JP3743681B2 - Railway vehicle operation device - Google Patents

Railway vehicle operation device Download PDF

Info

Publication number
JP3743681B2
JP3743681B2 JP32230794A JP32230794A JP3743681B2 JP 3743681 B2 JP3743681 B2 JP 3743681B2 JP 32230794 A JP32230794 A JP 32230794A JP 32230794 A JP32230794 A JP 32230794A JP 3743681 B2 JP3743681 B2 JP 3743681B2
Authority
JP
Japan
Prior art keywords
vehicle
ground
position information
operating device
inter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32230794A
Other languages
Japanese (ja)
Other versions
JPH07251739A (en
Inventor
善泰 芦川
悟郎 石川
定雄 丸山
正男 大場
正弘 北爪
健 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Tokyo Metro Co Ltd
Original Assignee
Tokyo Keiki Inc
Tokyo Metro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Inc, Tokyo Metro Co Ltd filed Critical Tokyo Keiki Inc
Priority to JP32230794A priority Critical patent/JP3743681B2/en
Publication of JPH07251739A publication Critical patent/JPH07251739A/en
Application granted granted Critical
Publication of JP3743681B2 publication Critical patent/JP3743681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/40Adaptation of control equipment on vehicle for remote actuation from a stationary place
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0007Measures or means for preventing or attenuating collisions
    • B60L3/0015Prevention of collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Near-Field Transmission Systems (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、衝突を防止する鉄道車両運行装置に関し、特に軌道を保守、点検するための保守車どうしの衝突を防止したり、保守車が地上施設や特定区間に接近したことを警告等する場合に好適な鉄道車両運行装置に関する。
【0002】
【従来の技術】
図12は、軌道6を保守、点検する従来の方法を示す。この方法では、保守車1(1a、1b)に無線電波送受信機T、Rを設置すると共に、軌道6の駅2aの構内、分岐点2b等の固定の地上施設2や、不特定の工事区間3a等の特定区間3に無線電波送信機Tを設けることにより、地上施設2や特定区間3から保守車1に対して減速、停止地点情報を送信して保守車1の無線送受信機T、Rから警報を発するようにしている。
【0003】
また、見張り要員4が無線電波受信機Rを携帯することにより保守車1から見張り要員4に対して保守車1の接近情報を送信して警報を発したり、また、特定区間3の始点と終点に警告灯5を配置して保守車1から目視で特定区間3を識別するようにしている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の方法では、地上施設2や特定区間3から保守車1に対して減速、停止地点情報を送信して保守車1の無線送受信機T、Rから警報を発するので、保守車1の無線送受信機T、Rが連続して警報を発することが多く、騒音の原因となるという問題点があり、また、このために運転者が警報を人為的に停止させてしまうという問題点がある。また、特定区間3に警告灯5を配置して目視する方法では、気象条件等により警告灯5を見落とすことがある。
【0005】
なお、無線電波の代わりに音響、光、マイクロ波等により警報を伝達する方法が考えられるが、この方法による送受信機は、軌道条件や軌道の周囲構造により不適切な設置箇所が多いという問題点がある。
本発明は上記従来の問題点に鑑み、他の車両との接近を警報したり、車両の現在位置に応じて警報する場合に警報音の騒音、誤動作、人為的なミスを防止することができる鉄道車両運行装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は上記目的を達成するために、不揮発性のメモリを有し、非接触で通信を行う複数の地上子を軌道に沿って設置すると共に、地上子との間で非接触で通信を行う車上子を各車両に設置した鉄道車両運行装置であって、各車両が地上子の設置位置を通過時にその車上子が通過時刻を非接触でその地上子に書込み、次の車両が地上子の設置位置を通過時にその車上子が前の車両の通過時刻を電磁誘導方式等の非接触結合方式で読み取り、現在時刻との差により車間距離を演算し、車間距離が所定距離以下の場合に警報を発することを特徴とする。
【0010】
更に本発明は、不揮発性のメモリを有し、非接触で通信を行う複数の地上子に設置位置情報を予め記憶して軌道に沿って設置すると共に、地上子との間で非接触で通信を行うと共に他の車上子との間で無線電波方式で通信を行う車上子を各車両に設置した鉄道車両運行装置であって、各車両が地上子の設置位置を通過時にその車上子が地上子から非接触で設置位置情報を読み取った場合にその情報を自己の現在位置情報として記憶すると共に他の車上子に対して無線電波方式で送信し、他の車上子はその受信位置情報と自己の現在位置情報により車間距離を演算し、車間距離が所定距離以下の場合に警報を発すると共に軌道に沿って設置された複数の地上子の各々に、一方向に隣接した地上子の設置位置までの区間を示す固有のエリア番号を記憶し、各車両が地上子の設置位置を通過時にその地上子から非接触で設置位置情報と共にエリア番号を読み取った場合に、エリア番号に対応した通信チャネルを選択して他の車上子に対し自己の現在位置情報を送信し、同時に、送信に使用した通信チャネル以外の他の通信チャネルを順次選択して他の車上子からの現在位置情報を受信する。
【0011】
具体的には、軌道に沿って設置された複数の地上子の各々に、所定数ごとに繰り返すエリア番号A1〜Anを記憶し、各エリア番号の各々に固有の通信チャネルch1〜nを割当てたことを特徴とする。また並行する複数の軌道の各々に沿って所定間隔で地上子を設置した場合には、所定数ごとに繰り返す軌道ごとに異なったエリア番号を割当てて記憶し、各エリア番号の各々に固有の通信チャネルを割当てる。
【0012】
更に同一エリアに複数の車両が存在した場合のチャネル競合を回避するため、地上子から読み取ったエリア番号に対応した通信チャネルを使用して自己の現在位置情報を送信する際に、同一エリアに存在する他の車上子からの送信キャリア信号の有無を検出する。キャリア信号の検出時には同一エリアに存在する他の車上子からの現在位置情報を受信すると共に、ランダムに決められた遅延時間経過後に再度キャリア信号の有無を検出する。キャリア信号が検出されなかった場合には、自己の現在位置情報を送信する
【0013】
【作用】
本発明では、軌道に沿って設置される複数の地上子のメモリに各設置位置情報が予め記憶され、各車両が地上子の設置位置を通過時にその車上子が地上子から非接触で読み取った設置位置情報を自己の現在位置情報として記憶すると共に他の車両の車上子に無線電波方式で送信し、他の車上子はその受信位置情報と自己の現在位置情報により車間距離を算出して警報を発するので、車両間が接近した時のみ警報を発することができる。したがって、他の車両との接近を警報する場合に騒音、誤動作、人為的なミスを防止することができる。
【0014】
また、本発明では、軌道に沿って設置される地上子のメモリに前の車両の通過時刻が記憶され、次の車両の車上子により読み取られて現在時刻との差により警報を発するので、車両間が接近した時のみ警報を発することができる。したがって、他の車両との接近を警報する場合に騒音、誤動作、人為的なミスを防止することができる。
【0015】
また、本発明では、軌道に沿って設置される地上子のメモリに軌道情報が予め記憶され、車両が地上子の設置位置を通過時にその車上子が地上子から非接触で読み取った軌道情報により警報等を発するので、車両が例えば軌道の駅や分岐点等の固定の地上施設や、不特定の工事区間に接近した時のみ警報を発することができる。したがって、車両の現在位置に応じて警報する場合に警報音の騒音、誤動作、人為的なミスを防止することができる。
【0016】
更に求めた車間距離から減速、停止等の車両速度の制御を行うので、先行する車両との間に安全な距離を保った運行制御ができる。
更に地上子の設置区間で決まるエリアごとに固有のエリア番号を割当てて地上子に記憶し、車上子にエリア番号を読取って、例えば多数の周波数チャネルの1つを対応させて自己の割当チャネルとする。自己の現在位置情報の送信は、割当チャネルを使用して行い、他の車上子からの現在位置情報は、割当チャネル以外のチャネルを順次切替えて受信する。これによって複数の車上子間での通信を行った場合の混信を確実に防止できる。
【0017】
また同一エリア内に複数の車両が存在し、各車上個々エリア番号に対応した同じ通信チャネルを使用して送信することで衝突を起こす。そこで送信時にキャリアセンスを行い、キャリアなしを検知して初めて送信することで、複数の車上子から同じ割当てチャネルを使用した同時送信による衝突を確実に防止できる。
【0018】
【実施例】
以下、図面を参照して本発明の基本構成を説明する。図1は鉄道車両運行システムを示す構成図である。
図1において、軌道6に沿って非接触で結合する方式、例えば電磁誘導通信方式の地上子10が設置され、例えば車両接近限界間隔の距離を考慮した間隔毎に地上子101 、102 〜10n が設置され、この地上子10内の不揮発性メモリ16(後述)には各設置場所を示すための例えば記号、所定位置からのキロ数等のデータが記憶されている。
【0019】
また、駅2aには地上子102aが設置され、分岐点2bには地上子102bが設置され、工事区間3aの始点、終点、中央にはそれぞれ103a、103b、103cが設置され、これらの地上子102a、102b、103a、103b、103cの不揮発性メモリ16にはそれぞれ駅2a、分岐点2b、工事区間3aの始点、終点、中央であることを示すデータが記憶されている。
【0020】
これに対し、軌道6上を走行する保守車1(1a、1b)には、お互いに無線電波方式で通信するための送受信機T、Rと、それぞれ後述するように地上子10との間で電磁誘導方式で通信するための回路と、衝突を警報するための警報器29と、衝突防止用のメッセージを表示するための表示器30を有する車上子20が設置されている。
【0021】
この送受信機T,Rは、複数台の保守車相互に通信を行うために周波数分割型通信方式、時分割型通信方式、または符号分別型通信方式を使用している。また警報器29による警報の態様は、音、光などにより乗務員又は鉄道車両付近にいる作業員に知らせることのできる警報とする。
図2は車上子20が地上子10に接近して電磁誘導方式で通信可能な状態を示している。車上子20は他の保守車1との間で無線電波方式で通信を行うための送信機T及び受信機Rと、地上子10との間で電磁誘導方式で通信を行うための送信コイル21T及び受信コイル21Rを有し、車上子20が地上子10に接近した状態で送信コイル21Tと受信コイル21Rがそれぞれ地上子10側の受信コイル11Rと送信コイル11Tとの間で電磁誘導結合される。
【0022】
車上子20の通信は制御部22により制御され、地上子10に対するコマンド、アドレス、データ等はインタフェース(I/F)23、変調器24及び増幅器25を介して送信コイル21Tに印加される。また、受信コイル21Rに誘導された信号は増幅器26、復調器27及びI/F28を介して制御部22により取り込まれる。
【0023】
地上子10の受信コイル11Rに誘導された信号は電源回路11により整流、平滑化されて直流電源が生成され、また、増幅器12、復調器13及びI/F14を介して制御部15により取り込まれる。そして、書込みコマンド、アドレス、データを受信した場合には書込みデータがメモリ16に書き込まれ、読み出しコマンド及びアドレスを受信した場合にはそのデータがメモリ16から読み出され、I/F17、変調器18及び増幅器19を介して送信コイル11Tに印加される。なお、車上子20から地上子10に対する伝送は例えばFSK等の変調 (変調器24)及び復調(復調器13)で行われ、地上子10から車上子20に対する伝送は例えばスペクトラム拡散(変調器18及び復調器27)で行われる。
【0024】
地上子10側のメモリ16は例えばEEPROM等の不揮発性メモリが用いられ、したがって、車上子20から電源を供給されていない場合にもデータを保持することができる。このメモリ16には例えば図3(a)に示すように、地上子10の識別(ID)情報、起点からの距離、軌道6の駅2a、分岐点2b等の固定の地上施設2であることを示すデータや、不特定の工事区間3a等の特定区間3の始点又は終点データ等が予め記憶されている。
【0025】
次に、図4及び図5を参照して車上子20の動作を説明する。図4において保守車1が軌道6上を走行し、地上子10の設置場所を通過して地上子10から電磁誘導方式でデータを読み取ると(ステップS1)、現在位置(起点からの距離)を記憶すると共に、車上子20のID情報と現在位置を他の保守車1の車上子20に無線電波方式で送信する(ステップS2)。
【0026】
次いで、読み取りデータが軌道6の駅2a、分岐点2b等の固定の地上施設2であることを示すデータや、不特定の工事区間3a等の特定区間3の始点である場合には警報器29を駆動して警報を発し、また、例えば「駅接近」、「工事区間接近」のようなメッセージを表示器30に表示させる(ステップS3、S4)。なお、読み取りデータが特定区間3の終点である場合には警報や「工事区間接近」のメッセージ表示を解除するようにしてもよい。
【0027】
図5において、他の保守車1の車上子20から受信すると(ステップS11)、前や後ろの保守車1と自己の現在位置との距離Dを演算し(ステップS12)、距離Dが車両接近限界間隔TH以下の場合には警報器29を駆動して警報を発し、また、例えば「保守車接近」のようなメッセージを表示器30に表示させる(ステップS13、S14)。
【0028】
したがって、保守車1a、1bの間が接近したり、軌道6の駅2aや分岐点2b等の固定の地上施設2や、不特定の工事区間3a等の特定区間3の始点に接近した時にのみ警報を発するので、警報が継続することを防止することができ、したがって、騒音、誤動作、人為的なミスを防止することができる。
【0029】
図6は本発明の具体的な例を示し、例えば並行する上り線6aと下り線6bのそれぞれについて軌道上に一定間隔、例えば約100mごとに設置された地上子10の間を1つのエリアとし、各エリアに対し例えば上り線6aについては固有のエリア番号A1〜A5を割り当て、また下り線6bについては別のエリア番号A6〜A10を割り当てている。
【0030】
このエリア番号A1〜A10は、軌道を走行する保守車に搭載された図2に示した車上子20の無線送信機Tおよび無線受信機Rで使用する周波数チャネルのチャネル番号ch1〜ch10に対応している。このように上り線6a,6bに割り当てられたエリア番号A1〜A10は、各エリアの進入側に位置する地上子10に予め記憶されている。尚、通信チャネルとしては、周波数分割以外に、時分割された通信チャネルを使用してもよい。
【0031】
図7は図6の地上子10に設けているメモリ16の記憶内容を示している。図3(a)に示した記憶内容に加えて新たにエリア番号が記憶される。なお、エリア番号を記憶してもよいし、エリア番号に対応するチャネル番号を記憶するようにしてもよい。
保守車は地上子10の設置場所を通過してメモリ内容を読み取ると、読み取ったエリア番号に対応するチャネル番号に対し親局(送信局)となって、自車の地点情報即ち起点からの距離を示す位置情報を無線送信機Tから送信する。同時に、地上子10から読み取ったエリア番号に対応する親局のチャネル番号以外の他のチャネル番号を子局(受信局)とし、子局のチャネル番号を順次切り替えながら他の保守車から送信された地点情報を無線受信機Rで受信する。
【0032】
具体的に説明すると次のようになる。いま図8に示すように、保守車1a,1b,1cがそれぞれエリアA2,A3,A4に存在していたとする。ここで、保守車1bに着目すると、地上子10の読取りで得られたエリア番号A3に対応するチャネルch3に対し、保守車1bの無線送信機Tは親局となって他の保守車1a,1cに対し自車の地点情報を無線送信機Tから連続的に送信する。同時に、無線受信機Rについては親チャネルch3以外の隣接するエリアA2,A3の割当チャネルch2,ch4を設定し、チャネルch2とch4を順次切り替えながら保守車1aと保守車1cからの地点情報の受信を連続的に繰り返す。
【0033】
実際には、2つ離れたエリアA1,A5に他の保守車が進入したり移動したりすることを考慮し、保守車1bはエリアA3に対応した親チャネルch3以外の他の全てのチャネルch1,ch2,ch4,ch5について、無線受信機Rのチャネルを順次切り替えながら他の保守車からの地点情報を受信する。
次に図9を参照して、同一エリア内に複数の保守車が進入した場合の保守車間の通信と別のエリアに存在する保守車間との通信を説明する。同一エリア内に複数の保守車が進入した場合には、各保守車が同じ親局チャネルを使用して送信することから、同一エリア内に存在する保守車間では地点情報の受信がお互いにできなくなる。
【0034】
この問題は送信時にランダム遅延時間の設定によるキャリアセンスを行うことで解決できる。即ち、各保守車の無線送信機Tは、送信要求が成立した際にランダムに送信開始までの遅延時間を設定し、遅延時間経過時に親局チャネルについてキャリアが受信されるか否かのキャリアセンスを行う。もし送信しようとする親局チャネルでキャリアセンスが行われれば、同一エリア内に存在する他の保守車からの送信中であることが判る。
【0035】
この場合は送信を行わず、親局チャネルによる無線受信機の受信に切り替える。一方、キャリアセンスで親局チャネルのキャリアが検出されなかった場合には、同一エリア内に他の保守車が進入していないか、進入していても送信中でないことから、親局チャネルを使用した地点情報の送信を無線送信機Tから行う。
図9について具体的に説明すると次のようになる。いま保守車1aおよび保守車1bがエリアA3に存在し、保守車1cがエリアA4に存在したと仮定する。同一エリアA3に存在する2台の保守車1a,1bにあっては、地上子からの読出しで得られたエリア番号A3に対応する同一の親局チャネルch3を使用して自車の地点情報を他の保守車両に送信する。
【0036】
このとき保守車1a,1bのそれぞれは、ランダムに設定した遅延時間経過時に親局チャネルch3に対するキャリアセンスを行い、キャリアセンスがあれば送信を行わない。キャリアセンスがなければ送信を行う。この結果、あるタイミングでは保守車1aがチャネルch3に対し親局となって、自車の地点情報を保守車1b,1cに送信する。また、別のタイミングでは保守車1bがチャネルch3に対し親局となって自車の地点情報を保守車1a,1cに送信する。これによって、同一のエリアA3内に保守車1a,1bが存在しても衝突を起こすことなく、同じチャネルch3を親局とした送信が可能となる。
【0037】
図10は図6における保守車に搭載した車上子20の送信動作を示している。図10において、まずステップS1で最初の地上子の読取りを行い、これによって、ステップS2で、自車の地点情報であるキロ程と、読み出したエリア番号に対応するチャネル番号の設定が行われる。続いてステップS3に進み、ランダム遅延時間の設定を行い、ランダム遅延時間経過後にステップS4で、ステップS2で設定したチャネル番号によるキャリアセンスを行う。
【0038】
キャリアセンスが得られなければ同一エリア内に他の保守車が存在していないことから、ステップS5に進み、設定したチャネル番号に対し親局となって自車の地点情報を送信する。一方、キャリアセンスがあった場合には、同一エリア内に他の保守車が存在して同じチャネル番号の設定により親局となって自車の地点情報の送信を行っている状態にあることから、無線受信機を設定したチャネル番号に切り替えて、同一エリア内に存在する他の保守車からの地点情報を受信する。
【0039】
続いてステップS7で地上子の有無をチェックしており、次の地上子を検出するまでステップS3〜S7の処理を繰り返す。次の地上子がステップS7で検知されると、ステップS8で、読取情報から地点情報としてのキロ程およびチャネル番号を更新して、再びステップS3からの処理を繰り返す。
図11は図6における車上子における受信動作を示している。ステップS1の最初の地上子読取り、およびステップS2の地点情報としてのキロ程およびチャネル番号の設定は、図10の送信動作と同じになる。続いてステップS3で、ステップS2で設定した割当チャネルを除く全ての子局となるチャネルの中から最初のチャネルを設定し、ステップS4で、設定チャネルのキャリアの有無をチェックする。キャリアがあればステップS5に進んで受信動作を行い、自車と別のエリア内の他の保守車からの地点情報を受信する。キャリアがなければステップS5の受信動作は行わず、ステップS6で、割当チャネルを除く他の全チャネルの処理が終了したか否かチェックし、終了していなければ再びステップS3に戻って次のチャネルを設定し、割当チャネルを除く全チャネルについて同様な受信動作を繰り返す。
【0040】
割当チャネルを除く全チャネルの受信動作が終了すると、ステップS7で地上子の有無をチェックし、地上子がなければ再びステップS3に戻り、割当チャネルを除く他の全てのチャネルに対する受信チャネルの切替えによる受信動作を繰り返す。ステップS6で次の地上子が判別されると、ステップS8に進み、地点情報としてのキロ程およびエリア番号に対応したチャネル番号を更新し、再びステップS3に戻って、次のエリアにおける受信動作を繰り返す。
【0041】
尚、図6にあっては、上り線6aおよび下り線6b共に片側にしか地上子10が設置されていないため、保守車の走行方向が逆転すると車上子の設置位置が変わり、地上子10を読み取ることができなくなる。このような問題に対しては、車上子20または地上子10を左右2組設置すればよい。また保守車の運行について、逆転走行を認めない運行基準を設定することでも対応できる。
【0042】
また、地上子10の設置間隔は約100mであり、接近警報を行うための距離分解能も必然的に地上子の設置間隔で決まる約100mとなる。保守車が同一方向に走行する場合には、この程度の距離分解能で問題ないが、同じ軌道上を保守車が走行する場合には、2台の保守車が逆方向から同一エリアに入ったにも関わらず各保守車における距離差は100mとなり、同一エリア内における接近警報の判断ができなくなる。
【0043】
そこで、区間内に補助的な地上子を設置して距離分解能を高めたり、地上子間隔100m内での位置を検出するためにエンコーダを設けて距離情報を補間すればよい。この場合には各保守車は他の保守車の進行方向に関する情報を取得し、同一エリアに進入し且つ進行方向が互いに逆方向であった場合には、距離分解能を高めた接近警報処理を行うようにすればよい。
【0044】
更に、上記実施例では、予めメモリ16には設置位置や施設等の情報を記憶して地上子10を軌道6に沿って設置し、車上子20が地上子10に近接時に読み取る場合について説明したが、保守車1aの車上子20が地上子10に近接時に図3(b)に示すように保守車1aの車種や車番等のID情報と通過時刻等を書込み、次の保守車1bの車上子20がこのデータを読み取って前の保守車1aとの車間距離を推定等して警報を発するようにしてもよい。この場合には、保守車1a、1bがお互いに無線電波方式で通信するための送受信機T、Rは不要である。
【0045】
また上記の実施例では地上子と車上子の非接触結合として電磁誘導方式を例にとるものであったが、これ以外に、マイクロ波やその他の電波による結合、電磁結合、光結合であってもよい。
更に上記の実施例は、車間距離が所定距離以内となった場合に警報する場合を例にとるものであったが、別の実施例として、各鉄道車両の車上子において、他の車上子からの受信位置情報と自己の現在位置情報により車間距離を演算した場合、或いは前の車両の通過時刻と現在時刻との差により車間距離を演算した場合、この車間距離に基づいて減速、停止等の車両速度を自動的に制御することもできる。この車両速度の自動制御は、車間距離が所定距離以内になった時に行う警報に組合せてもよいし、単独でもよい。
【0047】
【発明の効果】
以上説明したように本発明は、不揮発性のメモリを有し、非接触で通信を行う複数の地上子を軌道に沿って設置すると共に、前記地上子との間で非接触で通信を行う車上子を各車両に設置した鉄道車両運行装置であって、各車両が地上子の設置位置を通過時にその車上子が通過時刻を非接触でその地上子に書込み、次の車両が地上子の設置位置を通過時にその車上子が前の車両の通過時刻を非接触で読み取り、現在時刻との差により車間距離を演算し、車間距離が所定距離以下の場合に警報を発するようにしたので、車両間が接近した時のみ警報を発することができ、したがって、他の車両との接近を警報する場合に騒音、誤動作、人為的なミスを防止することができる。
【0049】
更に求めた車間距離から減速、停止等の車両速度の制御を行うので、先行する車両との間に安全な距離を保った運行制御ができる。
更に本発明は、地上子の設置区間で決まるエリアごとに固有のエリア番号を割当てて地上子に記憶し、車上子は地上子からエリア番号を読取って、例えば多数の周波数チャネルの1つを対応させて自己の割当チャネルとする。自己の現在位置情報の送信は、割当チャネルを使用して行い、他の車上子からの現在位置情報は、割当チャネル以外のチャネルを順次切替えて受信する。これによって複数の車上子間での通信を行った場合の混信を確実に防止できる。
【0050】
また送信時にキャリアセンスを行い、キャリアなしを検知して初めて送信することで、同一エリア内に複数の車両が存在し、エリア番号に対応した同じ通信チャネルを使用して送信することで起きる衝突を確実に防止し、同一エリア内に存在する車上子間でも確実に現在位置情報を通信することができ、信頼性を大幅に向上できる。
【図面の簡単な説明】
【図1】道車両運行装置の一実施例を示す構成図
【図2】図1の鉄道車両運行装置における車上子と地上子の構成を示したブロック図
【図3】図2のメモリに記憶されるデータの一例を示した説明図
【図4】車上子が地上子からデータを読み取った場合の動作を示したフローチャート
【図5】車上子が他の車上子からデータを受信した場合の動作を示したフローチャート
【図6】上子の設置とエリア番号の割当てを示した説明図
【図7】図6の地上子に設けたメモリの記憶内容の説明図
【図8】図6の具体的な通信動作の説明図
【図9】同一エリアに複数の作業車が侵入した場合の通信動作の説明図
【図10】図6の車上子の送信動作を示したフローチャート
【図11】図6の車上子の受信動作を示したフローチャート
【図12】従来の鉄道車両運行装置を示した構成図
[0001]
[Industrial application fields]
The present invention relates to a railway vehicle operating device for preventing a collision, and in particular, for preventing a collision between maintenance vehicles for maintaining and inspecting a track, or for warning a maintenance vehicle approaching a ground facility or a specific section. The present invention relates to a railway vehicle operating device suitable for the above.
[0002]
[Prior art]
FIG. 12 shows a conventional method for maintaining and inspecting the track 6. In this method, the radio wave transmitters / receivers T and R are installed in the maintenance vehicle 1 (1a and 1b), the grounds 2 of the station 2a on the track 6, the fixed ground facility 2 such as the branch point 2b, and unspecified construction sections. By providing the radio wave transmitter T in the specific section 3 such as 3a, the radio transmitter / receiver T, R of the maintenance vehicle 1 by transmitting deceleration and stop point information from the ground facility 2 or the specific section 3 to the maintenance vehicle 1 An alarm is issued from.
[0003]
Further, when the lookout person 4 carries the radio wave receiver R, the maintenance vehicle 1 transmits the approach information of the maintenance car 1 to the lookout person 4 to issue an alarm, and the start and end points of the specific section 3 A warning light 5 is arranged on the maintenance vehicle 1 so as to identify the specific section 3 visually.
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional method, the maintenance vehicle 1 transmits deceleration and stop point information from the ground facility 2 or the specific section 3 to the maintenance vehicle 1 and issues a warning from the radio transceivers T and R of the maintenance vehicle 1. The wireless transceivers T and R often issue alarms continuously, which causes noise, and for this reason, the driver artificially stops the alarm. is there. Further, in the method in which the warning light 5 is arranged and visually observed in the specific section 3, the warning light 5 may be overlooked due to weather conditions or the like.
[0005]
In addition, a method of transmitting an alarm by sound, light, microwave, etc. instead of radio waves can be considered, but there are many problems that transceivers using this method are inappropriately installed due to orbital conditions and structures around the orbit. There is.
In view of the above-described conventional problems, the present invention can prevent alarm noise, malfunction, and human error when alarming an approach to another vehicle or alarming according to the current position of the vehicle. An object is to provide a railway vehicle operating device.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a plurality of ground units having a non-volatile memory and performing contactless communication. The gauge Install along the road and between the ground Non-contact A railway vehicle operating device in which a vehicle upper body for communication is installed in each vehicle, and when each vehicle passes the installation position of the ground child, The passing time is written to the ground element in a non-contact manner, and when the next vehicle passes the installation position of the ground element, the upper element of the vehicle reads the passing time of the previous vehicle by a non-contact coupling method such as an electromagnetic induction method, and the current time The distance between the vehicles is calculated from the difference between An alarm is issued when the inter-vehicle distance is equal to or less than a predetermined distance.
[0010]
Furthermore, the present invention provides It has a non-volatile memory and stores in advance the installation position information in a plurality of ground units that perform non-contact communication and installs along the orbit, and performs non-contact communication with the ground unit and other A railway vehicle operating device in which each vehicle is installed with a vehicle upper body that communicates with the vehicle upper body by radio wave method, and when the vehicle passes the installation position of the ground child, When the installation position information is read in a non-contact manner, the information is stored as its own current position information and transmitted to the other vehicle upper part by a wireless radio wave system. The distance between the vehicles is calculated based on the current position information, and an alarm is issued when the distance between the vehicles is less than a predetermined distance. Each of a plurality of ground elements installed along the trajectory stores a unique area number indicating a section up to the position of the ground element adjacent in one direction. When the area number is read together with the installation position information from the ground unit without contact, the communication channel corresponding to the area number is selected, and the current position information of the vehicle is transmitted to other onboard units, and at the same time used for transmission. Other communication channels other than the selected communication channel are sequentially selected to receive current position information from other vehicle uppers.
[0011]
Specifically, area numbers A1 to An that are repeated for each predetermined number are stored in each of a plurality of ground elements installed along the trajectory, and unique communication channels ch1 to n are assigned to each area number. It is characterized by that. In addition, when a ground unit is installed at a predetermined interval along each of a plurality of parallel tracks, a different area number is allocated and stored for each track repeated every predetermined number, and communication unique to each area number is stored. Assign a channel.
[0012]
In addition, in order to avoid channel contention when there are multiple vehicles in the same area, it exists in the same area when transmitting its current location information using the communication channel corresponding to the area number read from the ground unit The presence / absence of a transmission carrier signal from another vehicle upper body is detected. At the time of detecting a carrier signal, current position information is received from other vehicle tops existing in the same area, and the presence / absence of a carrier signal is detected again after a delay time determined at random. If no carrier signal is detected, it transmits its current location information.
[0013]
[Action]
In the present invention, each installation position information is stored in advance in a memory of a plurality of ground elements installed along a track, and each vehicle element is read from the ground element in a non-contact manner when each vehicle passes the installation position of the ground element. The installed position information is stored as its current position information and transmitted to the upper child of another vehicle by wireless radio wave method, and the other vehicle upper member calculates the inter-vehicle distance based on the received position information and own current position information. Therefore, the alarm can be issued only when the vehicles approach each other. Therefore, noise, malfunction, and human error can be prevented when warning of approach to other vehicles.
[0014]
Also, in the present invention, the time of passage of the previous vehicle is stored in the memory of the ground unit installed along the track, and is read by the upper unit of the next vehicle to issue an alarm based on the difference from the current time. An alarm can be issued only when vehicles approach each other. Therefore, noise, malfunction, and human error can be prevented when warning of approach to other vehicles.
[0015]
Further, in the present invention, the trajectory information is stored in advance in the memory of the ground element installed along the trajectory, and the trajectory information read from the ground element in a contactless manner when the vehicle passes through the installation position of the ground element. Therefore, the alarm can be issued only when the vehicle approaches a fixed ground facility such as a railway station or a branch point or an unspecified construction section. Therefore, when alarming according to the current position of the vehicle, it is possible to prevent alarm sound noise, malfunction, and human error.
[0016]
Further, since the vehicle speed such as deceleration and stop is controlled from the obtained inter-vehicle distance, operation control can be performed while maintaining a safe distance from the preceding vehicle.
Furthermore, a unique area number is assigned to each area determined by the installation section of the ground element and stored in the ground element, and the area number is read on the vehicle upper element, for example, one of a number of frequency channels is associated with its own assigned channel. And The current position information is transmitted using the allocated channel, and the current position information from other vehicle elements is received by sequentially switching channels other than the allocated channel. As a result, it is possible to reliably prevent interference when communication is performed between a plurality of vehicle upper elements.
[0017]
In addition, there are a plurality of vehicles in the same area, and a collision occurs by transmitting using the same communication channel corresponding to the individual area number on each vehicle. Therefore, by performing carrier sense at the time of transmission, and transmitting for the first time after detecting that there is no carrier, it is possible to reliably prevent a collision due to simultaneous transmission using the same assigned channel from a plurality of vehicle elements.
[0018]
【Example】
Hereinafter, the present invention will be described with reference to the drawings. Basic configuration Will be explained. FIG. Is iron Road vehicle operation system The FIG.
In FIG. 1, a grounding device 10 that is coupled in a non-contact manner along a track 6, for example, an electromagnetic induction communication grounding device 10, is installed. 1 10 2 -10 n The non-volatile memory 16 (described later) in the ground unit 10 stores data such as symbols for indicating each installation location and the number of kilometers from a predetermined position.
[0019]
In addition, the station 2a has a ground element 10 2a Is installed and the ground element 10 is located at the branch point 2b. 2b Is installed, and there are 10 at the start, end and center of the construction section 3a. 3a 10 3b 10 3c Are installed on the ground 10 2a 10 2b 10 3a 10 3b 10 3c The nonvolatile memory 16 stores data indicating the station 2a, the branch point 2b, the start point, the end point, and the center of the construction section 3a.
[0020]
On the other hand, the maintenance vehicle 1 (1a, 1b) traveling on the track 6 is connected between the transceivers T and R for communicating with each other by a radio wave system and the ground unit 10 as described later. A vehicle upper element 20 having a circuit for communicating by an electromagnetic induction method, an alarm device 29 for alarming a collision, and a display device 30 for displaying a collision prevention message is installed.
[0021]
The transceivers T and R use a frequency division type communication system, a time division type communication system, or a code classification type communication system in order to communicate with a plurality of maintenance vehicles. Further, the alarm mode of the alarm device 29 is an alarm that can be notified to crew members or workers in the vicinity of the railway vehicle by sound, light, or the like.
FIG. 2 shows a state in which the vehicle upper piece 20 is close to the ground piece 10 and can communicate by electromagnetic induction. The vehicle upper 20 is a transmission coil for performing communication with the transmitter T and the receiver R for communicating with the other maintenance vehicle 1 by the radio wave method and the ground child 10 by the electromagnetic induction method. 21T and the receiving coil 21R, and the transmission coil 21T and the receiving coil 21R are electromagnetically coupled between the receiving coil 11R and the transmitting coil 11T on the ground element 10 side in a state where the vehicle upper 20 is close to the ground element 10, respectively. Is done.
[0022]
Communication of the vehicle upper unit 20 is controlled by the control unit 22, and commands, addresses, data, and the like for the ground unit 10 are applied to the transmission coil 21 </ b> T via the interface (I / F) 23, the modulator 24, and the amplifier 25. The signal induced in the reception coil 21R is taken in by the control unit 22 via the amplifier 26, the demodulator 27, and the I / F 28.
[0023]
The signal induced in the receiving coil 11R of the ground unit 10 is rectified and smoothed by the power supply circuit 11 to generate a DC power supply, and is also taken in by the control unit 15 via the amplifier 12, the demodulator 13 and the I / F 14. . When the write command, address, and data are received, the write data is written into the memory 16, and when the read command and address are received, the data is read from the memory 16, and the I / F 17 and the modulator 18 are read. And applied to the transmission coil 11T via the amplifier 19. The transmission from the vehicle unit 20 to the ground unit 10 is performed by modulation (modulator 24) and demodulation (demodulator 13) such as FSK, and the transmission from the ground unit 10 to the vehicle unit 20 is, for example, spread spectrum (modulation). And the demodulator 27).
[0024]
As the memory 16 on the ground unit 10 side, for example, a nonvolatile memory such as an EEPROM is used. Therefore, data can be retained even when power is not supplied from the vehicle unit 20. For example, as shown in FIG. 3A, the memory 16 is a fixed ground facility 2 such as the identification (ID) information of the ground unit 10, the distance from the starting point, the station 2a of the track 6 and the branch point 2b. And the start point or end point data of the specific section 3 such as the unspecified construction section 3a are stored in advance.
[0025]
Next, refer to FIG. 4 and FIG. Car The operation of the upper child 20 will be described. In FIG. 4, when the maintenance vehicle 1 travels on the track 6 and passes through the place where the ground unit 10 is installed and reads data from the ground unit 10 by electromagnetic induction (step S1), the current position (distance from the starting point) is obtained. At the same time, the ID information and the current position of the vehicle upper member 20 are transmitted to the vehicle upper member 20 of the other maintenance vehicle 1 by a radio wave system (step S2).
[0026]
Next, when the read data is data indicating that the station 2a on the track 6 is a fixed ground facility 2 such as a branch point 2b or the starting point of a specific section 3 such as an unspecified construction section 3a, an alarm 29 Is driven and a warning is issued, and messages such as “approach to station” and “approach to construction section” are displayed on the display 30 (steps S3 and S4). Note that when the read data is the end point of the specific section 3, the warning or the “construction section approach” message display may be canceled.
[0027]
In FIG. 5, when receiving from the upper child 20 of another maintenance vehicle 1 (step S11), the distance D between the front and rear maintenance vehicles 1 and the current position of the vehicle is calculated (step S12). If it is less than the approach limit interval TH, the alarm device 29 is driven to issue an alarm, and a message such as “maintenance vehicle approach” is displayed on the display device 30 (steps S13 and S14).
[0028]
Therefore Keep Alarm only when the guards 1a and 1b approach, or when approaching the fixed ground facility 2 such as the station 2a or branch point 2b of the track 6 or the start point of a specific section 3 such as an unspecified construction section 3a Therefore, it is possible to prevent the alarm from continuing, and therefore, noise, malfunction, and human error can be prevented.
[0029]
FIG. 6 shows the present invention. Specific examples, examples For example, each of the parallel up line 6a and down line 6b is defined as a single area between the ground elements 10 installed at regular intervals on the trajectory, for example, about every 100 m, and for example, the up line 6a is unique to each area. Area numbers A1 to A5 are assigned, and other area numbers A6 to A10 are assigned to the down line 6b.
[0030]
These area numbers A1 to A10 correspond to channel numbers ch1 to ch10 of frequency channels used in the wireless transmitter T and the wireless receiver R of the vehicle upper body 20 shown in FIG. is doing. Thus, the area numbers A1 to A10 assigned to the upstream lines 6a and 6b are stored in advance in the ground unit 10 located on the entry side of each area. In addition to the frequency division, a time-division communication channel may be used as the communication channel.
[0031]
7 is shown in FIG. Land of The storage contents of the memory 16 provided in the upper child 10 are shown. The Figure In addition to the stored contents shown in 3 (a), a new area number is stored. The area number may be stored, or a channel number corresponding to the area number may be stored.
each When the maintenance vehicle passes through the installation location of the ground unit 10 and reads the contents of the memory, it becomes the master station (transmitting station) for the channel number corresponding to the read area number, and the location information of the own vehicle, that is, the distance from the starting point Is transmitted from the wireless transmitter T. At the same time, a channel number other than the channel number of the master station corresponding to the area number read from the ground unit 10 is set as a slave station (receiving station), and transmitted from another maintenance vehicle while sequentially switching the channel numbers of the slave stations. The point information is received by the wireless receiver R.
[0032]
Specifically, it is as follows. Now, as shown in FIG. 8, it is assumed that maintenance vehicles 1a, 1b, and 1c exist in areas A2, A3, and A4, respectively. Here, paying attention to the maintenance vehicle 1b, the radio transmitter T of the maintenance vehicle 1b serves as a master station for the channel ch3 corresponding to the area number A3 obtained by reading the ground element 10, and the other maintenance vehicles 1a, The point information of the own vehicle is continuously transmitted from the wireless transmitter T to 1c. At the same time, for radio receiver R, allocation channels ch2 and ch4 of adjacent areas A2 and A3 other than parent channel ch3 are set, and point information is received from maintenance vehicle 1a and maintenance vehicle 1c while sequentially switching channels ch2 and ch4. Is repeated continuously.
[0033]
Actually, considering that another maintenance vehicle enters or moves into two areas A1 and A5 that are two apart from each other, the maintenance vehicle 1b uses all the channels ch1 other than the parent channel ch3 corresponding to the area A3. , Ch2, ch4, and ch5, point information from other maintenance vehicles is received while sequentially switching the channel of the radio receiver R.
Next, referring to FIG. 9, communication between maintenance vehicles when a plurality of maintenance vehicles enter the same area and communication between maintenance vehicles existing in different areas will be described. When multiple maintenance vehicles enter the same area, each maintenance vehicle transmits using the same master station channel, so it becomes impossible for each maintenance vehicle in the same area to receive point information from each other. .
[0034]
This problem can be solved by performing carrier sense by setting a random delay time during transmission. That is, the radio transmitter T of each maintenance vehicle randomly sets a delay time until the start of transmission when a transmission request is established, and performs carrier sense as to whether or not a carrier is received for the master station channel when the delay time elapses. I do. If carrier sense is performed in the master station channel to be transmitted, it is understood that transmission is being performed from another maintenance vehicle existing in the same area.
[0035]
In this case, transmission is not performed, but switching to reception by the wireless receiver using the master station channel is performed. On the other hand, if no carrier sense carrier is detected by carrier sense, another maintenance vehicle has not entered the same area, or even if it has entered, the master station channel is used. The transmitted point information is transmitted from the wireless transmitter T.
A specific description of FIG. 9 is as follows. Assume that the maintenance vehicle 1a and the maintenance vehicle 1b are present in the area A3, and the maintenance vehicle 1c is present in the area A4. In the two maintenance vehicles 1a and 1b existing in the same area A3, the location information of the own vehicle is obtained using the same master station channel ch3 corresponding to the area number A3 obtained by reading from the ground unit. Send to other maintenance vehicles.
[0036]
At this time, each of the maintenance vehicles 1a and 1b performs carrier sense for the master station channel ch3 when a delay time set at random has elapsed, and does not perform transmission if there is carrier sense. If there is no carrier sense, transmission is performed. As a result, at a certain timing, the maintenance vehicle 1a becomes a master station for the channel ch3, and the vehicle location information is transmitted to the maintenance vehicles 1b and 1c. Further, at another timing, the maintenance vehicle 1b becomes a master station for the channel ch3 and transmits the location information of the own vehicle to the maintenance vehicles 1a and 1c. As a result, even if the maintenance vehicles 1a and 1b exist in the same area A3, transmission using the same channel ch3 as a master station is possible without causing a collision.
[0037]
Figure 10 6 The transmission operation | movement of the vehicle upper part 20 mounted in the maintenance vehicle in this is shown. In FIG. 10, first, the first ground element is read in step S1, and accordingly, in step S2, the kilometer as the location information of the own vehicle and the channel number corresponding to the read area number are set. Then, it progresses to step S3, a random delay time is set, and carrier sense by the channel number set by step S2 is performed by step S4 after random delay time progress.
[0038]
If no carrier sense is obtained, there is no other maintenance vehicle in the same area, so the process proceeds to step S5, where the location information of the own vehicle is transmitted as a master station for the set channel number. On the other hand, when there is a carrier sense, there is another maintenance vehicle in the same area, and it is in a state where it becomes the master station by the same channel number setting and transmits the point information of the own vehicle The wireless receiver is switched to the set channel number, and the point information from other maintenance vehicles existing in the same area is received.
[0039]
Subsequently, the presence or absence of a ground element is checked in step S7, and the processes in steps S3 to S7 are repeated until the next ground element is detected. When the next ground element is detected in step S7, in step S8, the kilometer and the channel number as the point information are updated from the read information, and the processing from step S3 is repeated again.
FIG. 11 is a diagram. 6 The receiving operation | movement in the vehicle upper part in FIG. The initial ground element reading in step S1 and the setting of the kilometer and channel number as point information in step S2 are the same as the transmission operation in FIG. Subsequently, in step S3, the first channel is set among all the slave stations except the assigned channel set in step S2, and in step S4, the presence / absence of a carrier in the set channel is checked. If there is a carrier, the process proceeds to step S5 to perform a receiving operation, and receives point information from another maintenance vehicle in a different area from the own vehicle. If there is no carrier, the reception operation in step S5 is not performed, and in step S6, it is checked whether or not the processing of all the channels other than the assigned channel has been completed. If not, the process returns to step S3 to return to the next channel. And the same reception operation is repeated for all channels except the assigned channel.
[0040]
When the receiving operation of all channels except the assigned channel is completed, the presence or absence of a ground child is checked in step S7, and if there is no ground child, the process returns to step S3, and the receiving channel is switched for all other channels except the assigned channel. Repeat the receiving operation. When the next ground child is determined in step S6, the process proceeds to step S8, the channel number corresponding to the kilometer and area number as the point information is updated, and the process returns to step S3 again to perform the receiving operation in the next area. repeat.
[0041]
The figure 6 In this case, since the ground element 10 is installed only on one side for both the up line 6a and the down line 6b, when the traveling direction of the maintenance vehicle is reversed, the installation position of the vehicle upper element is changed and the ground element 10 can be read. Disappear. What is necessary is just to install two sets of right and left on-board child 20 or ground child 10 with respect to such a problem. It is also possible to set maintenance standards for operation of maintenance vehicles that do not allow reverse running.
[0042]
Moreover, the installation interval of the ground unit 10 is about 100 m, and the distance resolution for performing the approach warning is necessarily about 100 m determined by the installation interval of the ground unit. When the maintenance vehicle travels in the same direction, there is no problem with this distance resolution. However, when the maintenance vehicle travels on the same track, two maintenance vehicles enter the same area from the opposite direction. Nevertheless, the distance difference between the maintenance vehicles becomes 100 m, and it becomes impossible to judge the approach warning in the same area.
[0043]
Therefore, an auxiliary ground element may be installed in the section to increase the distance resolution, or an encoder may be provided to interpolate the distance information in order to detect the position within the ground element interval of 100 m. In this case, each maintenance vehicle acquires information on the traveling direction of other maintenance vehicles, and when approaching the same area and the traveling directions are opposite to each other, an approach warning process with increased distance resolution is performed. What should I do?
[0044]
Furthermore, in the above-described embodiment, a case where information such as an installation position and a facility is stored in the memory 16 in advance and the ground unit 10 is installed along the track 6 and the vehicle upper unit 20 reads when close to the ground unit 10 will be described. However, when the vehicle upper 20 of the maintenance vehicle 1a is close to the ground child 10, as shown in FIG. 3B, the ID information such as the vehicle type and the vehicle number of the maintenance vehicle 1a and the passing time are written, and the next maintenance vehicle The vehicle upper member 1b may read this data and issue an alarm by estimating the inter-vehicle distance from the previous maintenance vehicle 1a. In this case, the transceivers T and R for the maintenance vehicles 1a and 1b to communicate with each other by the wireless radio wave system are not necessary.
[0045]
In the above embodiment, the electromagnetic induction method is used as an example of non-contact coupling between the ground unit and the vehicle unit. However, in addition to this, coupling by microwaves and other radio waves, electromagnetic coupling, and optical coupling are possible. May be.
Furthermore, in the above embodiment, an alarm is given when the inter-vehicle distance is within a predetermined distance. However, as another embodiment, in the upper part of each railway vehicle, If the inter-vehicle distance is calculated based on the position information received from the child and the current position information of the vehicle, or if the inter-vehicle distance is calculated based on the difference between the passing time of the previous vehicle and the current time, the vehicle decelerates and stops based on the inter-vehicle distance. It is also possible to automatically control the vehicle speed. This automatic control of the vehicle speed may be combined with an alarm performed when the inter-vehicle distance is within a predetermined distance or may be independent.
[0047]
【The invention's effect】
As described above, the present invention A railroad having a non-volatile memory and a plurality of ground elements that perform non-contact communication along a track, and a vehicle upper element that performs non-contact communication with the ground element in each vehicle It is a vehicle operation device, and when each vehicle passes through the ground element installation position, the vehicle upper element writes the passage time to the ground element without contact, and when the next vehicle passes the ground element installation position, The child reads the previous vehicle's passing time in a non-contact manner, calculates the inter-vehicle distance based on the difference from the current time, and issues an alarm when the inter-vehicle distance is less than the predetermined distance. An alarm can be issued, and therefore noise, malfunction, and human error can be prevented when an approach to another vehicle is warned.
[0049]
Further, since the vehicle speed such as deceleration and stop is controlled from the obtained inter-vehicle distance, operation control can be performed while maintaining a safe distance from the preceding vehicle.
Furthermore, the present invention assigns a unique area number to each area determined by the installation section of the ground element and stores it in the ground element, and the vehicle upper element reads the area number from the ground element, for example, one of a number of frequency channels. Correspondingly, it is set as its own allocation channel. The current position information is transmitted using the allocated channel, and the current position information from other vehicle elements is received by sequentially switching channels other than the allocated channel. As a result, it is possible to reliably prevent interference when communication is performed between a plurality of vehicle upper elements.
[0050]
In addition, by performing carrier sense at the time of transmission and detecting for the first time after detecting that there is no carrier, there are multiple vehicles in the same area, and the collision that occurs when transmitting using the same communication channel corresponding to the area number Thus, it is possible to reliably prevent the current position information from being communicated between the vehicle uppers existing in the same area, and the reliability can be greatly improved.
[Brief description of the drawings]
[Figure 1] iron The block diagram which shows one Example of a road vehicle operation apparatus
FIG. 2 is a block diagram showing a configuration of a vehicle upper element and a ground element in the railway vehicle operating device of FIG. 1;
3 is an explanatory diagram showing an example of data stored in the memory of FIG. 2;
FIG. 4 is a flowchart showing the operation when the vehicle upper unit reads data from the ground unit.
FIG. 5 is a flowchart showing the operation when the vehicle upper member receives data from another vehicle upper child.
[Fig. 6] Earth Explanatory diagram showing the installation of the upper child and the allocation of area numbers
7 is an explanatory diagram of storage contents of a memory provided in the ground unit of FIG. 6;
[Fig. 8] Fig. 6 Ingredients Illustration of physical communication operation
FIG. 9 is an explanatory diagram of a communication operation when a plurality of work vehicles enter the same area.
Fig. 10 Fig. 6 Car Flow chart showing the transmission operation of the upper child
[Fig. 11] Fig. 6 Car Flow chart showing the receiving operation of the upper child
FIG. 12 is a block diagram showing a conventional railway vehicle operating device.

Claims (10)

不揮発性のメモリを有し、非接触で通信を行う複数の地上子を軌道に沿って設置すると共に、前記地上子との間で非接触で通信を行う車上子を各車両に設置した鉄道車両運行装置であって、
各車両が地上子の設置位置を通過時にその車上子が通過時刻を非接触でその地上子に書込み、次の車両が地上子の設置位置を通過時にその車上子が前の車両の通過時刻を非接触で読み取り、現在時刻との差により車間距離を演算し、該車間距離が所定距離以下の場合に警報を発することを特徴とする鉄道車両運行装置。
A railroad having a non-volatile memory and a plurality of ground elements that communicate in a non-contact manner along the track, and a vehicle upper element that communicates in a non-contact manner with the ground element in each vehicle A vehicle operating device,
When each vehicle passes the ground child installation position, the vehicle upper member writes the passage time to the ground child without contact, and when the next vehicle passes the ground child installation position, the vehicle upper child passes the previous vehicle. A railway vehicle operating device that reads time without contact, calculates an inter-vehicle distance based on a difference from a current time, and issues an alarm when the inter-vehicle distance is equal to or less than a predetermined distance.
不揮発性のメモリを有し、非接触で通信を行う複数の地上子を軌道に沿って設置すると共に、前記地上子との間で非接触で通信を行う車上子を各車両に設置した鉄道車両運行装置であって、
各車両が地上子の設置位置を通過時にその車上子が通過時刻を非接触でその地上子に書込み、次の車両が地上子の設置位置を通過時にその車上子が前の車両の通過時刻を非接触で読み取り、現在時刻との差により車間距離を演算し、該車間距離に基づいて減速、停止等の車両速度の制御を行うことを特徴とする鉄道車両運行装置。
A railroad having a non-volatile memory and a plurality of ground elements that communicate in a non-contact manner along the track, and a vehicle upper element that communicates in a non-contact manner with the ground element in each vehicle A vehicle operating device,
When each vehicle passes the ground child installation position, the vehicle upper member writes the passage time to the ground child without contact, and when the next vehicle passes the ground child installation position, the vehicle upper child passes the previous vehicle. A railway vehicle operating device that reads a time in a non-contact manner, calculates an inter-vehicle distance based on a difference from the current time, and controls vehicle speed such as deceleration and stop based on the inter-vehicle distance.
不揮発性のメモリを有し、非接触で通信を行う複数の地上子を軌道に沿って設置すると共に、前記地上子との間で非接触で通信を行う車上子を各車両に設置した鉄道車両運行装置であって、
各車両が地上子の設置位置を通過時にその車上子が通過時刻を非接触でその地上子に書込み、次の車両が地上子の設置位置を通過時にその車上子が前の車両の通過時刻を非接触で読み取り、現在時刻との差により車間距離を演算し、該車間距離が所定距離以下の場合に警報を発し、且つ前記車間距離に基づいて減速、停止等の車両速度の制御を行うことを特徴とする鉄道車両運行装置。
A railroad having a non-volatile memory and a plurality of ground elements that communicate in a non-contact manner along the track, and a vehicle upper element that communicates in a non-contact manner with the ground element in each vehicle A vehicle operating device,
When each vehicle passes the ground child installation position, the vehicle upper member writes the passage time to the ground child without contact, and when the next vehicle passes the ground child installation position, the vehicle upper child passes the previous vehicle. The time is read in a non-contact manner, the inter-vehicle distance is calculated based on the difference from the current time, an alarm is issued when the inter-vehicle distance is equal to or less than a predetermined distance, and vehicle speed control such as deceleration and stop is performed based on the inter-vehicle distance. A railway vehicle operating device characterized by performing.
不揮発性のメモリを有し、非接触で通信を行う複数の地上子に設置位置情報を予め記憶して軌道に沿って設置すると共に、前記地上子との間で非接触で通信を行うと共に他の車上子との間で無線電波方式で通信を行う車上子を各車両に設置した鉄道車両運行装置であって、
各車両が地上子の設置位置を通過時にその車上子が前記地上子から非接触で設置位置情報を読み取った場合にその情報を自己の現在位置情報として記憶すると共に他の車上子に対して無線電波方式で送信し、前記他の車上子は受信位置情報と自己の現在位置情報により車間距離を演算し、該車間距離が所定距離以下の場合に警報を発すると共に、
軌道に沿って設置された複数の地上子の各々に、一方向に隣接した地上子の設置位置までの区間を示す固有のエリア番号を記憶し、各車両が地上子の設置位置を通過時にその地上子から非接触で設置位置情報と共に前記エリア番号を読み取った場合に、該エリア番号に対応した通信チャネルを選択して他の車上子に対し自己の現在位置情報を送信し、同時に、送信に使用した通信チャネル以外の他の通信チャネルを順次選択して他の車上子からの現在位置情報を受信することを特徴とする鉄道車両運行装置。
It has a non-volatile memory, stores installation position information in advance on a plurality of ground units that perform non-contact communication, and installs along the orbit, and performs non-contact communication with the ground unit and others. A railway vehicle operating device in which each vehicle has a vehicle upper that communicates with the vehicle upper by a radio wave method,
When each vehicle passes the installation position of the ground element, when the vehicle upper element reads the installation position information from the ground element in a non-contact manner, the information is stored as its current position information and is transmitted to other vehicle upper elements. The other vehicle upper unit calculates the inter-vehicle distance based on the received position information and its current position information, and issues an alarm when the inter-vehicle distance is equal to or less than a predetermined distance.
Each of a plurality of ground elements installed along the trajectory stores a unique area number indicating a section up to the position of the ground element adjacent in one direction. When the area number is read together with the installation position information from the ground unit without contact, the communication channel corresponding to the area number is selected and the current position information of the vehicle is transmitted to other on-board units. A railway vehicle operating device characterized by sequentially selecting a communication channel other than the communication channel used for the vehicle to receive current position information from other vehicle uppers .
不揮発性のメモリを有し、非接触で通信を行う複数の地上子に設置位置情報を予め記憶して軌道に沿って設置すると共に、前記地上子との間で非接触で通信を行うと共に他の車上子との間で無線電波方式で通信を行う車上子を各車両に設置した鉄道車両運行装置であって、
各車両が地上子の設置位置を通過時にその車上子が前記地上子から非接触で設置位置情報を読み取った場合にその情報を自己の現在位置情報として記憶すると共に他の車上子に対して無線電波方式で送信し、前記他の車上子は受信位置情報と自己の現在位置情報により車間距離を演算し、該車間距離に基づいて減速、停止等の車両速度の制御を行うと共に
軌道に沿って設置された複数の地上子の各々に、一方向に隣接した地上子の設置位置までの区間を示す固有のエリア番号を記憶し、各車両が地上子の設置位置を通過時にその地上子から非接触で設置位置情報と共に前記エリア番号を読み取った場合に、該エリア番号に対応した通信チャネルを選択して他の車上子に対し自己の現在位置情報を送信し、同時に、送信に使用した通信チャネル以外の他の通信チャネルを順次選択して他の車上子からの現在位置情報を受信することを特徴とする鉄道車両運行装置。
It has a non-volatile memory, stores installation position information in advance on a plurality of ground units that perform non-contact communication, and installs along the orbit, and performs non-contact communication with the ground unit and others. A railway vehicle operating device in which each vehicle has a vehicle upper that communicates with the vehicle upper by a radio wave method,
When each vehicle passes the installation position of the ground element, when the vehicle upper element reads the installation position information from the ground element in a non-contact manner, the information is stored as its current position information and is transmitted to other vehicle upper elements. The other vehicle upper part calculates the inter-vehicle distance based on the received position information and its current position information, and controls the vehicle speed such as deceleration and stop based on the inter-vehicle distance ,
Each of a plurality of ground elements installed along the trajectory stores a unique area number indicating a section up to the position of the ground element adjacent in one direction. When the area number is read together with the installation position information from the ground unit without contact, the communication channel corresponding to the area number is selected and the current position information of the vehicle is transmitted to other on-board units. A railway vehicle operating device characterized by sequentially selecting a communication channel other than the communication channel used for the vehicle to receive current position information from other vehicle uppers .
不揮発性のメモリを有し、非接触で通信を行う複数の地上子に設置位置情報を予め記憶して軌道に沿って設置すると共に、前記地上子との間で非接触で通信を行うと共に他の車上子との間で無線電波方式で通信を行う車上子を各車両に設置した鉄道車両運行装置であって、
各車両が地上子の設置位置を通過時にその車上子が前記地上子から非接触で設置位置情報を読み取った場合にその情報を自己の現在位置情報として記憶すると共に他の車上子に対して無線電波方式で送信し、前記他の車上子は受信位置情報と自己の現在位置情報により車間距離を演算し、該車間距離が所定距離以下の場合に警報を発し、且つ前記車間距離に基づいて減速、停止等の車両速度の制御を行うと共に、
軌道に沿って設置された複数の地上子の各々に、一方向に隣接した地上子の設置位置までの区間を示す固有のエリア番号を記憶し、各車両が地上子の設置位置を通過時にその地上子から非接触で設置位置情報と共に前記エリア番号を読み取った場合に、該エリア番号に対応した通信チャネルを選択して他の車上子に対し自己の現在位置情報を送信し、同時に、送信に使用した通信チャネル以外の他の通信チャネルを順次選択して他の車上子からの現在位置情報を受信することを特徴とする鉄道車両運行装置。
It has a non-volatile memory, stores installation position information in advance on a plurality of ground units that perform non-contact communication, and installs along the orbit, and performs non-contact communication with the ground unit and others. A railway vehicle operating device in which each vehicle has a vehicle upper that communicates with the vehicle upper by a radio wave method,
When each vehicle passes the installation position of the ground element, when the vehicle upper element reads the installation position information from the ground element in a non-contact manner, the information is stored as its current position information and is transmitted to other vehicle upper elements. The other vehicle upper unit calculates the inter-vehicle distance based on the received position information and its current position information, issues an alarm when the inter-vehicle distance is less than a predetermined distance, and sets the inter-vehicle distance to the inter-vehicle distance. Based on the vehicle speed control such as deceleration, stop based on
Each of a plurality of ground elements installed along the trajectory stores a unique area number indicating a section up to the position of the ground element adjacent in one direction. When the area number is read together with the installation position information from the ground unit without contact, the communication channel corresponding to the area number is selected and the current position information of the vehicle is transmitted to other on-board units. A railway vehicle operating device characterized by sequentially selecting a communication channel other than the communication channel used for the vehicle to receive current position information from other vehicle uppers .
請求項4,5又は6記載の鉄道車両運行装置において、軌道に沿って設置された複数の地上子の各々に、所定数ごとに繰り返すエリア番号を割当てて記憶し、各エリア番号の各々に固有の通信チャネルを割当てたことを特徴とする鉄道車両運行装置。7. The railway vehicle operating device according to claim 4, 5 or 6 , wherein an area number repeated for each predetermined number is allocated and stored in each of a plurality of ground elements installed along the track, and is unique to each area number. A railway vehicle operating device characterized by assigning a communication channel. 請求項4,5又は6記載の鉄道車両運行装置において、並行する複数の軌道の各々に沿って所定間隔で地上子を設置した場合、所定数ごとに繰り返す軌道ごとに異なったエリア番号を割当てて記憶し、各エリア番号の各々に固有の通信チャネルを割当てたことを特徴とする鉄道車両運行装置。7. The railway vehicle operating device according to claim 4, wherein when a ground element is installed at a predetermined interval along each of a plurality of parallel tracks, a different area number is assigned to each track repeated every predetermined number. A railway vehicle operating device characterized by storing and assigning a unique communication channel to each area number. 請求項4,5,6、7又は8記載の鉄道車両運行装置において、前記車上子は、地上子から読み取ったエリア番号に対応した通信チャネルを使用して自己の現在位置情報を送信する際に、同一エリアに存在する他の車上子からの送信キャリア信号の有無を検出し、キャリア信号の検出時には同一エリアに存在する他の車上子からの現在位置情報を受信すると共に、ランダムに決められた遅延時間経過後に再度キャリア信号の有無を検出し、キャリア信号が検出されなかった場合には、自己の現在位置情報を送信することを特徴とする鉄道車両運行装置。9. The railway vehicle operating device according to claim 4, 5, 6, 7 or 8 , wherein the vehicle upper member transmits its current position information using a communication channel corresponding to an area number read from the ground child. In addition, the presence / absence of a transmission carrier signal from another vehicle upper part existing in the same area is detected, and at the time of detecting the carrier signal, current position information from other vehicle upper parts existing in the same area is received and randomly A railcar operating device that detects the presence / absence of a carrier signal again after a lapse of a predetermined delay time and transmits its current position information when no carrier signal is detected. 請求項4,5,6,7又は8記載の鉄道車両運行装置において、前記複数の通信チャネルは周波数分割チャネル、時分割チャネル、又は周波数分割チャネルと時分割チャネルの組合せチャネルであることを特徴とする鉄道車両運行装置。9. The railway vehicle operating device according to claim 4 , wherein the plurality of communication channels are frequency division channels, time division channels, or a combination channel of frequency division channels and time division channels. Railway vehicle operation device.
JP32230794A 1994-01-27 1994-12-26 Railway vehicle operation device Expired - Fee Related JP3743681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32230794A JP3743681B2 (en) 1994-01-27 1994-12-26 Railway vehicle operation device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-7396 1994-01-27
JP739694 1994-01-27
JP32230794A JP3743681B2 (en) 1994-01-27 1994-12-26 Railway vehicle operation device

Publications (2)

Publication Number Publication Date
JPH07251739A JPH07251739A (en) 1995-10-03
JP3743681B2 true JP3743681B2 (en) 2006-02-08

Family

ID=26341683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32230794A Expired - Fee Related JP3743681B2 (en) 1994-01-27 1994-12-26 Railway vehicle operation device

Country Status (1)

Country Link
JP (1) JP3743681B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040108A (en) * 2001-07-31 2003-02-13 Mitsubishi Heavy Ind Ltd Emergency brake system of rolling stock
US8594580B2 (en) 2006-12-11 2013-11-26 Mitsubishi Electric Corporation Data communication apparatus, communication method, and program
JP5067965B2 (en) * 2007-07-06 2012-11-07 日本信号株式会社 Ground unit, writing device and ground device
JP5134670B2 (en) * 2010-09-30 2013-01-30 株式会社東芝 Train position information collection system
JP5937869B2 (en) * 2012-03-30 2016-06-22 日本信号株式会社 Train control system
JP6274941B2 (en) * 2013-04-01 2018-02-07 株式会社神戸製鋼所 Vehicle collision warning system
CN108609030A (en) * 2016-12-13 2018-10-02 比亚迪股份有限公司 DCS system, communication means based on rail traffic and device

Also Published As

Publication number Publication date
JPH07251739A (en) 1995-10-03

Similar Documents

Publication Publication Date Title
KR960000931B1 (en) Tdma network and protocol for reader-transponder
US5757291A (en) Integrated proximity warning system and end of train communication system
EP1493610B1 (en) Automatic train stop system
EP0625770B1 (en) Interactive road traffic monitoring method and apparatus
CN109318937B (en) Train control system
JP4603910B2 (en) Inter-vehicle communication system and radio communication apparatus
US5459663A (en) Cab signal apparatus and method
JP3743681B2 (en) Railway vehicle operation device
JP6658961B2 (en) On-board control device and home door control system
JPH0886853A (en) Detection system for relative position between moving bodies
JP3863012B2 (en) Collision avoidance system
JP4684822B2 (en) Inter-vehicle communication system and radio communication apparatus
JPH10278799A (en) Automatic train control device
JP2002367081A (en) Communication equipment, information transmitting device and vehicle travel assisting device using the same
JP2001347946A (en) Railway alarm issuing system
JP2018149906A (en) Train control system and central control unit
JP4108306B2 (en) Train detection system
JP2003306146A (en) Train control system and train control method
JPH07257377A (en) Train collision prevention aid system, and device for front and rear trains constituting it
JP2002087264A (en) Train traveling control system
JP4708585B2 (en) Roadside wireless communication system
JPH092269A (en) Train position detecting device
JP3829433B2 (en) Vehicle identification device
JP4695294B2 (en) Vehicle operation assistance device
JP2001352310A (en) Time division multiplex communication system for railway and its transmission reception device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040422

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081125

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131125

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees