JP3741198B2 - Basic structure and construction method - Google Patents

Basic structure and construction method Download PDF

Info

Publication number
JP3741198B2
JP3741198B2 JP2000252197A JP2000252197A JP3741198B2 JP 3741198 B2 JP3741198 B2 JP 3741198B2 JP 2000252197 A JP2000252197 A JP 2000252197A JP 2000252197 A JP2000252197 A JP 2000252197A JP 3741198 B2 JP3741198 B2 JP 3741198B2
Authority
JP
Japan
Prior art keywords
foundation
concrete
reinforcing
damping
stopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000252197A
Other languages
Japanese (ja)
Other versions
JP2002061202A (en
Inventor
章▲吉▼ 後閑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2000252197A priority Critical patent/JP3741198B2/en
Publication of JP2002061202A publication Critical patent/JP2002061202A/en
Application granted granted Critical
Publication of JP3741198B2 publication Critical patent/JP3741198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主としてRC杭、SRC杭といったコンクリート系圧縮材の基礎構造及びその構築方法に関する。
【0002】
【従来の技術】
杭基礎は、上部構造物の鉛直荷重を支持することが主目的であって圧縮強度特性が重要となることは言うまでもないが、地震時には、上部構造物からの水平力によって杭頭に大きなせん断力や曲げモーメントが作用するのみならず、振動方向の水平幅に対する高さの比率によっては、上部構造物にロッキング振動が生じて端部側が浮き上がろうとするため、該箇所に接続された杭に大きな引抜力が作用することがある。
【0003】
かかる場合には、杭に過大な引抜力が作用し、該杭あるいは杭が接合された基礎スラブに亀裂が生じて引張破壊を生じたり、引抜力作用下の曲げ耐力やせん断耐力の低下によって、曲げ破壊やせん断破壊が生じ、その結果、杭本来の鉛直荷重を支持する機能が失われるといった事態を招く。
【0004】
このような状況を踏まえ、本出願人は、上部構造物のロッキング振動による杭や基礎スラブの破壊を防止すべく、杭頭部から突出する主筋と基礎スラブとの鉛直相対変位を許容する接合形式を検討してきた。
【0005】
【発明が解決しようとする課題】
かかる接合形式によれば、剛接合のときとは異なり、杭やスラブに引き抜き力が作用するのを防止することが可能となる。
【0006】
しかしながら、きわめて大きな地震に遭遇した場合には、上部構造物のロッキング振動により杭頭部の主筋が基礎スラブから完全に抜け出てしまい、構造物が転倒するおそれがあるため、基礎スラブ内での杭主筋の定着長さを十分に確保しなければならないという問題を生じていた。
【0007】
本発明は、上述した事情を考慮してなされたもので、引抜力に伴う杭やスラブの破壊を防止しつつ構造物の転倒を防止することが可能な基礎構造及びその構築方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る基礎構造は請求項1に記載したように、杭からなる圧縮材の頭部に基礎スラブ又はフーチングからなる基礎部材が接合されるとともに前記圧縮材及び前記基礎部材のうち、少なくともいずれか一方がコンクリートで形成されてなる基礎構造において、前記圧縮材の頭部から突出する補強材を該補強材の周囲に所定の減衰部材が配置された状態にて前記基礎部材内に埋設して前記補強材と前記基礎部材との鉛直相対変位を前記減衰部材で減衰させるように構成するとともに、前記補強材の頂部近傍を取り囲む頂部空間を前記基礎部材内に設け、該頂部空間の下方に形成された当接面との間に所定の間隙が形成されるよう前記補強材の頂部近傍に所定のストッパーを取り付けたものである。
また、本発明に係る基礎構造は請求項2に記載したように、地下階の柱からなる圧縮材の頭部に地下スラブからなる基礎部材が接合されるとともに前記圧縮材及び前記基礎部材のうち、少なくともいずれか一方がコンクリートで形成されてなる基礎構造において、前記圧縮材の頭部から突出する補強材を該補強材の周囲に所定の減衰部材が配置された状態にて前記基礎部材内に埋設して前記補強材と前記基礎部材との鉛直相対変位を前記減衰部材で減衰させるように構成するとともに、前記補強材の頂部近傍を取り囲む頂部空間を前記基礎部材内に設け、該頂部空間の下方に形成された当接面との間に所定の間隙が形成されるよう前記補強材の頂部近傍に所定のストッパーを取り付けたものである。
【0009】
また、本発明に係る基礎構造の構築方法は請求項3に記載したように、杭からなる圧縮材の頭部にコンクリートで形成された基礎スラブ又はフーチングからなる基礎部材が接合されてなる基礎構造の構築方法において、前記圧縮材の頭部から突出する補強材の周囲に所定の減衰部材を配置するとともに該補強材の頂部近傍に所定のストッパーを取り付け、前記ストッパーを取り囲むようにかつ該ストッパーの下方に所定の間隙が形成されるように前記補強材の頂部近傍に中空型枠部材を取り付け、かかる状態で前記減衰部材及び前記中空型枠部材の周囲にコンクリートを打設して前記基礎部材を形成するものである。
また、本発明に係る基礎構造の構築方法は請求項4に記載したように、地下階の柱からなる圧縮材の頭部にコンクリートで形成された地下スラブからなる基礎部材が接合されてなる基礎構造の構築方法において、前記圧縮材の頭部から突出する補強材の周囲に所定の減衰部材を配置するとともに該補強材の頂部近傍に所定のストッパーを取り付け、前記ストッパーを取り囲むようにかつ該ストッパーの下方に所定の間隙が形成されるように前記補強材の頂部近傍に中空型枠部材を取り付け、かかる状態で前記減衰部材及び前記中空型枠部材の周囲にコンクリートを打設して前記基礎部材を形成するものである。
【0010】
また、本発明に係る基礎構造の構築方法は、収縮自在なコンクリート流入防止材を前記中空型枠部材内に充填し、しかる後に前記コンクリートを打設するものである。
【0011】
本発明に係る基礎構造及びその構築方法においては、圧縮材の頭部から突出する補強材が該補強材の周囲に所定の減衰部材が配置された状態にて基礎部材内に埋設してあるため、上部構造物にロッキング振動が生じた場合、圧縮材から突出する補強材は、基礎部材内から抜け出すとともに、その抜け出しに伴って減衰部材による減衰力が発生する。
【0012】
すなわち、補強材と基礎部材との鉛直相対変位が許容されることによって、圧縮材や基礎部材における引張応力の発生が未然に防止されるとともに、上述した鉛直相対変位の発生に伴って減衰部材が減衰力を発生させるため、上部構造物のロッキング振動は速やかに収れんする。
【0013】
一方、補強材の頂部近傍を取り囲む頂部空間を基礎部材内に設け、該頂部空間の下方に形成された当接面との間に所定の間隙が形成されるように補強材の頂部近傍に所定のストッパーを取り付けてあるため、補強材と基礎部材との鉛直相対変位に一定の制限が設けられることとなり、上部構造物の転倒が未然に防止される。
【0014】
すなわち、かかる鉛直相対変位がストッパーと頂部空間下方に形成された当接面との間隙内に収まっている場合、いいかえれば、中小地震の場合には、上部構造物は上述したように圧縮材及び基礎部材に引張応力を発生させることなく、しかも補強材と基礎部材との鉛直相対変位に伴う減衰作用によってロッキング振動が抑制されるが、大地震の場合には、補強材に取り付けられたストッパーが基礎部材内の頂部空間下方に形成された当接面に当たって鉛直相対変位が拘束されるため、補強材が基礎部材から抜け出すおそれはなくなり、かくして、上部構造物の転倒が未然に防止される。
【0015】
本発明において圧縮材とは、杭又は地下階の柱を意味する。また、基礎部材とは、基礎スラブ、地下スラブ又はフーチングを意味する。補強材としては、鉄筋をはじめ鉄骨も含まれる。
【0016】
減衰部材をどのように構成するかは任意であり、摩擦減衰型、粘性減衰型、履歴減衰型のいずれを用いてもかまわない。
【0017】
摩擦減衰型の減衰部材を用いる場合は、補強材と基礎部材との隙間に粒状あるいは粉状物質を充填してこれを減衰部材とし、これら粒状物質あるいは粉状物質の相互接触による摩擦熱を利用したり、減衰部材の摩擦面と補強材又は基礎部材の接触面との滑動に伴う摩擦熱を利用したりすることができるが、かかる減衰部材としては、例えば自動車用ブレーキに使用されている摩擦材、例えば金属粉を焼結させた焼結合金パッドを使用することが考えられる。
【0018】
粘性減衰型の減衰部材を用いる場合は、補強材と基礎部材との隙間に減衰部材として粘弾性材を充填することによって粘性抵抗を利用することができる。
【0019】
履歴減衰型の減衰部材を用いる場合は、補強材の引抜き動作に係る運動エネルギーは、減衰部材自体の履歴減衰によって吸収され、引抜き動作を速やかに減衰することができるが、かかる減衰部材としては、例えば高減衰ゴムや減衰性の高い樹脂を補強材と基礎部材との隙間に注入固化させて使用することが考えられる。
【0020】
ストッパーと当接面との間に間隙を設けるにあたっては、中小地震時は構造物のロッキング振動を十分吸収できるようになおかつ大地震時には浮き上がりを拘束して構造物の転倒を防止できるように適宜その大きさを設定すればよい。
【0021】
ストッパーをどのように構成するかは任意であり、例えば、ナットで構成して補強材に螺合するようにしたり、プレートで構成したものを補強材に溶接したりする構成が考えられる。
【0022】
基礎部材のコンクリートを打設する前に補強材の頂部近傍に取り付ける中空型枠部材は、打設時のコンクリートの圧力に耐えられる強度を有するとともに、コンクリート打設後は頂部空間となる内部空間にコンクリートが流入することのないよう高い水密性を保持できるものであればその構造や取付け方法は任意であるが、収縮自在なコンクリート流入防止材を中空型枠部材内に充填し、しかる後にコンクリートを打設するようにしたならば、中空型枠部材に高い水密性をもたせなくとも、コンクリート打設時における中空型枠部材内へのコンクリート流入を防止することができる。なお、コンクリート流入防止材は収縮自在であるので、地震時における頂部空間内でのストッパーの上下動、すなわち補強材と基礎部材との鉛直相対変位を妨げることもない。
【0023】
コンクリート流入防止材は、中空型枠部材内へのコンクリートの流入を防止しなおかつコンクリート打設後における頂部空間内でのストッパーの上下動を許容するのであればどのように構成するかは任意であり、例えば、ゴムやクッション材等の低剛性の材料を用いることが考えられる。
【0024】
【発明の実施の形態】
以下、本発明に係る基礎構造及びその構築方法の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。
【0025】
図1(a)は、本実施形態に係る基礎構造を示した全体断面図、図1(b)は杭頭近傍の詳細断面図である。本実施形態に係る基礎構造は図1(a)でわかるように、圧縮材であるRC杭1の頭部から突出する補強材である鉄筋5をその周囲に減衰部材としての高減衰ゴム6を配置した状態にて基礎部材としてのRC基礎スラブ2内に埋設してあるが、該RC基礎スラブには同図(b)に示すように定着スリーブ3を埋設してあり、鉄筋5及びその周囲に配置された高減衰ゴム6は、定着スリーブ3内に挿入される形で基礎スラブ2に埋設してある。
【0026】
定着スリーブ3は、図1(c)に示すように、全体をほぼ中空円筒形状に形成し、その外周面に凹凸7を設けてRC基礎スラブ2との付着強度を確保するように構成してある。かかる定着スリーブ3は、例えば繊維強化プラスチックで形成することができる。
【0027】
高減衰ゴム6は、鉄筋5と定着スリーブ3との隙間に充填して構成してあり、鉄筋5とRC基礎スラブ2との間で鉛直相対変位が生じたとき、該変位が強制変形として作用して履歴減衰が発揮されるようになっている。
【0028】
一方、RC基礎スラブ2内には、図1(b)でよくわかるように鉄筋5の頂部近傍を取り囲むように頂部空間9を形成してあるとともに、該頂部空間の下方に形成された当接面8との間に間隙dが形成されるよう、ストッパー10を鉄筋5の頂部近傍に取り付けてある。ストッパー10は、例えばリング状鋼板を鉄筋5に嵌め込んだ上、溶接等で固定するようにすればよい。
【0029】
ストッパー10と当接面8との間に間隙dを設けるにあたっては、中小地震時には、図示しない上部構造物のロッキング振動を十分吸収できるよう、また、大地震時には、ロッキング振動による上部構造物の浮き上がりを拘束してその転倒を防止できるよう、その大きさを適宜設定する。
【0030】
なお、頂部空間9は、鉄筋5の頂部近傍を取り囲むように取り付けられた中空型枠部材4の内部空間として形成され、当接面8は、該中空型枠材の底面として形成される。
【0031】
本実施形態に係る基礎構造を構築するには、まず、RC杭1を現場打設しあるいは既製のものを打ち込んだ後、図2(a)に示すように、該RC杭の天端から上方に突出している鉄筋5に定着スリーブ3を嵌め込み、該定着スリーブと鉄筋5との隙間に同図矢印に示すように高減衰ゴム6を注入する。
【0032】
このとき、定着スリーブ3の中心を鉄筋5の中心に位置合わせすることによって、定着スリーブ3と鉄筋5との隙間間隔が全周でほぼ同寸法となるようにするのがよい。
【0033】
次に、図2(b)に示すように、鉄筋5の頂部近傍にストッパー10を取り付け、次いで、該ストッパーを取り囲むようにかつ該ストッパーの下方に所定の間隙dが形成されるように鉄筋5の頂部近傍に中空型枠部材4を取り付ける。
【0034】
このとき、中空型枠部材4は、打設時のコンクリートの圧力に耐えられる強度を有するとともに、コンクリート打設後は頂部空間9となる内部空間にコンクリートが流入することのないよう高い水密性を保持できるように取り付ける。
【0035】
中空型枠部材4の取付けが完了したならば、RC基礎スラブ2の型枠工事を行った後、コンクリート打設を行ってRC基礎スラブ2を形成し、定着スリーブ3及び中空型枠部材10を該スラブ内に埋設する。なお、RC杭1の天端とRC基礎スラブ2の底面との間については、引張力が伝達しないように縁を切っておく。
【0036】
図3及び図4は本実施形態に係る基礎構造及びその構築方法の作用を示した図である。本実施形態に係る基礎構造及びその構築方法においては、RC杭1の頭部から突出する鉄筋5を該鉄筋の周囲に配置された高減衰ゴム6とともに定着スリーブ3内に挿入された状態にてRC基礎スラブ2内に埋設してあるため、図3に示すように、上部構造物11に地震によるロッキング振動が生じた場合、RC杭1から突出する鉄筋5は、RC基礎スラブ2内から抜け出すとともに、その抜け出しに伴って高減衰ゴム6による減衰力が発生する。
【0037】
すなわち、鉄筋5とRC基礎スラブ2との鉛直相対変位が許容されることによって、RC杭1やRC基礎スラブ2における引張応力の発生が未然に防止されるとともに、上述した鉛直相対変位の発生に伴って高減衰ゴム6から減衰力を発生させるため、上部構造物11のロッキング振動は速やかに収れんする。
【0038】
一方、図1で説明したように、鉄筋5の頂部近傍を取り囲む頂部空間9をRC基礎スラブ2内に設け、該頂部空間の下方に形成された当接面8との間に所定の間隙dが形成されるように鉄筋5の頂部近傍に所定のストッパー10を取り付けてあるため、鉄筋5とRC基礎スラブ2との鉛直相対変位に一定の制限が設けられることとなり、上部構造物11の転倒が未然に防止される。
【0039】
すなわち、かかる鉛直相対変位がストッパー10と頂部空間9下方に形成された当接面8との間隙d内に収まっている場合、いいかえれば、中小地震の場合には、上部構造物11は、上述したようにRC杭1及びRC基礎スラブ2に引張応力を発生させることなく、しかも鉄筋5とRC基礎スラブ2との鉛直相対変位に伴う減衰作用によってロッキング振動が抑制されるが、大地震の場合には、図4に示すように、鉄筋5に取り付けられたストッパー10がRC基礎スラブ2内の頂部空間9下方に形成された当接面8に当たって鉛直相対変位が拘束されるため、鉄筋5がRC基礎スラブ2から抜け出すおそれはなくなり、かくして、上部構造物11の転倒が未然に防止される。
【0040】
以上説明したように、本実施形態に係る基礎構造及びその構築方法によれば、中小地震時には、高減衰ゴム6による減衰作用を受けつつ設定された間隙dの範囲内で鉄筋5とRC基礎スラブ2との鉛直相対変位が許容されるので、RC杭1やRC基礎スラブ2には引張応力が発生せず、それらの引張破壊並びに引抜力に伴う曲げ耐力やせん断耐力の低下による曲げ破壊やせん断破壊を未然に防止することが可能となる。
【0041】
一方、大地震時には、間隙dを超える鉄筋5とRC基礎スラブ2との鉛直相対変位が拘束されるので、上部構造物11のロッキング振動によるRC基礎スラブ2の浮き上がりはその範囲内で行われることとなり、上部構造物11が転倒することを未然に防止することができる。
【0042】
本実施形態では、RC杭を前提とし、その杭頭から突出する鉄筋を定着スリーブ3に挿入するようにしたが、圧縮材としてはRC杭に限られず、例えばSRC杭であれば、該杭から突出する鉄骨に定着材を被せるようにしてもよい。
【0043】
また、本実施形態では、圧縮材をRC杭1、基礎部材をRC基礎スラブ2としたが、本発明に係る基礎構造はかかる構成に限定されるものではなく、圧縮材が鋼管杭の場合であっても基礎部材であるRC基礎スラブの引張破壊を防止することができるし、基礎部材が鋼製梁で構成されるような場合であっても、RC杭の引張破壊を防止することができる。
【0044】
また、本実施形態では、減衰部材として高減衰ゴム6を使用したが、これに代えて減衰性の高い樹脂を注入するようにしてもよい。
【0045】
また、本実施形態では、高減衰ゴム6を注入固化させるように構成したが、これに代えて、鉄筋5に高減衰ゴム等で形成した減衰シートを巻き付け、その上から定着スリーブ3を被せるようにしてもよい。
【0046】
また、本実施形態では、減衰部材として履歴減衰型の材料を使用したが、これに代えて、粘性減衰型や摩擦減衰型の減衰部材を使用してもよい。摩擦減衰型の減衰部材を使用した場合は、例えば、金属粉を付着させて構成した外周摩擦面を設けて減衰部材を構成することができ、かかる場合においては、円筒状の減衰部材を鉄筋5に被せて溶接等により該鉄筋に固定し、該減衰部材の上から定着スリーブ3を被せるようにすればよい。
【0047】
また、本実施形態では、減衰部材である高減衰ゴム6を定着スリーブ3と鉄筋5との間に充填するようにしたが、かかる定着スリーブ3は必ずしも必要ではなく、場合によっては、シート状の高減衰ゴムを鉄筋5の周囲に巻き付け、かかる状態でRC基礎スラブ2を構築するようにしてもよい。
【0048】
また、本実施形態では、中空型枠部材4は、打設時のコンクリートの圧力に耐えられる強度を有するとともに、コンクリート打設後は頂部空間9となる内部空間にコンクリートが流入することのないよう高い水密性を保持して取り付けるようにしたが、これにかえて、図5に示すように、収縮自在なコンクリート流入防止材21を中空型枠部材4内に充填し、しかる後にコンクリートを打設するようにしてもよい。かかる構成によれば、中空型枠部材4に高い水密性をもたせなくとも、コンクリート打設時における中空型枠部材4内へのコンクリート流入を防止することができる。なお、コンクリート流入防止材21は収縮自在であるので、地震時における頂部空間9内でのストッパー10の上下動、すなわち鉄筋5とRC基礎スラブ2との鉛直相対変位を妨げることもない。
【0049】
コンクリート流入防止材21は、中空型枠部材4内へのコンクリートの流入を防止しなおかつコンクリート打設後における頂部空間9内でのストッパー10の上下動を許容するのであればどのように構成するかは任意であり、例えば、ゴムやクッション材等の低剛性の材料を用いることが考えられる。
【0050】
【発明の効果】
以上述べたように、本発明に係る基礎構造及びその構築方法によれば、中小地震時には、減衰部材による減衰作用を受けつつ設定された間隙の範囲内で補強材と基礎部材との鉛直相対変位が許容されるので、圧縮材や基礎部材には引張応力が発生せず、それらの引張破壊並びに引抜力に伴う曲げ耐力やせん断耐力の低下による曲げ破壊やせん断破壊を未然に防止することが可能となる。
【0051】
一方、大地震時には、上述した間隙を超える補強材と基礎部材との鉛直相対変位が拘束されるので、上部構造物のロッキング振動による基礎部材の浮き上がりは該間隙内で行われることとなり、上部構造物が転倒することを未然に防止することができる。
【0052】
【図面の簡単な説明】
【図1】本実施形態に係る基礎構造を示した図であり、(a)は全体断面図、(b)は杭頭近傍の詳細断面図、(c)は一部を断面表示した定着スリーブの側面図。
【図2】本実施形態に係る基礎構造を構築している様子を示した図。
【図3】本実施形態に係る基礎構造及びその構築方法の作用を示した図。
【図4】本実施形態に係る基礎構造及びその構築方法の作用を示した図。
【図5】本実施形態の変形例に係る基礎構造を示した図で、一部を断面表示した詳細図。
【符号の説明】
1 RC杭(圧縮材)
2 RC基礎スラブ(基礎部材)
4 中空型枠部材
5 鉄筋(補強材)
6 高減衰ゴム(減衰部材)
8 当接面
9 頂部空間
10 ストッパー
21 コンクリート流入防止材
[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a foundation structure of a concrete-based compression material such as an RC pile or an SRC pile and a construction method thereof.
[0002]
[Prior art]
The pile foundation is mainly intended to support the vertical load of the superstructure, and it goes without saying that the compressive strength characteristics are important, but in the event of an earthquake, a large shear force is applied to the pile head due to the horizontal force from the superstructure. Depending on the ratio of the height to the horizontal width in the vibration direction, rocking vibration will occur in the upper structure and the end side will float up depending on the ratio of the height to the horizontal width in the vibration direction. A large pulling force may act.
[0003]
In such a case, an excessive pulling force acts on the pile, a crack occurs in the foundation slab to which the pile or the pile is bonded, a tensile failure occurs, or due to a decrease in bending strength or shear strength under the pulling force action, Bending failure and shear failure occur, and as a result, the function of supporting the original vertical load of the pile is lost.
[0004]
In view of these circumstances, the present applicant shall allow the vertical relative displacement between the main bar protruding from the pile head and the foundation slab to prevent destruction of the pile and foundation slab due to rocking vibration of the superstructure. Have been considering.
[0005]
[Problems to be solved by the invention]
According to such a joining format, unlike the case of rigid joining, it becomes possible to prevent the pulling force from acting on the pile or slab.
[0006]
However, when an extremely large earthquake is encountered, the main bar of the pile head may come out of the foundation slab completely due to the rocking vibration of the upper structure, and the structure may fall over. There was a problem that the anchor length of the main muscle had to be secured sufficiently.
[0007]
The present invention has been made in consideration of the above-described circumstances, and provides a foundation structure capable of preventing a structure from overturning while preventing a pile or a slab from being destroyed due to a pulling force, and a construction method thereof. With the goal.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the foundation structure according to the present invention is as described in claim 1, wherein a foundation member made of a foundation slab or a footing is joined to a head of a compression material made of a pile, and the compression material and the In the foundation structure in which at least one of the foundation members is formed of concrete, the reinforcing material protruding from the head of the compression material is placed in a state in which a predetermined damping member is disposed around the reinforcement material. It is embedded in a base member and configured to attenuate the vertical relative displacement between the reinforcing member and the base member with the damping member, and a top space surrounding the vicinity of the top portion of the reinforcing member is provided in the base member. A predetermined stopper is attached in the vicinity of the top of the reinforcing material so that a predetermined gap is formed between the top surface and a contact surface formed below the top space.
Moreover, the foundation structure which concerns on this invention is as described in Claim 2, and while the foundation member which consists of underground slabs is joined to the head of the compression material which consists of a pillar of an underground floor, among the said compression material and the said foundation member In the foundation structure in which at least one of them is formed of concrete, the reinforcing material protruding from the head of the compression material is placed in the foundation member in a state where a predetermined damping member is disposed around the reinforcing material. A vertical space between the reinforcing member and the foundation member is embedded so as to be attenuated by the damping member, and a top space surrounding the vicinity of the top portion of the reinforcing material is provided in the foundation member. A predetermined stopper is attached in the vicinity of the top of the reinforcing material so that a predetermined gap is formed between the contact surface formed below.
[0009]
In addition, the construction method of the foundation structure according to the present invention is a foundation structure in which a foundation member made of concrete or a foundation slab formed of concrete is joined to the head of a compression material made of pile as described in claim 3. In this construction method, a predetermined damping member is disposed around the reinforcing material protruding from the head of the compression material, and a predetermined stopper is attached in the vicinity of the top of the reinforcing material so as to surround the stopper and A hollow frame member is attached near the top of the reinforcing material so that a predetermined gap is formed below, and concrete is placed around the damping member and the hollow frame member in such a state, and the foundation member is To form.
Moreover, the construction method of the foundation structure according to the present invention is the foundation in which the foundation member made of the underground slab formed of concrete is joined to the head of the compression material made of the pillar of the underground floor as described in claim 4. In the construction method of the structure, a predetermined damping member is disposed around the reinforcing member protruding from the head of the compression member, and a predetermined stopper is attached in the vicinity of the top of the reinforcing member so as to surround the stopper. A hollow frame member is attached in the vicinity of the top of the reinforcing material so that a predetermined gap is formed below, and in this state, concrete is placed around the damping member and the hollow frame member, and the foundation member Is formed.
[0010]
Moreover, the construction method of the foundation structure according to the present invention is to fill the hollow mold member with a shrinkable concrete inflow preventing material and then place the concrete.
[0011]
In the foundation structure and its construction method according to the present invention, the reinforcing material protruding from the head of the compression material is embedded in the foundation member in a state where a predetermined damping member is arranged around the reinforcing material. When the rocking vibration is generated in the upper structure, the reinforcing material protruding from the compression material is pulled out from the inside of the base member, and a damping force is generated by the damping member along with the removal.
[0012]
That is, by allowing the vertical relative displacement between the reinforcing material and the base member, the generation of tensile stress in the compression material and the base member is prevented in advance, and the damping member is provided along with the occurrence of the vertical relative displacement described above. Since the damping force is generated, the rocking vibration of the superstructure is quickly converged.
[0013]
On the other hand, a top space surrounding the vicinity of the top of the reinforcing material is provided in the base member, and a predetermined gap is formed in the vicinity of the top of the reinforcing material so as to form a predetermined gap with the contact surface formed below the top space. Therefore, the vertical relative displacement between the reinforcing member and the base member is limited, so that the upper structure can be prevented from overturning.
[0014]
That is, when the vertical relative displacement is within the gap between the stopper and the abutting surface formed below the top space, in other words, in the case of a small and medium earthquake, the upper structure is compressed with the compression material and The rocking vibration is suppressed by the damping action caused by the vertical relative displacement between the reinforcement and the foundation member without generating a tensile stress on the foundation member, but in the case of a large earthquake, the stopper attached to the reinforcement is Since the vertical relative displacement is constrained by hitting the contact surface formed below the top space in the foundation member, there is no possibility that the reinforcing material will come out of the foundation member, thus preventing the upper structure from being overturned.
[0015]
In the present invention, the compressed material means a pile or a pillar of an underground floor. Moreover, a foundation member means a foundation slab, an underground slab, or a footing. Reinforcing materials include steel bars as well as reinforcing bars.
[0016]
The configuration of the damping member is arbitrary, and any of a friction damping type, a viscous damping type, and a hysteresis damping type may be used.
[0017]
When a friction damping type damping member is used, the gap between the reinforcing material and the base member is filled with a granular or powdery substance, which is used as a damping member, and frictional heat generated by mutual contact of these granular or powdery substances is used. Or friction heat generated by sliding between the friction surface of the damping member and the contact surface of the reinforcing member or the base member can be used. It is conceivable to use a sintered alloy pad obtained by sintering a material, for example, metal powder.
[0018]
When a viscous damping type damping member is used, viscous resistance can be used by filling a gap between the reinforcing member and the base member with a viscoelastic material as a damping member.
[0019]
When a hysteresis damping type damping member is used, the kinetic energy related to the reinforcing member extraction operation is absorbed by the hysteresis attenuation of the attenuation member itself, and the extraction operation can be quickly attenuated. For example, it is conceivable to use a high-damping rubber or a highly-damping resin after being injected and solidified in the gap between the reinforcing material and the base member.
[0020]
When providing a gap between the stopper and the abutment surface, it is necessary to ensure that the rocking vibrations of the structure can be sufficiently absorbed during a small and medium earthquake and that the structure can be prevented from falling by restraining the lift during a large earthquake. What is necessary is just to set a magnitude | size.
[0021]
The configuration of the stopper is arbitrary. For example, a configuration in which the stopper is configured to be screwed into the reinforcing material, or a configuration in which the stopper is configured to be welded to the reinforcing material is conceivable.
[0022]
The hollow frame member attached to the vicinity of the top of the reinforcing material before placing the concrete of the foundation member has the strength to withstand the pressure of the concrete at the time of placing and in the internal space that becomes the top space after placing the concrete. As long as it can maintain high water tightness so that concrete does not flow into it, its structure and mounting method are arbitrary, but after filling the hollow form member with shrinkable concrete inflow prevention material, the concrete is If the casting is performed, it is possible to prevent the inflow of the concrete into the hollow mold member during the concrete casting without providing the hollow mold member with high water tightness. In addition, since the concrete inflow prevention material is freely contractible, the vertical movement of the stopper in the top space during an earthquake, that is, the vertical relative displacement between the reinforcing material and the foundation member is not hindered.
[0023]
The concrete inflow prevention material can be configured in any way as long as it prevents the inflow of concrete into the hollow frame member and allows the stopper to move up and down in the top space after the concrete is placed. For example, it is conceivable to use a low-rigidity material such as rubber or a cushion material.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a basic structure and a construction method thereof according to the present invention will be described with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.
[0025]
FIG. 1A is an overall cross-sectional view showing a foundation structure according to the present embodiment, and FIG. 1B is a detailed cross-sectional view in the vicinity of a pile head. As shown in FIG. 1 (a), the foundation structure according to the present embodiment has a high-damping rubber 6 as a damping member around a reinforcing bar 5 as a reinforcing material protruding from the head of the RC pile 1 as a compression material. The RC base slab 2 is embedded in the RC base slab 2 as a base member, and the RC base slab has a fixing sleeve 3 embedded in the RC base slab as shown in FIG. The high-damping rubber 6 disposed on the base slab 2 is embedded in the base slab 2 so as to be inserted into the fixing sleeve 3.
[0026]
As shown in FIG. 1 (c), the fixing sleeve 3 is formed in a substantially hollow cylindrical shape and is provided with irregularities 7 on the outer peripheral surface thereof so as to ensure adhesion strength with the RC foundation slab 2. is there. The fixing sleeve 3 can be formed of, for example, fiber reinforced plastic.
[0027]
The high damping rubber 6 is configured by filling a gap between the reinforcing bar 5 and the fixing sleeve 3, and when a vertical relative displacement occurs between the reinforcing bar 5 and the RC foundation slab 2, the displacement acts as a forced deformation. And history attenuation is demonstrated.
[0028]
On the other hand, a top space 9 is formed in the RC foundation slab 2 so as to surround the vicinity of the top of the reinforcing bar 5 as can be clearly seen in FIG. 1 (b), and a contact formed below the top space. A stopper 10 is attached near the top of the reinforcing bar 5 so that a gap d is formed between the surface 8 and the surface 8. The stopper 10 may be fixed by welding or the like after a ring-shaped steel plate is fitted into the reinforcing bar 5, for example.
[0029]
When the gap d is provided between the stopper 10 and the contact surface 8, the rocking vibration of the upper structure (not shown) can be sufficiently absorbed during a small and medium earthquake, and the upper structure can be lifted by rocking vibration during a large earthquake. The size thereof is appropriately set so that it can be restrained and its fall can be prevented.
[0030]
The top space 9 is formed as an internal space of the hollow frame member 4 attached so as to surround the vicinity of the top of the reinforcing bar 5, and the contact surface 8 is formed as a bottom surface of the hollow frame material.
[0031]
In order to construct the foundation structure according to the present embodiment, the RC pile 1 is first placed on-site or after the ready-made one is driven, and then, as shown in FIG. The fixing sleeve 3 is fitted into the reinforcing bar 5 protruding in the direction, and the high damping rubber 6 is injected into the gap between the fixing sleeve and the reinforcing bar 5 as shown by the arrow in FIG.
[0032]
At this time, it is preferable to align the center of the fixing sleeve 3 with the center of the reinforcing bar 5 so that the clearance between the fixing sleeve 3 and the reinforcing bar 5 has substantially the same dimension on the entire circumference.
[0033]
Next, as shown in FIG. 2 (b), a stopper 10 is attached in the vicinity of the top of the reinforcing bar 5, and then the reinforcing bar 5 is formed so as to surround the stopper and to form a predetermined gap d below the stopper. A hollow frame member 4 is attached in the vicinity of the top of the.
[0034]
At this time, the hollow frame member 4 has a strength capable of withstanding the pressure of the concrete at the time of placing, and has high water tightness so that the concrete does not flow into the internal space that becomes the top space 9 after the concrete is placed. Install so that it can be held.
[0035]
When the installation of the hollow mold member 4 is completed, after the RC foundation slab 2 is completed, the concrete is cast to form the RC foundation slab 2, and the fixing sleeve 3 and the hollow mold member 10 are attached. Embedded in the slab. In addition, the edge is cut off between the top end of RC pile 1 and the bottom face of RC foundation slab 2 so that a tensile force may not be transmitted.
[0036]
3 and 4 are views showing the operation of the foundation structure and its construction method according to this embodiment. In the foundation structure and its construction method according to the present embodiment, the reinforcing bar 5 protruding from the head of the RC pile 1 is inserted into the fixing sleeve 3 together with the high damping rubber 6 disposed around the reinforcing bar. Since it is embedded in the RC foundation slab 2, as shown in FIG. 3, when rocking vibration due to an earthquake occurs in the upper structure 11, the reinforcing bar 5 protruding from the RC pile 1 comes out of the RC foundation slab 2. At the same time, a damping force is generated by the high damping rubber 6 along with the withdrawal.
[0037]
That is, by allowing the vertical relative displacement between the reinforcing bar 5 and the RC foundation slab 2, generation of tensile stress in the RC pile 1 and the RC foundation slab 2 is prevented, and the occurrence of the vertical relative displacement described above is prevented. Accordingly, since a damping force is generated from the high damping rubber 6, the rocking vibration of the upper structure 11 is quickly converged.
[0038]
On the other hand, as explained in FIG. 1, a top space 9 that surrounds the vicinity of the top of the reinforcing bar 5 is provided in the RC foundation slab 2, and a predetermined gap d is formed between the contact surface 8 formed below the top space. Since the predetermined stopper 10 is attached in the vicinity of the top of the reinforcing bar 5 so as to be formed, a certain restriction is placed on the vertical relative displacement between the reinforcing bar 5 and the RC foundation slab 2, and the upper structure 11 falls. Is prevented in advance.
[0039]
That is, when the vertical relative displacement is within the gap d between the stopper 10 and the abutting surface 8 formed below the top space 9, in other words, in the case of a small and medium earthquake, the upper structure 11 is In the case of a large earthquake, the RC pile 1 and the RC foundation slab 2 do not generate tensile stress, and the rocking vibration is suppressed by the damping action associated with the vertical relative displacement between the reinforcing bar 5 and the RC foundation slab 2. As shown in FIG. 4, the stopper 10 attached to the reinforcing bar 5 hits the contact surface 8 formed below the top space 9 in the RC foundation slab 2 and the vertical relative displacement is restrained. There is no risk of slipping out of the RC foundation slab 2, and thus the upper structure 11 is prevented from falling.
[0040]
As described above, according to the foundation structure and its construction method according to the present embodiment, the reinforcing bar 5 and the RC foundation slab are within the range of the gap d set while receiving the damping action by the high damping rubber 6 at the time of a small and medium earthquake. As a result, the RC pile 1 and the RC foundation slab 2 are not subject to tensile stress, and the bending failure and shear due to the tensile failure and the decrease in the bending strength and shear strength associated with the pulling force. It becomes possible to prevent destruction in advance.
[0041]
On the other hand, since the vertical relative displacement between the reinforcing bar 5 and the RC foundation slab 2 that exceeds the gap d is constrained during a large earthquake, the RC foundation slab 2 is lifted by the rocking vibration of the upper structure 11 within that range. Thus, the upper structure 11 can be prevented from falling down.
[0042]
In this embodiment, the RC pile is assumed as a premise, and the reinforcing bars protruding from the pile head are inserted into the fixing sleeve 3. However, the compression material is not limited to the RC pile. You may make it cover a fixing material on the protruding steel frame.
[0043]
Moreover, in this embodiment, although the compression material was RC pile 1 and the foundation member was RC foundation slab 2, the foundation structure which concerns on this invention is not limited to this structure, In the case where a compression material is a steel pipe pile, Even if it exists, it is possible to prevent the tensile failure of the RC foundation slab, which is the foundation member, and it is possible to prevent the tensile failure of the RC pile even when the foundation member is made of steel beams. .
[0044]
Further, in the present embodiment, the high damping rubber 6 is used as the damping member, but instead of this, a resin having a high damping property may be injected.
[0045]
Further, in the present embodiment, the high damping rubber 6 is configured to be injected and solidified, but instead, a damping sheet formed of high damping rubber or the like is wound around the reinforcing bar 5 and the fixing sleeve 3 is covered thereon. It may be.
[0046]
In the present embodiment, the hysteresis damping material is used as the damping member, but instead, a viscous damping type or friction damping type damping member may be used. When a friction damping type damping member is used, for example, the damping member can be configured by providing an outer peripheral friction surface formed by adhering metal powder. In such a case, the cylindrical damping member is used as the reinforcing bar 5. The fixing sleeve 3 may be covered over the damping member by being fixed to the reinforcing bar by welding or the like.
[0047]
Further, in the present embodiment, the high damping rubber 6 that is a damping member is filled between the fixing sleeve 3 and the reinforcing bar 5. However, the fixing sleeve 3 is not always necessary, and in some cases, a sheet-like shape is used. High damping rubber may be wound around the reinforcing bar 5 and the RC foundation slab 2 may be constructed in this state.
[0048]
Further, in this embodiment, the hollow frame member 4 has a strength capable of withstanding the pressure of the concrete at the time of placing, and the concrete does not flow into the internal space that becomes the top space 9 after the concrete is placed. Although it was attached with high watertightness, instead of this, as shown in FIG. 5, the shrinkable concrete inflow prevention material 21 was filled in the hollow frame member 4, and then the concrete was placed. You may make it do. According to such a configuration, it is possible to prevent the inflow of concrete into the hollow mold member 4 at the time of placing the concrete without giving the hollow mold member 4 high watertightness. In addition, since the concrete inflow prevention material 21 is contractible, the vertical movement of the stopper 10 in the top space 9 during an earthquake, that is, the vertical relative displacement between the reinforcing bar 5 and the RC foundation slab 2 is not hindered.
[0049]
How is the concrete inflow prevention material 21 configured to prevent the inflow of concrete into the hollow frame member 4 and to allow the stopper 10 to move up and down in the top space 9 after the concrete is placed? Is optional, and for example, it is conceivable to use a low-rigidity material such as rubber or cushioning material.
[0050]
【The invention's effect】
As described above, according to the foundation structure and the construction method thereof according to the present invention, the vertical relative displacement between the reinforcing member and the foundation member within the gap set while receiving the damping action by the damping member during a small and medium-sized earthquake. Therefore, no tensile stress is generated in the compressed material or the base member, and it is possible to prevent bending failure and shear failure due to the decrease in bending strength and shear strength due to their tensile failure and pull-out force. It becomes.
[0051]
On the other hand, in the case of a large earthquake, the vertical relative displacement between the reinforcing member and the foundation member exceeding the gap described above is restricted, so that the foundation member is lifted by the rocking vibration of the upper structure within the gap. It is possible to prevent things from falling over.
[0052]
[Brief description of the drawings]
1A and 1B are diagrams showing a basic structure according to the present embodiment, where FIG. 1A is an overall cross-sectional view, FIG. 1B is a detailed cross-sectional view near a pile head, and FIG. Side view.
FIG. 2 is a view showing a state in which a foundation structure according to the present embodiment is constructed.
FIG. 3 is a view showing the operation of the basic structure and the construction method thereof according to the present embodiment.
FIG. 4 is a diagram showing the operation of the basic structure and the construction method thereof according to the present embodiment.
FIG. 5 is a view showing a basic structure according to a modification of the embodiment, and is a detailed view showing a part in cross section.
[Explanation of symbols]
1 RC pile (compressed material)
2 RC foundation slab (foundation member)
4 Hollow frame member 5 Reinforcing bar (reinforcing material)
6 High damping rubber (damping member)
8 Contact surface 9 Top space 10 Stopper 21 Concrete inflow prevention material

Claims (5)

杭からなる圧縮材の頭部に基礎スラブ又はフーチングからなる基礎部材が接合されるとともに前記圧縮材及び前記基礎部材のうち、少なくともいずれか一方がコンクリートで形成されてなる基礎構造において、
前記圧縮材の頭部から突出する補強材を該補強材の周囲に所定の減衰部材が配置された状態にて前記基礎部材内に埋設して前記補強材と前記基礎部材との鉛直相対変位を前記減衰部材で減衰させるように構成するとともに、前記補強材の頂部近傍を取り囲む頂部空間を前記基礎部材内に設け、該頂部空間の下方に形成された当接面との間に所定の間隙が形成されるよう前記補強材の頂部近傍に所定のストッパーを取り付けたことを特徴とする基礎構造。
In a foundation structure in which at least one of the compression member and the foundation member is formed of concrete and a foundation member made of a foundation slab or footing is joined to the head of the compression member made of a pile,
A reinforcing member protruding from the head of the compression member is embedded in the foundation member in a state where a predetermined damping member is disposed around the reinforcement member, and a vertical relative displacement between the reinforcement member and the foundation member is caused. The damping member is configured to be attenuated, and a top space that surrounds the vicinity of the top of the reinforcing member is provided in the base member, and a predetermined gap is formed between the contact surface formed below the top space. A basic structure in which a predetermined stopper is attached in the vicinity of the top of the reinforcing material so as to be formed.
地下階の柱からなる圧縮材の頭部に地下スラブからなる基礎部材が接合されるとともに前記圧縮材及び前記基礎部材のうち、少なくともいずれか一方がコンクリートで形成されてなる基礎構造において、
前記圧縮材の頭部から突出する補強材を該補強材の周囲に所定の減衰部材が配置された状態にて前記基礎部材内に埋設して前記補強材と前記基礎部材との鉛直相対変位を前記減衰部材で減衰させるように構成するとともに、前記補強材の頂部近傍を取り囲む頂部空間を前記基礎部材内に設け、該頂部空間の下方に形成された当接面との間に所定の間隙が形成されるよう前記補強材の頂部近傍に所定のストッパーを取り付けたことを特徴とする基礎構造。
In the foundation structure in which at least one of the compression material and the foundation member is formed of concrete and a foundation member made of an underground slab is joined to the head of the compression material consisting of a pillar of the underground floor,
A reinforcing member protruding from the head of the compression member is embedded in the foundation member in a state where a predetermined damping member is disposed around the reinforcement member, and a vertical relative displacement between the reinforcement member and the foundation member is caused. The damping member is configured to be attenuated, and a top space that surrounds the vicinity of the top of the reinforcing member is provided in the base member, and a predetermined gap is formed between the contact surface formed below the top space. A basic structure in which a predetermined stopper is attached in the vicinity of the top of the reinforcing material so as to be formed.
杭からなる圧縮材の頭部にコンクリートで形成された基礎スラブ又はフーチングからなる基礎部材が接合されてなる基礎構造の構築方法において、
前記圧縮材の頭部から突出する補強材の周囲に所定の減衰部材を配置するとともに該補強材の頂部近傍に所定のストッパーを取り付け、前記ストッパーを取り囲むようにかつ該ストッパーの下方に所定の間隙が形成されるように前記補強材の頂部近傍に中空型枠部材を取り付け、かかる状態で前記減衰部材及び前記中空型枠部材の周囲にコンクリートを打設して前記基礎部材を形成することを特徴とする基礎構造の構築方法。
In the construction method of a foundation structure in which a foundation slab formed of concrete or a foundation member made of footing is joined to the head of a compression material made of a pile,
A predetermined damping member is disposed around the reinforcing material protruding from the head of the compressed material, and a predetermined stopper is attached in the vicinity of the top of the reinforcing material so as to surround the stopper and below the stopper. A hollow frame member is attached in the vicinity of the top of the reinforcing material so that the base member is formed by placing concrete around the damping member and the hollow frame member in this state. How to build a basic structure.
地下階の柱からなる圧縮材の頭部にコンクリートで形成された地下スラブからなる基礎部材が接合されてなる基礎構造の構築方法において、
前記圧縮材の頭部から突出する補強材の周囲に所定の減衰部材を配置するとともに該補強材の頂部近傍に所定のストッパーを取り付け、前記ストッパーを取り囲むようにかつ該ストッパーの下方に所定の間隙が形成されるように前記補強材の頂部近傍に中空型枠部材を取り付け、かかる状態で前記減衰部材及び前記中空型枠部材の周囲にコンクリートを打設して前記基礎部材を形成することを特徴とする基礎構造の構築方法。
In the construction method of the foundation structure in which the foundation member consisting of the underground slab formed of concrete is joined to the head of the compression material consisting of the pillar of the underground floor,
A predetermined damping member is disposed around the reinforcing material protruding from the head of the compressed material, and a predetermined stopper is attached in the vicinity of the top of the reinforcing material so as to surround the stopper and below the stopper. A hollow frame member is attached in the vicinity of the top of the reinforcing material so that the base member is formed by placing concrete around the damping member and the hollow frame member in this state. How to build a basic structure.
収縮自在なコンクリート流入防止材を前記中空型枠部材内に充填し、しかる後に前記コンクリートを打設する請求項3又は請求項4記載の基礎構造の構築方法。  The method for constructing a foundation structure according to claim 3 or 4, wherein a shrinkable concrete inflow preventing material is filled in the hollow frame member, and then the concrete is placed.
JP2000252197A 2000-08-23 2000-08-23 Basic structure and construction method Expired - Fee Related JP3741198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000252197A JP3741198B2 (en) 2000-08-23 2000-08-23 Basic structure and construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000252197A JP3741198B2 (en) 2000-08-23 2000-08-23 Basic structure and construction method

Publications (2)

Publication Number Publication Date
JP2002061202A JP2002061202A (en) 2002-02-28
JP3741198B2 true JP3741198B2 (en) 2006-02-01

Family

ID=18741479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000252197A Expired - Fee Related JP3741198B2 (en) 2000-08-23 2000-08-23 Basic structure and construction method

Country Status (1)

Country Link
JP (1) JP3741198B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214029B2 (en) * 2003-10-03 2009-01-28 ジャパンパイル株式会社 Low-fixation pile head joint structure
JP4508854B2 (en) * 2004-12-15 2010-07-21 株式会社フジタ Pile and footing joint structure
CN106400828A (en) * 2016-06-01 2017-02-15 中交第二航务工程局有限公司 Steel pipe composite pile foundation applicable to deep water and coral reef geology
CN110284420B (en) * 2019-06-25 2021-03-09 东南大学 Self-resetting full-prefabricated pier-bearing platform structure easy to restore after earthquake and assembling method thereof
CN114411697B (en) * 2022-01-28 2022-08-26 华川建设集团有限公司 High-strength structure for building earthquake prevention and earthquake prevention method

Also Published As

Publication number Publication date
JP2002061202A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
CN106368332B (en) A kind of reinforced concrete beam column node isolation structure and its construction method
KR101684771B1 (en) Method for connection structure for internally confined hollow rc column-foundation connection reinforced with external tube
JP2002061282A (en) Columnar reinforced concrete construction member
JP3741198B2 (en) Basic structure and construction method
JP3780816B2 (en) Seismic isolation method for existing buildings
JP2004244955A (en) Cast-in-place concrete-filled steel pipe pile, construction method for cast-in-place concrete-filled steel pipe pile and foundation structure of structure
JP3882633B2 (en) Steel pipe damper and rocking foundation structure using the same
JP2021102915A (en) Anchorage structure and construction method for exposure type leg pillar capable of dealing with epicentral earthquake
JPH09256390A (en) Vibration-isolation pile foundation
JP2005105531A (en) Foundation structure of building and its construction method
JP2011169070A (en) Building using perpendicular vibration control pc structural member to which vibration control prestress has been applied
JP2012140823A (en) Base-isolated structure for construction
JP2979114B2 (en) Existing foundation structure reinforcement method
JP2008031754A (en) Foundation ground reinforcing structure and foundation ground reinforcing method
JP2004257120A (en) Connection structure used for foundation of building
JP3581691B2 (en) Mounting method and mounting structure of horizontal force damper for structure
JP4451699B2 (en) Pile head joint structure
JP3165063B2 (en) Seismic foundation structure
JP2004044303A (en) Connection structure for foundation pile and superstructure, pile head joint member, and connecting method for foundation pile and superstructure
JP6860381B2 (en) Reinforcement method and structure of steel pipe pile using multiple fine crack type fiber reinforced cement composite material
JP2003227138A (en) Connecting structure between pile head and foundation
JP3968537B2 (en) Pull-out prevention structure for concrete compression materials
JP5691507B2 (en) Structure and method for joining steel pipe pile and foundation
JP2004162259A (en) Support structure of structure foundation
JP2010090596A (en) Joint structure of pile and foundation skeleton, joining method for pile and foundation skeleton, and pc member

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees