO膜の反射率の膜厚依存性のグラフである。
ITO膜厚を60nmに成膜する場合において、成膜表面に照射する光を波長442nm のヘリウム−カドミウムレーザーとした場合には、反射率の極小値はITO膜厚が45nmのときであるから、このとき反射光強度も極小値となる。磁石の通過毎に反射光強度の測定を行い、増加方向が変化した時点で、上述の演算をコントローラで行い、以降の放電パワーを制御し、または磁石の移動速度を制御して、ステップ数に関わらずにITO膜厚を約 2% の精度で成膜できた。
実施例3
図4は基板上にAgを100nm 、a−Siを500nm 成膜し、a−Si上にITOを形成したときのITO膜厚に対する反射率のグラフであり、(a)は波長600nm の場合であり、(b)は波長700nm の場合である。
【0040】
波長600nm の光に対しては、ITO膜厚を増加するに従い、反射率が35% から40% 弱に増加し、約85nmにおいて反射率はほぼ0 となり、150nm において再び40% 弱となり、反射率の変化が大きく、膜厚判定、制御、確認がしやすい。一方、波長700nm の光に対しては、ITO膜厚を増加するに従い反射率は約80% から90%弱に増加し、120nm で極小となる。この場合、例えばITO膜厚を60nmに制御しようとした場合には、反射率の変化の少ない領域で膜厚判定を行わなければならず、膜厚を正確に制御することは難しかった。波長700nm 以上の光に対しては、ITO膜厚が0 〜100nm の範囲で反射率の変化が少ないため膜厚制御は難しかった。このため、照射する光の波長は、700nm 未満、望ましくは600nm 以下が良いことが判る。
【0041】
以上の実施例では、a−Si膜上にITO膜を成膜する場合について示したが、基板上に薄膜を成膜する場合であれば、この手法を用いることができる。
【0042】
以上の膜厚制御法により、ITO膜厚が正確に所定の膜厚に成膜できるようになり、太陽電池特性のばらつきは少なくなり、歩留まりが向上した。
【0043】
【発明の効果】
本発明によれば、磁界を作るための磁石が成膜領域を往復移動する駆動装置を備えたマグネトロンスパッタ成膜装置において、単色光ビームを成膜中の薄膜表面に向けて出射する光源と、前記単色光ビームの前記薄膜からの反射光を検出し検出信号を出力する光検出器と、この検出信号と予め採取してある前記単色光ビームと前記薄膜と同質の薄膜の膜厚との関係から前記成膜中の薄膜の膜厚と、この膜厚と所定の膜厚との比較から磁石の所定往復回数で所定の膜厚を得るための放電パワーの補正信号または磁石の移動速度の補正信号を出力するコントローラにより放電パワーまたは磁石の移動速度を適正化したため、多数ステップ成膜後のターゲットの表面状態の変化などによる成膜速度の変化が生じた場合でも、常に膜厚の精度を高く維持できる。
【0044】
特に、長尺の基板への成膜においては、基板の先端部においても、終端部においても同じ膜厚が得られ、製造方法歩留りが向上する。
【図面の簡単な説明】
【図1】 本発明に係るマグネトロンスパッタ成膜装置の断面模式図
【図2】 YAGレーザー光(波長530nm )に対するITO膜の反射率の膜厚依存性のグラフ
【図3】 ヘリウム−カドミウムレーザー光(波長442nm )に対するITO膜の反射率の膜厚依存性のグラフ
【図4】 基板上にAgを100nm 、a−Siを500nm 成膜し、a−Si上にITOを形成したときのITO膜厚に対する反射率のグラフであり、(a)は波長600nm の場合であり、(b)は波長700nm の場合
【図5】 本発明に係る成膜方法を電極成膜に適用した太陽電池の製造工程順の各工程後の断面図であり、(a)は基板への第1孔開孔工程、(b)は両面への金属電極形成工程、(c)は第2孔開孔工程、(d)はa−Siの形成工程、(e)は透明電極の形成工程、(f)は裏面電極の形成工程
【図6】 本発明に係る電極成膜方法を適用した太陽電池の直列接続後の図であり(a)は平面図であり(b)は(a)におけるXXに沿っての断面図
【図7】 従来の磁石移動型のマグネトロンスパッタ装置の断面模式図
【図8】 磁石移動型のマグネトロンスパッタ装置における成膜中の膜厚の変化を示すグラフ
【符号の説明】
1s 基板
h1 第1孔
h2 第2孔
1a 第1電極層
1b 第2電極層
1p 光電変換層
1c 第3電極層
1d 第4電極層
1i 切断部
1j 切断部
E 電極
U ユニット
2 陰極
3 陽極
4 ターゲット
5 磁石
6 駆動装置
6a ヘッド
7 電源
8a 光源
8b 光検出器
8l 光ビーム
9 コントローラ
V 成膜室[0001]
BACKGROUND OF THE INVENTION
For example, the present invention relates to a method for forming a transparent conductive layer in a thin film electronic device having a transparent conductive layer on a semiconductor layer, such as a thin film solar cell.
[0002]
[Prior art]
As a typical example of a thin film electronic device having a transparent conductive layer on a semiconductor layer, there is a solar cell in which an amorphous silicon (hereinafter referred to as a-Si) semiconductor layer is a photoelectric conversion layer. The basic layer configuration of the solar cell is three layers of an electrode layer, a photoelectric conversion layer, and an electrode layer on the substrate. If the substrate is conductive, one of the electrode layers can be omitted.
[0003]
A photoelectric conversion layer made of a-Si and having a pin structure has a transparent electrode layer made of a transparent conductive material such as ITO (indium tin oxide), SnO 2 or ZnO on the light incident side, and a back side made of metal on the opposite side. In general, an electrode layer is formed. Sputtering is used to form these electrode layers.
Since a solar cell for electric power needs to absorb sunlight over a large area, a long flexible substrate made of a polymer material or a metal such as stainless steel is used as the substrate. As a method for forming a plurality of layers on a long flexible substrate, there are a roll-to-roll method in which a film is formed on a substrate that moves continuously in a film formation chamber corresponding to each layer, and a substrate in each film formation chamber. There is a stepping roll method in which film formation is stopped, and the film is sent out of the film formation chamber after film formation. The stepping roll type film forming apparatus is excellent in that there is no gas mutual diffusion with an adjacent film forming chamber and the apparatus can be made compact.
[0004]
The following method has been proposed for uniform film formation by stepping roll type sputtering. FIG. 7 is a schematic cross-sectional view of a conventional magnet moving type magnetron sputtering apparatus. In the film forming chamber V, the film formation substrate 1s placed on the cathode 2 faces the target 4 on the anode 3, and a voltage is applied between the cathode 2 and the anode 3 to generate glow discharge. A film made of the target material is formed on the surface of the substrate 1s by applying a magnetic field orthogonal to the electric field between the two electrodes by the magnet 5 installed on the back side of the target 4. The magnet region (becomes a glow discharge region) is elongated, slightly longer than one side of the rectangular film-forming region, and shorter than the other side. The anode 3 and the magnet 5 are attached to the head 6a of the driving device 6, and are reciprocated by the width of the film formation region in the short side direction of the magnetic field (magnet) region. The magnet 5 is composed of a pair or a plurality of pairs of N and S poles.
[0005]
FIG. 8 is a graph showing changes in film thickness during film formation in a magnet moving type magnetron sputtering apparatus. At an arbitrary observation point P on the substrate, a film is intermittently formed (thick line portion of the graph) every time the glow discharge region passes.
In stepping roll type film formation, the time for stopping in each film formation chamber is constant, so in order to obtain a uniform film thickness in the entire film formation region, a predetermined film thickness must be obtained in synchronization with the number of reciprocating movements of the magnet. Don't be. For this purpose, the moving speed of the magnet or the discharge power must be controlled so as to meet this condition.
[0006]
Since such a conventional magnetron sputtering apparatus does not have a mechanism for measuring the film thickness during film formation and confirming the film formation speed or film thickness, the film thickness control method includes predetermined film formation conditions. The film thickness is measured by measuring the film thickness and determining the film formation speed per unit time. From this value, the film thickness and the magnet at the initial stage of use of the target are set as film forming conditions. The number of reciprocating movements was synchronized .
[0007]
[Problems to be solved by the invention]
However, as the target usage time increases, the surface shape and surface clean state change, and the film formation speed changes. Therefore, the film formation speed changes even when the discharge power is constant, and the film formation time is controlled. Therefore, it is difficult to obtain a predetermined film thickness with good reproducibility. Therefore, when controlling only by the discharge power and the film formation time, the film thickness varies between film formation batches. The transparent electrode on the light-receiving surface side of the solar cell also plays a role as an antireflection film. If the film thickness deviates from the optimum value, the short-circuit photocurrent is greatly reduced, which causes deterioration of characteristics.
[0008]
An object of the present invention is to provide a magnetron sputtering film forming apparatus capable of monitoring and controlling the film thickness during film formation of a transparent conductive film and obtaining a constant film thickness regardless of changes in the surface state of the target, and its It is to provide a film forming method.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, in a magnetron sputtering film forming apparatus equipped with a driving device in which a magnet for generating a magnetic field reciprocates in a film forming region, a monochromatic light beam is emitted toward the surface of the thin film being formed. A light source, a photodetector that detects reflected light of the monochromatic light beam from the thin film and outputs a detection signal, and a film thickness of the thin film that is the same quality as the monochromatic light beam and the thin film collected in advance. From the relationship between the thickness of the thin film during film formation and a comparison between this film thickness and the predetermined film thickness, a discharge power correction signal or magnet movement to obtain a predetermined film thickness by a predetermined number of reciprocations of the magnet A controller that outputs a speed correction signal is provided.
[0010]
In the film forming method in the magnetron sputtering film forming apparatus, the discharge power correction signal corresponds to the following equation.
[0011]
[Equation 3]
Figure 0003744089
In the film forming method in the magnetron sputtering film forming apparatus, the correction signal for the moving speed of the magnet corresponds to the following equation.
[0012]
[Expression 4]
Figure 0003744089
Wavelength of the monochromatic light beam is a wavelength of the reflected light intensity becomes a minimum value or maximum value with smaller thickness than the predetermined thickness, to obtain the film thickness at the time becomes the minimum value or the maximum value of the reflected light intensity And
[0013]
The thin film is transparent to visible light, and the base of the thin film is a single-layer film or a multilayer film including at least an a-Si layer or an a-Si-based alloy layer, an a-Si layer or an a-Si It is preferable that the alloy layer is on the outermost surface.
The thin film may be a transparent conductive film made of ITO, SnO 2 , or ZnO.
[0014]
The wavelength of the monochromatic light beam is preferably less than 700 nm.
The monochromatic light beam may be a second harmonic of a YAG laser or a helium-cadmium laser, and the predetermined film thickness may be 60 to 100 nm.
According to the present invention, since the light source, the light detector, and the controller are provided, the film formation speed can be obtained from the film thickness at the time of measurement using the collected data on the relationship between the film thickness and the reflectance. Since this can be used to control subsequent film formation conditions, the discharge power or the moving speed of the magnet is changed to control the change in the film formation speed due to the change in the surface state of the target after the multi-step film formation. It is expected that the accuracy of the film thickness can always be kept high.
[0015]
If the film thickness cannot be obtained directly, the minimum or maximum value can be easily obtained by using a monochromatic light beam with a wavelength that gives a minimum or maximum reflectivity with a film thickness smaller than the predetermined thickness. The film thickness can be determined at a film thickness having a thickness, and the film formation conditions can be controlled below.
When a thin film having a light-transmitting property with respect to visible light is formed on a-Si, the use of light with a wavelength of less than 700 nm causes a large change in reflectivity so that the film thickness can be easily determined. Can be expected to be good.
[0016]
When a 60 to 100 nm thin film having transparency to visible light is formed on a-Si, if the light irradiated on the film formation surface is a second harmonic of a YAG laser or a helium-cadmium laser, The film thickness is smaller than the film thickness and has a minimum value of reflectivity, so even when it is difficult to determine the absolute value of reflectivity, it is possible to easily determine the film thickness, and the discharge power, film formation time, or magnet It is possible to accurately control the film thickness by controlling the moving speed.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 5 is a cross-sectional view after each step in the order of the manufacturing process of the solar cell in which the film forming method according to the present invention is applied to electrode film formation, (a) is the first hole opening step to the substrate, (b) Is a metal electrode forming step on both sides, (c) is a second hole opening step, (d) is an a-Si forming step, (e) is a transparent electrode forming step, and (f) is a back electrode forming step. It is.
[0018]
The electrically insulating and flexible substrate 1s is a resin film having a thickness of about 50 μm. As the resin, polyimide, polyethylene naphthalate (abbreviated as PEN), polyethersulfone (abbreviated as PES), polyethylene terephthalate (abbreviated as PET ), or aramid can be used. A first hole h1 penetrating a plurality of substrates is formed in a part of the substrate 1s (step (a)). The first hole h1 can be opened using a mechanical opening using a punch or an energy beam such as a laser. The size of the first hole h1 was 0.5 to 1 mm in diameter.
[0019]
The first electrode layer 1a (this side is the front side) on one side of the substrate 1s and the second electrode layer 1b (this side is the back side) on the opposite side, Ag is about 100 nm to about 400 nm thick A film was formed by sputtering. In addition to Ag, a metal electrode such as Al, Cu, or Ti may be formed by sputtering or electron beam evaporation. Further, a metal oxide film and a metal multilayer film may be formed as an electrode layer. As a film formation method, it is preferable to form a film by a stepping roll method that does not have a can roll portion in the film formation zone. When the film is formed in the can roll part, the distance between the heater substrates can be made substantially zero. However, in the substrate having the through holes , the electrode material that has passed through the through holes adheres to the can roll part, and this is different from the substrate. It is because it peels by contacting with a part and the yield of a solar cell falls by the reattachment to a board | substrate. By this step, the first electrode layer 1a overlaps the second electrode layer 1b on the side surface of the first hole h1, and is electrically connected to each other (step (b)).
[0020]
Next, a plurality of second holes h2 penetrating the substrate 1s, the first electrode layer 1a, and the second electrode layer 1b are opened in places other than the first hole h1. The opening method is the same as that for the first hole h1 (step (c)).
After passing through these steps, a thin film semiconductor to be the photoelectric conversion layer 1p is formed on the front side surface. For example, the photoelectric conversion layer 1p containing a-Si as a main component is formed by a plasma CVD method using SiH 4 and H 2 as main raw material gases. Examples of the material of the photoelectric conversion layer 1p include CuInSe 2 , CdTe , and poly. -Si and the like (step (d)). The first electrode 1a and the second electrode 1b are not conductive inside the second hole h1.
[0021]
A transparent electrode layer is formed as a third electrode layer 1c on the photoelectric conversion layer 1p. In general, an oxide conductive layer such as ITO, SnO 2 , or ZnO is used for this layer. In this embodiment, an ITO film formed by sputtering is used. At this time, the third electrode layer 1c is prevented from being formed on the peripheral portion of the first hole h1 formed first by covering with a mask at the time of film formation (step (e)).
[0022]
Next, a fourth electrode layer 1d made of a low resistance conductive film such as a metal film is formed on the back side surface. Since the inner surface of the second hole h2 is already covered with the photoelectric conversion layer 1p, the fourth electrode layer 1d is electrically connected only to the second electrode layer 1b and the third electrode layer 1c. Not conducting (step (f)).
6A and 6B are views after series connection of solar cells to which the electrode film forming method according to the present invention is applied. FIG. 6A is a plan view, and FIG. 6B is a cross-sectional view along XX in FIG.
[0023]
After the above process, in order to form a series connection of solar cells, only the solar cells (three layers of the first electrode layer, the photoelectric conversion layer, and the third electrode layer) on the front side surface are cut using a laser or the like. Are separated into individual solar cells (unit cells U) that are electrically insulated from each other, and are separated at the rear side by a cutting portion 1j and are electrically insulated from each other. Divided into four electrode layers). Thus the electrode E n-1, n - first hole h1- first electrode layer unit cell U n 1a- photoelectric conversion layer 1p- third electrode layer 1c- second hole h2- electrode E n, the n + 1 A series connection is completed.
[0024]
A magnetron sputtering film forming apparatus equipped with the film thickness control system according to the present invention was used for forming the third electrode layer made of the transparent conductive material.
FIG. 1 is a schematic sectional view of a magnetron sputtering film forming apparatus according to the present invention. Since the optical monitor system and the controller other than the optical monitor system for monitoring the film thickness are the same as the conventional one (FIG. 8), the description thereof is omitted.
[0025]
In order to monitor the film thickness during film formation, the monochromatic light beam 8l emitted from the light source 8a passes through the electrode layer being formed on the substrate 1s, is reflected by the photoelectric conversion layer, and enters the photodetector 8b. . The photodetector 8b converts the intensity of the detected light into an electric signal and sends it to the controller 9.
The controller 9 calculates the film thickness, the maximum value of the film thickness, the minimum value, the difference from the set film thickness, or the like from this electric signal according to a predetermined procedure, and outputs the control control signal of the power source 7 corresponding to these or the like. A control signal such as a driving speed signal of the driving device can be output. By controlling the magnet movement and the discharge power with such a magnetron sputtering film forming apparatus, a predetermined film thickness can be obtained with good reproducibility over a long period of time.
[0026]
In the following, a method for controlling the reflected light of the electrode layer, the magnet movement, and the discharge power in the magnetron sputtering film forming apparatus will be described with reference to examples.
Example 1
In this example, a film forming method in which the film thickness can be determined directly from the reflectance measurement was performed.
[0027]
FIG. 2 is a graph of the film thickness dependence of the reflectivity of the ITO film with respect to YAG laser light (wavelength 530 nm). After depositing 100nm Ag and 500nm a-Si on a flexible substrate and then depositing ITO, the second harmonic (wavelength 530nm) of a YAG laser with a wavelength of 530nm is perpendicularly incident on the deposition surface. The reflectance was measured in advance. By forming the film by sputtering from the state where the ITO film was not formed, the reflection intensity on the film formation surface was lowered, and the minimum value of the reflection intensity was obtained when the ITO film thickness was about 60 nm. Furthermore, when the film thickness increases, the reflection intensity increases and decreases repeatedly, and becomes a minimum value for film thicknesses of about 180 nm and 300 nm.
[0028]
Actually, vertical incidence on the substrate is impossible, and the optical path length becomes longer in proportion to the reciprocal of the cosine of the incident angle incident on the thin film. For this reason, it is necessary to reread the horizontal axis to a value obtained by multiplying the reciprocal of the cosine of the incident angle.
The predetermined film thickness is t 0, and the film formation conditions in the initial step of ITO film formation are the discharge power P 0 , the predetermined number of reciprocations n 0, and the moving speed v 0 .
[0029]
The film thickness t (nm) at the time after the number of reciprocating movements n (1 <n <n 0 integer) times from the start of film formation in the current step after multi-step film formation is the reflectance data shown in FIG. It can be obtained more. Further, the film forming speed is proportional to the discharge power and inversely proportional to the moving speed of the magnet. Therefore, the predetermined film thickness can be obtained with high accuracy by changing the discharge power P or the magnet moving speed v after this point.
[0030]
First, the discharge power P for obtaining a predetermined film thickness in a predetermined time is obtained with a constant magnet reciprocation speed (v 0 ). Within the current step, it can be considered that the film formation rate does not change from the number of reciprocations 1 to n and from the number of reciprocations n to n 0, so that equations (1) to (2) corresponding to the film formation rate are obtained.
[0031]
[Equation 5]
Figure 0003744089
Therefore, after the film thickness t (the number of reciprocations n), the controller calculates the equation (2) and controls so as to maintain the discharge power P (W).
Next, as another film forming method, it is shown that the discharge power can be kept constant at P 0 and the magnet moving speed v can be controlled to obtain a predetermined film thickness.
[0032]
Similarly to the above, the equation (3) is obtained from the equation (1).
[0033]
[Formula 6]
Figure 0003744089
Therefore, after the film thickness t (the number of reciprocations n), the controller performs the calculation of equation (3) and controls to maintain the moving speed (v). It should be noted that when n is small, the film thickness is small and the estimation accuracy of the film thickness is low. On the other hand, when n is close to n 0 , the subsequent correction amount is large and it is difficult to cope with the apparatus.
[0034]
Film formation conditions (film formation in FIG. 5E) at the initial step when ITO was used as the transparent conductive material were performed as follows. A substrate temperature of 250 ° C., the pressure 0.27 Pa, Ar flow rate 100 sccm, a discharge power 600W, the target film thickness was 60 nm. The required film formation time at this time was 11 minutes, and the number of reciprocating movements n 0 of the magnet was 11 (the moving speed of the magnet was 1 reciprocation / minute). After many steps, when n = 5, the film thickness was 95% of the predetermined value. However, according to the equation (2), the discharge power was increased by 10%, and subsequent film formation was performed to obtain a film thickness of 61 nm. Further, the moving speed was reduced by 9% according to the equation (3), and the subsequent film formation was performed to obtain a film thickness of 62 nm.
[0035]
As described above, the ITO film thickness can be controlled with high accuracy without depending on the number of steps by the two film forming methods, and this is particularly effective for film formation on a long substrate.
Example 2
The method of Example 1 is an example in which film thickness determination, control, and confirmation are performed from the absolute value of reflectance. A method for a case where it is difficult to obtain the absolute value of reflectance will be described below.
[0036]
Even when it is difficult to obtain the absolute value of the reflectance, it is easy to obtain the minimum value or the time when the reflectance is the maximum value. By irradiating the film surface with monochromatic light with a wavelength that gives a minimum or maximum reflectivity when the film thickness is smaller than a predetermined thickness, the film thickness having a minimum or maximum value is as follows. The film thickness is determined as described above, and using this value, the film thickness is controlled by any one of the film forming methods of Example 1, so that accurate film thickness control is possible.
[0037]
When the reflected light intensity (or reflectivity) is observed at a fixed time with respect to the passage of the magnet, a discrete value of the reflected light intensity can be obtained. If the sign of the increasing direction of three consecutive measured values changes, the extreme value has been exceeded. The case of minimal reflection will be described as an example.
In an arbitrary target step, the time is set to 0 for film formation start (magnet movement start). Equal time s of the magnet to the septum forward (or backward) only, time T -, T 0, T + in the reflected light intensity measured R -, and to obtain a R 0, R +. Using thickness t m at the minimum reflectance from these values, determining the film thickness t + at time T +. If the film thickness t + deviates from the relationship between the time T + and the film thickness when the film thickness t + is normal, the subsequent discharge power or the moving speed of the magnet can be controlled by the same method as in the first embodiment.
[0038]
However, in order to easily obtain the film thickness t + , it is necessary to approximate the vicinity of the minimum of the reflectance curve with a simple downward convex function, and a quadratic function is adopted here. As a result of the elementary calculation, the equation (4) was obtained.
[0039]
[Expression 7]
Figure 0003744089
FIG. 3 is a graph of the film thickness dependence of the reflectivity of the ITO film with respect to helium-cadmium laser light (wavelength 442 nm).
In the case of forming the ITO film thickness to 60 nm, when the light irradiated on the film formation surface is a helium-cadmium laser with a wavelength of 442 nm, the minimum value of the reflectance is when the ITO film thickness is 45 nm. At this time, the reflected light intensity also becomes a minimum value. The reflected light intensity is measured every time the magnet passes, and when the increase direction changes, the above calculation is performed by the controller, the subsequent discharge power is controlled , or the moving speed of the magnet is controlled , and the number of steps is calculated. Regardless, the ITO film thickness could be formed with an accuracy of about 2%.
Example 3
FIG. 4 is a graph of the reflectance with respect to the ITO film thickness when Ag is formed on the substrate with a thickness of 100 nm and a-Si is formed with a thickness of 500 nm, and ITO is formed on the a-Si. Yes, (b) is for a wavelength of 700 nm.
[0040]
For light with a wavelength of 600 nm, the reflectivity increases from 35% to slightly less than 40% as the ITO film thickness increases, the reflectivity becomes almost 0 at about 85 nm, and becomes less than 40% again at 150 nm. It is easy to perform film thickness judgment, control and confirmation. On the other hand, for light with a wavelength of 700 nm, the reflectivity increases from about 80% to slightly less than 90% as the ITO film thickness increases, and becomes minimal at 120 nm. In this case, for example, when it is attempted to control the ITO film thickness to 60 nm, the film thickness must be determined in a region where the change in reflectance is small, and it is difficult to accurately control the film thickness. For light with a wavelength of 700 nm or more, it was difficult to control the film thickness because the change in reflectance was small when the ITO film thickness was in the range of 0 to 100 nm. Therefore, it can be seen that the wavelength of the irradiated light is preferably less than 700 nm, preferably 600 nm or less.
[0041]
In the above embodiments, the case where the ITO film is formed on the a-Si film has been described. However, this method can be used if a thin film is formed on the substrate.
[0042]
By the film thickness control method described above, the ITO film thickness can be accurately formed to a predetermined film thickness, the variation in solar cell characteristics is reduced, and the yield is improved.
[0043]
【The invention's effect】
According to the present invention, in a magnetron sputter film forming apparatus provided with a drive device in which a magnet for generating a magnetic field reciprocates in a film forming region, a light source that emits a monochromatic light beam toward the thin film surface during film formation; A photodetector that detects reflected light from the thin film of the monochromatic light beam and outputs a detection signal, and a relationship between the detection signal, the monochromatic light beam collected in advance and the film thickness of the thin film that is the same as the thin film From the comparison of the film thickness of the thin film during the film formation and the film thickness with a predetermined film thickness, a discharge power correction signal or a magnet moving speed correction for obtaining a predetermined film thickness by a predetermined number of reciprocations of the magnet Since the controller that outputs the signal optimizes the discharge power or the moving speed of the magnet, the film thickness accuracy is always increased even when the film forming speed changes due to changes in the surface state of the target after multi-step film forming. Wei It can be.
[0044]
In particular, in film formation on a long substrate, the same film thickness can be obtained at both the front end portion and the end portion of the substrate, and the manufacturing method yield is improved.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a magnetron sputtering film forming apparatus according to the present invention. FIG. 2 is a graph of the film thickness dependence of the reflectivity of an ITO film with respect to YAG laser light (wavelength 530 nm). Graph of film thickness dependence of reflectivity of ITO film with respect to (wavelength 442 nm) [FIG. 4] ITO film when Ag is formed to 100 nm, a-Si is formed to 500 nm on the substrate, and ITO is formed on the a-Si FIG. 5 is a graph of reflectance with respect to thickness, where (a) is for a wavelength of 600 nm and (b) is for a wavelength of 700 nm. FIG. 5 is a graph showing a solar cell manufactured by applying the film forming method according to the present invention to electrode film formation. It is sectional drawing after each process of a process order, (a) is the 1st hole opening process to a board | substrate, (b) is the metal electrode formation process to both surfaces, (c) is the 2nd hole opening process, ( d) a-Si forming step, (e) transparent electrode forming step, and (f) back surface. FIG. 6 is a view after series connection of solar cells to which the electrode film forming method according to the present invention is applied, (a) is a plan view, and (b) is along XX in (a). Cross-sectional view [FIG. 7] Schematic cross-sectional view of a conventional magnet-moving magnetron sputtering apparatus [FIG. 8] Graph showing the change in film thickness during film formation in a magnet-moving-type magnetron sputtering apparatus
1 s substrate h1 first hole h2 second hole 1a first electrode layer 1b second electrode layer 1p photoelectric conversion layer 1c third electrode layer 1d fourth electrode layer 1i cutting part 1j cutting part E electrode U unit 2 cathode 3 anode 4 target 5 Magnet 6 Driving Device 6a Head 7 Power Supply 8a Light Source 8b Photodetector 8l Light Beam 9 Controller V Deposition Chamber

Claims (8)

磁界を作るための磁石が成膜領域を往復移動する駆動装置を備えたマグネトロンスパッタ成膜装置において、単色光ビームを成膜中の薄膜表面に向けて出射する光源と、前記単色光ビームの前記薄膜からの反射光を検出し検出信号を出力する光検出器と、この検出信号と予め採取してある前記単色光ビームと前記薄膜と同質の薄膜の膜厚との関係から前記成膜中の薄膜の膜厚と、この膜厚と所定の膜厚との比較から磁石の所定往復回数で所定の膜厚を得るための放電パワーの補正信号または磁石の移動速度の補正信号を出力するコントローラを備えていることを特徴とするマグネトロンスパッタ成膜装置。In a magnetron sputtering film forming apparatus provided with a drive device in which a magnet for generating a magnetic field reciprocates in a film forming region, a light source that emits a monochromatic light beam toward the surface of a thin film being formed, and the monochromatic light beam A photodetector that detects reflected light from the thin film and outputs a detection signal, and the relationship between the detection signal, the monochromatic light beam collected in advance and the film thickness of the thin film of the same quality as the thin film, A controller that outputs a discharge power correction signal or a magnet movement speed correction signal for obtaining a predetermined film thickness by a predetermined number of reciprocations of the magnet from a comparison between the thin film thickness and the predetermined film thickness. A magnetron sputtering film forming apparatus comprising: 請求項1に記載のマグネトロンスパッタ成膜装置における前記放電パワーの補正信号は次式に対応することを特徴とするマグネトロンスパッタ成膜方法。
Figure 0003744089
The magnetron sputtering film forming method according to claim 1, wherein the discharge power correction signal corresponds to the following equation.
Figure 0003744089
請求項1に記載のマグネトロンスパッタ成膜装置における前記磁石の移動速度の補正信号は次式に対応することを特徴とするマグネトロンスパッタ成膜方法。
Figure 0003744089
The magnetron sputtering film forming method according to claim 1, wherein the correction signal of the moving speed of the magnet in the magnetron sputtering film forming apparatus corresponds to the following equation.
Figure 0003744089
前記単色光ビームの波長は前記所定膜厚より小さい膜厚で反射光強度が極小値または極大値となる波長であり、反射光強度の極小値または極大値となる時間での膜厚を求めることを特徴とする請求項2または3に記載のマグネトロンスパッタ成膜方法。Wavelength of the monochromatic light beam is a wavelength of the reflected light intensity becomes a minimum value or maximum value with smaller thickness than the predetermined thickness, to obtain the film thickness at the time becomes the minimum value or the maximum value of the reflected light intensity The magnetron sputtering film forming method according to claim 2, wherein: 前記薄膜は可視光に対して透光性であり、前記薄膜の下地は少なくともa−Si層あるいはa−Si系合金層を含む単層膜あるいは多層膜であり、a−Si層あるいはa−Si系合金層が最表面にあることを特徴とする請求項2ないし4に記載のマグネトロンスパッタ成膜方法。The thin film is transparent to visible light, and the base of the thin film is a single-layer film or a multilayer film including at least an a-Si layer or an a-Si-based alloy layer, an a-Si layer or an a-Si 5. The magnetron sputter deposition method according to claim 2, wherein the alloy layer is on the outermost surface. 前記薄膜はITO、SnO2 、ZnOのいずれかよりなる透明導電膜であることを特徴とする請求項2ないし5に記載のマグネトロンスパッタ成膜方法。6. The magnetron sputtering film forming method according to claim 2 , wherein the thin film is a transparent conductive film made of any one of ITO, SnO 2 , and ZnO. 前記単色光ビームの波長は700nm 未満であることを特徴とする請求項2ないし6に記載のマグネトロンスパッタ成膜方法。7. The magnetron sputtering film forming method according to claim 2, wherein the wavelength of the monochromatic light beam is less than 700 nm. 前記単色光ビームYAGレーザーの第2高調波またはヘリウム−カドミウムレーザーであり、前記所定膜厚は60ないし100nm であることを特徴とする請求項2ないし6に記載のマグネトロンスパッタ成膜方法。7. The magnetron sputtering film forming method according to claim 2, wherein the monochromatic light beam is a second harmonic of a YAG laser or a helium-cadmium laser, and the predetermined film thickness is 60 to 100 nm.
JP32143796A 1996-12-02 1996-12-02 Magnetron sputtering film forming apparatus and film forming method Expired - Fee Related JP3744089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32143796A JP3744089B2 (en) 1996-12-02 1996-12-02 Magnetron sputtering film forming apparatus and film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32143796A JP3744089B2 (en) 1996-12-02 1996-12-02 Magnetron sputtering film forming apparatus and film forming method

Publications (2)

Publication Number Publication Date
JPH10158833A JPH10158833A (en) 1998-06-16
JP3744089B2 true JP3744089B2 (en) 2006-02-08

Family

ID=18132555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32143796A Expired - Fee Related JP3744089B2 (en) 1996-12-02 1996-12-02 Magnetron sputtering film forming apparatus and film forming method

Country Status (1)

Country Link
JP (1) JP3744089B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353814A (en) * 1999-06-10 2000-12-19 Fuji Electric Co Ltd Manufacture of thin-film solar cell and film-forming state monitoring device of thin film
JP4429418B2 (en) 1999-07-19 2010-03-10 株式会社カネカ Deposition method of metal oxide thin film by magnetron sputtering system
US6822158B2 (en) 2002-03-11 2004-11-23 Sharp Kabushiki Kaisha Thin-film solar cell and manufacture method therefor
KR101001658B1 (en) * 2002-10-15 2010-12-15 오를리콘 트레이딩 아크티엔게젤샤프트, 트뤼프바흐 Method for the production of a substrate with a magnetron sputter coating and unit for the same
CN1745453B (en) * 2002-11-29 2011-08-31 Oc欧瑞康巴尔斯公司 Method and apparatus for plasma treatment of surface in vacuum
KR101002204B1 (en) 2008-04-02 2010-12-20 주식회사 테스 Magnetron sputtering apparatus
KR101107170B1 (en) 2010-05-04 2012-01-25 삼성모바일디스플레이주식회사 System for sputtering and method thereof
CN117127162B (en) * 2023-08-29 2024-02-09 浙江积嘉光电有限公司 Coating monitoring method, device and system in magnetron sputtering coating

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4513006A (en) * 1983-09-26 1985-04-23 Mcneil Lab., Inc. Anticonvulsant sulfamate derivatives
JPH05106044A (en) * 1991-10-14 1993-04-27 Hitachi Ltd Formation of metallic thin film and apparatus for forming metallic extra thin film
JPH06220634A (en) * 1993-01-21 1994-08-09 Tdk Corp Film quarity controlling method in sputtering device
JP3514488B2 (en) * 1993-06-30 2004-03-31 株式会社アルバック Magnetron sputtering method and apparatus
EP0666337A1 (en) * 1994-01-28 1995-08-09 Applied Materials, Inc. Method and apparatus for measuring the deposition rate of opaque films

Also Published As

Publication number Publication date
JPH10158833A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
JP3809237B2 (en) Electrolytic pattern etching method
JP2908067B2 (en) Substrate for solar cell and solar cell
US5244509A (en) Substrate having an uneven surface for solar cell and a solar cell provided with said substrate
US5977477A (en) Photovoltaic device
US5039353A (en) Process for improving the spectral response of a photoconductive structure, and improved solar cell and photoreceptive structure
US20080308147A1 (en) Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same
EP2224495A1 (en) Multilayer thin-film photoelectric converter and its manufacturing method
EP2530722A2 (en) Refractive index matching of thin film layers for photovoltaic devices and methods of their manufacture
US5859397A (en) Process for the production of a photovoltaic element
US5668050A (en) Solar cell manufacturing method
JP3744089B2 (en) Magnetron sputtering film forming apparatus and film forming method
KR20100021673A (en) Photoelectric conversion device and method for manufacturing the same
US6491808B2 (en) Electrolytic etching method, method for producing photovoltaic element, and method for treating defect of photovoltaic element
US20100313943A1 (en) Thin-film solar cell and process for producing it
Haas et al. Analysis of the laser ablation processes for thin-film silicon solar cells
JP2001210845A (en) Method of manufacturing thin film photoelectric conversion device
JPH0837317A (en) Solar battery, detecting method of defect in solar battery, and defect detecting and recovering apparatus
JPS62209872A (en) Photoelectric conversion element
JP2002261314A (en) Method of manufacturing thin-film photoelectric conversion module
JPH10303444A (en) Manufacture of solar battery
EP1229595A2 (en) Method of forming transparent, conductive film, method of compensating defective region of semiconductor layer, photovoltaic element, and method of producing photovoltaic element
US4728615A (en) Method for producing thin-film photoelectric transducer
JP6339193B2 (en) Thin film solar cell module manufacturing method and thin film solar cell module
JP2846508B2 (en) Photovoltaic element
JPH09186351A (en) Photovoltaic device and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees