JP3741176B2 - Proton reduction catalyst - Google Patents

Proton reduction catalyst Download PDF

Info

Publication number
JP3741176B2
JP3741176B2 JP10409397A JP10409397A JP3741176B2 JP 3741176 B2 JP3741176 B2 JP 3741176B2 JP 10409397 A JP10409397 A JP 10409397A JP 10409397 A JP10409397 A JP 10409397A JP 3741176 B2 JP3741176 B2 JP 3741176B2
Authority
JP
Japan
Prior art keywords
protons
catalyst
hydrogen molecules
reducing
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10409397A
Other languages
Japanese (ja)
Other versions
JPH10290934A (en
Inventor
正夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP10409397A priority Critical patent/JP3741176B2/en
Publication of JPH10290934A publication Critical patent/JPH10290934A/en
Application granted granted Critical
Publication of JP3741176B2 publication Critical patent/JP3741176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プロトンを還元して水素分子を発生させるための触媒及び該触媒を用いてプロトンから水素分子を発生させる方法に関するものである。
【0002】
【従来の技術】
従来、プロトンを還元して水素分子(以下、本明細書中で「H2」と記載する場合がある)を発生させる方法として、貴金属やそのコロイドを電極材料や触媒として用いる方法が一般的に用いられているが、貴金属を用いるために触媒の製造コストが高いという問題を有している。また、触媒自体の活性も十分ではなく、理論電位を上回る過電圧が必要になる場合もある。このような理由から、プロトンを還元して水素分子を発生するための触媒として、高活性で安価に製造できる高活性な触媒の開発が求められていた。
【0003】
【発明が解決しようとする課題及び課題を解決するための手段】
本発明者は上記の課題を解決すべく、貴金属にかえて通常の金属を含む触媒を開発すべく鋭意検討した。その結果、2個の近接した金属イオンを含む特定の錯体を触媒として用いると、極めて効率的にプロトンを還元でき、水素分子を大量に製造できることを見出した。本発明は上記の知見を基にして完成されたものである。
【0004】
すなわち本発明は、プロトンを還元して水素分子を発生させる反応の触媒であって、プルシアンホワイト又は還元型ルテニウムパープルを含む触媒を提供するものである。
【0005】
本発明の別の態様によれば、プルシアンホワイト又は還元型ルテニウムパープルを含む触媒の存在下でプロトンを還元して水素分子を製造する方法が提供される。
【0006】
【発明の実施の形態】
本発明のプロトン還元用触媒は、プロトンを還元して水素分子を発生させることができる触媒であって、近接して配置された2個以上の金属イオンを含むことを特徴としており、その好ましい態様では、2個以上の近接した金属イオンが架橋配位子で連結された多核錯体であって、さらに好ましくは還元型の多核錯体であることを特徴としている。金属イオンとしては、例えば、周期律表 VIIA 族または VIII 族から選ばれる金属イオン、例えば、鉄イオン、ルテニウムイオンなどを用いることができる。
【0007】
金属イオンを近接して配置する手段は特に限定されないが、例えば、2個以上の金属イオンを架橋することができる配位子(本明細書において「架橋配位子」と呼ぶ場合がある)と金属イオンとを用いて、1つの錯体中に2個以上の金属イオンを中心原子として含む多核錯体を製造する手段を採用することができる。例えば、シアノ基などの架橋配位子を用いると多核錯体が生成し、他の担体を用いなくても2個以上の金属イオンを近接して配置することが可能である。
【0008】
好ましい触媒の例として、ヘキサシアノ鉄錯体と鉄イオンから生成するプルシアンブルー(PBと略す場合がある:Fe4 3+ [ FeII(CN)6]3 4- ) を還元して得られるプルシアンホワイト(PWと略す場合がある:(4 Cat+ )Fe4 2+ [FeII(CN)6]3 4- 、ただし Cat+ は K+ などのカチオンを表す) を挙げることができる。この錯体は高分子量の多核錯体であり、近接した鉄イオンが錯体中に多数存在するので触媒活性が極めて高く、ほとんど過電圧を要しないという特徴がある。
【0009】
近接して配置される金属イオン間の距離(原子の中心間距離)は金属イオンや錯体の種類により異なるが、隣接する2個の金属イオンの周囲にそれぞれ存在するプロトンが金属イオンから電子を受け取って還元されると同時に、互いに結合して水素分子を形成できるような距離であれば特に限定されることはない。例えば、 15 Å程度以内、より好ましくは2〜8Å程度であることが好ましい。より具体的には、上記のシアノ基架橋型鉄錯体では約 5.1Åである。
【0010】
プロトンから水素原子を製造するための触媒の性状は特に限定されないが、例えば、固相膜を形成したものやコロイド状のものを例示することができる。反応系中に共存させるプロトン濃度はなるべく高い方がよいが、高過ぎると金属錯体や担体の分解が問題になる場合もある。通常は 1 mol/dm3 (=pH 1)〜10-5 mol/dm3 (=pH 5)程度の範囲が好適である。
【0011】
プロトンを還元して水素分子を発生させる方法としては、例えば、触媒の存在下で還元性の試薬を用いて化学的にプロトンを還元する方法や、電気触媒化学的に電極を用いて触媒を経由したプロトン還元を行う方法などを採用することができる。化学的方法としては、例えば、増感剤(Ru(bpy)3 2+など)、電子伝達体(メチルビオロゲンなど)、及び還元剤(エチレンジアミン四酢酸 (EDTA) 、トリエタノールアミンなど)を含む水溶液を可視光で照射し、電子伝達体を還元して強い還元剤を生成させてプロトンを還元する光化学的方法も利用可能である。電気触媒化学的方法では、触媒を水中に溶解又は懸濁して用いてもよいが、白金などの導電性金属からなる電極の表面を本発明の触媒で被覆して用いると効率的に水素分子を製造できる場合がある。
【0012】
代表的な例として、白金などの導電性金属の表面に本発明の錯体を被覆した電極をプロトンを含む水中に浸漬し、対極と参照極を付して三極式セル構成として、プロトンの還元電位より低い電位を印加する方法を例示することができる。本発明の方法では、近接した2個の金属イオンからそれぞれの周囲に存在するプロトンに電子が移動するが、互いに隣接するプロトンは還元されると同時に結合して水素分子を与えるので、効率よく水素分子が発生する。
【0013】
プロトンを還元して H2 を発生させるための理論電位は PH=0 では 0 V (VS. SHE), PH=7では -0.41V (VS. SHE) であり、従来の方法ではこの電位より 100〜 200 mV 程度低い過電圧を必要としていたが、本発明の触媒を用いると、概ね理論電位付近でプロトンを還元して水素分子を発生させることが可能である。本発明の触媒は、例えば、還元剤から水素分子を発生させるための触媒として用いることができ、また、水の電気分解における陰極材料としても用いて水素分子を発生させることも可能である。
【0014】
【実施例】
以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されることはない。
例1
20 mM の FeCl3水溶液と 20 mMのK3[Fe(CN)6] 水溶液を等量混合してベルリンブラウン(繰り返し単位: K+ Fe3+ [FeII(CN)6]4-, BBと略す)のコロイド水溶液を調製した。この溶液中に 1×1 cmの白金板電極を浸漬するとベルリンブラウンが還元されて不溶性プルシアンブルー(Fe4 3+ [FeII (CN)6]3 4- ; PB)が薄膜として析出した。この薄膜を作用極として HCl及び KCl (0.05M)を含む pH 1.35の水溶液中に入れ、白金線を対極、Ag-AgCl 電極を参照極として負の電位を印加すると PB は還元されてプルシアンホワイト(繰り返し単位:4K+ Fe4 2+ [Fe II(CN)6]3 4- ; PW) となり、同時にプロトンが還元されて水素(H2)が発生した。Pt/PW 系及び Pt 板のみの場合について発生水素の電位依存性を調べたところ、Pt/PW 系は Pt のみに比べて著しく大量のH2を発生しており、電流効率は80〜90% であった。
【0015】
例2
例1の方法において、ベルリンブラウン水溶液に白金板を浸漬する時間を調節することによって膜厚を変化させた被覆プルシアンブルーを製造した。この薄膜を用い、例1と同様にして -0.30 V (VS. Ag-AgCl)で1時間にわたり定電位電解を行った。その結果、プルシアンホワイト量が多いほど発生した水素分子の量が多くなることが認められ、プルシアンホワイトが触媒として作用していることが明らかとなった。
【0016】
例3
例1の方法において -0.40 V (VS. Ag-AgCl)での定電位電解を行ったところ、プルシアンホワイトのターンオーバー数が 1,700 h-1に達したことが確認された。
【0017】
例4
例1の方法において、K3 [FeIII (CN)6]の代わりに [RuII(CN)6]4-を用いてルテニウムパープル (K + Fe3+ [RuII(CN)6]4- ; RP)のコロイド水溶液を調製し、この水溶液に白金板電極を浸漬して白金銀対極、Ag-AgCl 参照電極を付してカソード電圧を印加し、20 mA/cm2 の電流密度で還元を行って還元型ルテニウムパープル膜を白金上に析出させた。この薄膜を用いて例1と同様にして定電位電解を行ったところ、-0.40 V (VS. Ag-AgCl) の電位で一時間後に約 1 ml の水素の発生が認められた。
【0018】
【発明の効果】
本発明の触媒を用いてプロトンの還元を行うと、従来用いられていた貴金属触媒などを用いた場合に比べて効率よく水素分子を発生させることができる。本発明の触媒は安価に製造でき、極めて高活性であるという特徴を有している。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for reducing protons to generate hydrogen molecules and a method for generating hydrogen molecules from protons using the catalyst.
[0002]
[Prior art]
Conventionally, as a method of reducing protons to generate hydrogen molecules (hereinafter sometimes referred to as “H 2 ” in this specification), a method of using a noble metal or a colloid thereof as an electrode material or a catalyst is generally used. Although it is used, there is a problem that the production cost of the catalyst is high because noble metal is used. Further, the activity of the catalyst itself is not sufficient, and an overvoltage exceeding the theoretical potential may be required. For these reasons, there has been a demand for the development of a highly active catalyst that can be produced at low cost as a catalyst for reducing protons to generate hydrogen molecules.
[0003]
SUMMARY OF THE INVENTION Problems to be Solved by the Invention and Means for Solving the Problems
In order to solve the above problems, the present inventor diligently studied to develop a catalyst containing a normal metal instead of a noble metal. As a result, it has been found that when a specific complex containing two adjacent metal ions is used as a catalyst, protons can be reduced extremely efficiently and a large amount of hydrogen molecules can be produced. The present invention has been completed based on the above findings.
[0004]
That is, the present invention provides a catalyst for the reaction of reducing protons to generate hydrogen molecules, which includes Prussian white or reduced ruthenium purple.
[0005]
According to another aspect of the present invention, there is provided a method for producing hydrogen molecules by reducing protons in the presence of a catalyst containing Prussian white or reduced ruthenium purple.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The proton reduction catalyst of the present invention is a catalyst capable of generating hydrogen molecules by reducing protons, and is characterized by containing two or more metal ions arranged close to each other. Is a multinuclear complex in which two or more adjacent metal ions are linked by a bridging ligand, more preferably a reduced multinuclear complex. As the metal ion, for example, a metal ion selected from group VIIA or group VIII of the periodic table, for example, iron ion, ruthenium ion and the like can be used.
[0007]
The means for arranging the metal ions close to each other is not particularly limited. For example, a ligand capable of crosslinking two or more metal ions (sometimes referred to as “bridged ligand” in this specification) A means for producing a polynuclear complex containing two or more metal ions as a central atom in one complex using a metal ion can be employed. For example, when a bridging ligand such as a cyano group is used, a polynuclear complex is generated, and two or more metal ions can be arranged close to each other without using another carrier.
[0008]
As an example of a preferable catalyst, Prussian white (which may be abbreviated as PB: Fe 4 3+ [Fe II (CN) 6 ] 3 4- ) formed from a hexacyano iron complex and iron ions is obtained. PW may be abbreviated: (4 Cat + ) Fe 4 2+ [Fe II (CN) 6 ] 3 4− , where Cat + represents a cation such as K + ). This complex is a high molecular weight polynuclear complex, and has a feature that the catalytic activity is extremely high because there are many adjacent iron ions in the complex, and almost no overvoltage is required.
[0009]
The distance between adjacent metal ions (the distance between the centers of atoms) differs depending on the type of metal ion or complex, but the protons that exist around two adjacent metal ions each receive electrons from the metal ions. The distance is not particularly limited as long as it is a distance that can be combined with each other to form hydrogen molecules. For example, it is preferably about 15 mm or less, more preferably about 2 to 8 mm. More specifically, in the above cyano group-bridged iron complex, it is about 5.1 mm.
[0010]
The properties of the catalyst for producing hydrogen atoms from protons are not particularly limited, and examples thereof include those having a solid phase film and colloidal ones. The proton concentration to coexist in the reaction system is preferably as high as possible, but if it is too high, decomposition of the metal complex or the carrier may become a problem. Usually, the range of about 1 mol / dm 3 (= pH 1) to 10 −5 mol / dm 3 (= pH 5) is preferable.
[0011]
Examples of a method for reducing protons to generate hydrogen molecules include, for example, a method of chemically reducing protons using a reducing reagent in the presence of a catalyst, or an electrocatalytic method using an electrode via a catalyst. A method of performing proton reduction can be employed. Chemical methods include, for example, an aqueous solution containing a sensitizer (such as Ru (bpy) 3 2+ ), an electron carrier (such as methyl viologen), and a reducing agent (such as ethylenediaminetetraacetic acid (EDTA) or triethanolamine). Can be used to reduce protons by reducing the electron carrier to produce a strong reducing agent. In the electrocatalytic chemical method, the catalyst may be used by dissolving or suspending it in water. However, when the surface of an electrode made of a conductive metal such as platinum is coated with the catalyst of the present invention, hydrogen molecules are efficiently used. May be able to manufacture.
[0012]
As a typical example, an electrode in which the complex of the present invention is coated on the surface of a conductive metal such as platinum is immersed in water containing protons, and a counter electrode and a reference electrode are attached to form a three-electrode cell configuration. A method of applying a potential lower than the potential can be exemplified. In the method of the present invention, electrons move from two adjacent metal ions to protons around each of them, but protons adjacent to each other are reduced and simultaneously bonded to give hydrogen molecules. A molecule is generated.
[0013]
The theoretical potential for reducing protons to generate H 2 is 0 V (VS. SHE) at PH = 0 and -0.41 V (VS. SHE) at PH = 7. Although an overvoltage as low as ˜200 mV was required, when the catalyst of the present invention is used, it is possible to generate hydrogen molecules by reducing protons around the theoretical potential. The catalyst of the present invention can be used, for example, as a catalyst for generating hydrogen molecules from a reducing agent, and can also be used as a cathode material in water electrolysis to generate hydrogen molecules.
[0014]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
Example 1
An equal amount of 20 mM FeCl 3 aqueous solution and 20 mM K 3 [Fe (CN) 6 ] aqueous solution are mixed together to form Berlin Brown (repeating unit: K + Fe 3+ [Fe II (CN) 6 ] 4- , BB (Abbreviated) was prepared. When a 1 × 1 cm platinum plate electrode was immersed in this solution, Berlin Brown was reduced and insoluble Prussian blue (Fe 4 3+ [Fe II (CN) 6 ] 3 4- ; PB) was deposited as a thin film. When this thin film is placed in a pH 1.35 aqueous solution containing HCl and KCl (0.05M) as a working electrode, and a negative potential is applied using a platinum wire as a counter electrode and an Ag-AgCl electrode as a reference electrode, PB is reduced and Prussian white ( The repeating unit was 4K + Fe 4 2+ [Fe II (CN) 6 ] 3 4- ; PW), and protons were simultaneously reduced to generate hydrogen (H 2 ). When the potential dependence of the generated hydrogen was investigated in the case of only the Pt / PW system and the Pt plate, the Pt / PW system generated a significantly larger amount of H 2 than the Pt alone, and the current efficiency was 80-90%. Met.
[0015]
Example 2
In the method of Example 1, a coated Prussian blue having a changed film thickness was prepared by adjusting the time during which the platinum plate was immersed in the aqueous solution of Berlin Brown. Using this thin film, constant potential electrolysis was carried out at −0.30 V (VS. Ag-AgCl) for 1 hour in the same manner as in Example 1. As a result, it was found that the amount of generated hydrogen molecules increased as the amount of Prussian white increased, and it became clear that Prussian white acts as a catalyst.
[0016]
Example 3
When constant potential electrolysis was performed at −0.40 V (VS. Ag-AgCl) in the method of Example 1, it was confirmed that the turnover number of Prussian white reached 1,700 h −1 .
[0017]
Example 4
In the method of Example 1, using [Ru II (CN) 6 ] 4- instead of K 3 [Fe III (CN) 6 ], ruthenium purple (K + Fe 3+ [Ru II (CN) 6 ] 4- RP) colloidal solution, immersing a platinum plate electrode in this aqueous solution, applying a platinum silver counter electrode and an Ag-AgCl reference electrode, applying a cathode voltage, and reducing at a current density of 20 mA / cm 2 A reduced ruthenium purple film was deposited on platinum. Using this thin film, constant potential electrolysis was carried out in the same manner as in Example 1. As a result, about 1 ml of hydrogen was generated after one hour at a potential of -0.40 V (VS. Ag-AgCl).
[0018]
【The invention's effect】
When protons are reduced using the catalyst of the present invention, hydrogen molecules can be generated more efficiently than when a conventionally used noble metal catalyst or the like is used. The catalyst of the present invention is characterized in that it can be produced at low cost and is extremely highly active.

Claims (4)

プロトンを還元して水素分子を発生させる反応の触媒であって、プルシアンホワイト又は還元型ルテニウムパープルを含む触媒。 A catalyst for a reaction of reducing protons to generate hydrogen molecules, comprising Prussian white or reduced ruthenium purple. 請求項1に記載の触媒の存在下でプロトンを還元して水素分子を製造する方法。 A method for producing hydrogen molecules by reducing protons in the presence of the catalyst according to claim 1 . 請求項1または2に記載の触媒を導電性金属表面に被覆した電極であって、電気触媒化学的にプロトンを還元して水素分子を発生させることができる電極。 An electrode obtained by coating the surface of a conductive metal with the catalyst according to claim 1 or 2 and capable of generating hydrogen molecules by electrocatalytically reducing protons. プロトンを還元して水素分子を発生させる方法であって、プロトンを含む水中に浸漬した請求項に記載の電極に対してプロトンの還元電位より低い電位を印加する工程を含む方法。4. A method of reducing protons to generate hydrogen molecules, the method comprising applying a potential lower than the reduction potential of protons to the electrode according to claim 3 immersed in water containing protons.
JP10409397A 1997-04-22 1997-04-22 Proton reduction catalyst Expired - Fee Related JP3741176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10409397A JP3741176B2 (en) 1997-04-22 1997-04-22 Proton reduction catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10409397A JP3741176B2 (en) 1997-04-22 1997-04-22 Proton reduction catalyst

Publications (2)

Publication Number Publication Date
JPH10290934A JPH10290934A (en) 1998-11-04
JP3741176B2 true JP3741176B2 (en) 2006-02-01

Family

ID=14371514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10409397A Expired - Fee Related JP3741176B2 (en) 1997-04-22 1997-04-22 Proton reduction catalyst

Country Status (1)

Country Link
JP (1) JP3741176B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110735147B (en) * 2019-09-10 2021-04-02 复旦大学 Prussian blue analogue nanosheet array material and application thereof in water electrolysis
CN114438527B (en) * 2022-02-19 2023-05-23 福州大学 Synthesis method and application of trimetallic Prussian blue catalyst

Also Published As

Publication number Publication date
JPH10290934A (en) 1998-11-04

Similar Documents

Publication Publication Date Title
Cox et al. Electrocatalytic oxidation and determination of arsenic (III) on a glassy carbon electrode modified with a thin film of mixed-valent ruthenium (III, II) cyanide
Rong et al. Spontaneous adsorption of heteropolytungstates and heteropolymolybdates on the surfaces of solid electrodes and the electrocatalytic activity of the adsorbed anions
Scharf et al. Electrocatalytic oxidation of hydrazine at a Prussian Blue-modified glassy carbon electrode
Capon et al. Electrochemical proton reduction by thiolate-bridged hexacarbonyldiiron clusters
Waszczuk et al. A nanoparticle catalyst with superior activity for electrooxidation of formic acid
Oyama et al. Polymeric ligands as anchoring groups for the attachment of metal complexes to graphite electrode surfaces
Zouaoui et al. Electrodeposition of copper into functionalized polypyrrole films
Bose et al. Efficient electrocatalyst assemblies for proton and oxygen reduction: the electrosynthesis and characterization of polypyrrole films containing nanodispersed platinum particles
Lei et al. Electron transfer of hemoglobin at electrodes modified with colloidal clay nanoparticles
Safavi et al. High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode
Hu et al. Surfactant-intercalated clay films for electrochemical catalysis. Reduction of trichloroacetic acid
Che et al. Effects of electrode surface pretreatments on the electrochemistry of a macrocyclic dioxoruthenium (VI) complex
Geno et al. Chemically modified carbon paste electrodes: Part IV. Electrostatic binding and electrocatalysis at poly (4-vinylpyridine)-containing electrodes
Slattery et al. pH-Dependent metal-based redox couples as models for proton-coupled electron transfer reactions
Zhuang et al. Synthesis, reactivity and two-electron electrochemistry of the dinuclear molybdenum (0) complexes [Et4N] 2 [Mo2 (CO) 8 (SR) 2](R= tert-Bu, Ph)
Shi et al. Electrocatalysts for the four-electron reduction of dioxygen based on adsorbed cobalt tetrapyridylporphyrin molecules linked by aquaammine complexes of ruthenium (II)
JPS59139569A (en) Fuel battery
Ito et al. Electrochemical formation of stable ferrocene anion and the formal rate constant of the ferrocene0/− electrode
Hossain et al. Electrocatalytic reduction of carbon dioxide by substituted pyridine and pyrazole complexes of palladium
JP2005501177A (en) Electrochemical reaction electrode, manufacturing method, and application device thereof.
JP3741176B2 (en) Proton reduction catalyst
Abe et al. Prussian White as a highly active molecular catalyst for proton reduction
Abe et al. Electrochemistry of ferric ruthenocyanide (Ruthenium Purple), and its electrocatalysis for proton reduction
JP4519950B2 (en) Electrode-electrolyte-unit manufacturing method by catalyst electrolyte deposition
Oliveira et al. Molecular architecture based on palladium-salen complex/graphene for low potential water oxidation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees