JP3740526B2 - Electrode film preparation method - Google Patents
Electrode film preparation method Download PDFInfo
- Publication number
- JP3740526B2 JP3740526B2 JP2001287770A JP2001287770A JP3740526B2 JP 3740526 B2 JP3740526 B2 JP 3740526B2 JP 2001287770 A JP2001287770 A JP 2001287770A JP 2001287770 A JP2001287770 A JP 2001287770A JP 3740526 B2 JP3740526 B2 JP 3740526B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- electrode
- solid electrolyte
- film
- electrode film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Measuring Oxygen Concentration In Cells (AREA)
- Inert Electrodes (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、アルカリ金属熱電変換装置(AMTEC)、燃料電池、ガスセンサ等において必要となる配線部を備えた多孔質電極薄膜に関するものである。
【0002】
【従来の技術】
従来の技術の一例として、アルカリ金属熱電変換器における電極膜の役割を図8に示す。アルカリ金属熱電変換器の発電部では、固体電解質中を通過してきたNa+イオンが、集電体側から供給される電子を薄膜電極から受け取って中性のナトリウム原子となる。ここで生成する金属ナトリウムは蒸気となり多孔質電極薄膜の粒子間の隙間を通って外部に拡散する。電極膜にはNa+イオンに効率良く電子を供給できるように高い導電性が求められるとともに、生成する金属ナトリウム蒸気が速やかに排出されるように優れたガス透過性を持つことが求められる。
【0003】
アルカリ金属熱電変換器に用いられる多孔質薄膜電極はβ"アルミナ固体電解質の上にモリブデンや窒化チタンなどの導電体をスパッタ法などで蒸着させて作成される。その際、基板となる固体電解質は、焼結体をそのまま、あるいは、表面の劣化層を削ぎ落とし、表面を洗浄して用いられる。
【0004】
この場合、薄膜の下地部分は全体が一様な粗さを持つ表面となっているので、薄膜を構成する粒子は島状に成長し一様な多孔質膜となる。基板温度、成膜速度などの成膜条件を変化させることで膜の性質をコントロールすることが試みられているものの、積極的に基板の表面状態、表面粗さを制御する事で作成される膜の性質を変化させ、その導電性やガス透過性をコントロールすることは行われていない。
【0005】
このようにして作成された多孔質薄膜電極膜では、シート抵抗値は必ずしも十分に低くないので、特開平3−64857号公報には、電極膜にモリブデン等の金属網を被せるか、あるいは溶射により集電パターンを電極部に作成する、などの手段で低抵抗化をはかり、集電効率の向上を図る構造が開示されている。
【0006】
また、特開平5−52790号公報には、基板上に形成された金属酸化物半導体薄膜の抵抗値変化を利用してガス検出を行なう金属酸化物半導体薄膜ガスセンサにおいて、前記基板上に絶縁性物質の超微粒子薄膜を中間層とし、その上に前記中間層の凹凸に対応した凹凸面をもつ金属酸化物半導体薄膜を設けたことを特徴とするガスセンサが、開示されている。
【0007】
また、特開平10−79561号公報には、絶縁性樹脂層と、該絶縁性樹脂層上に設けられた配線および薄膜抵抗体とを具える配線基板において、絶縁性樹脂層における薄膜抵抗体が形成されている領域の表面粗度が、該絶縁性樹脂層における配線が形成されている領域の表面粗度に比べて小さくなっていることを特徴とする配線基板が、開示されている。
【0008】
【発明が解決しようとする課題】
例えば、上記のアルカリ金属熱電変換装置で用いられる多孔質薄膜電極に同時に求められる特性は、1)面に沿った方向に十分な導電性を持つこと、2)使用雰囲気下で物理的・化学的に安定であること、3)反応ガスないし生成ガスの供給・放出が容易なように良好な通気性を有することなどである。しかし一般に、蒸着法で作製された均質な薄膜電極では1)の導電性と3)のガスの透過性を両立させることは難しい。すなわち厚さの薄い膜、あるいは粒子の粗い電極膜ではガスの透過性は優れているものの、粒子間の接触が不充分で導電性が低くなりやすい。一方、厚い膜、緻密な膜では導電性には優れているがガスの透過性が低下しやすい。この場合、電極としては、内部抵抗の増大や端子間電圧の低下がおこり、最大出力、出力密度などの出力特性が悪化し、エネルギー変換効率が低下する。
【0009】
この発明は上記に鑑み提案されたもので、ガスの透過性は優れていないがシート抵抗が低い部分と、ガスの透過性は優れているがシート抵抗が高い部分とを容易に作り分けることができる電極膜作製法を提供することを目的とする。
【0010】
【課題を解決するための手段】
一般に、鏡面研磨するなど十分平滑にした基板では、その上に蒸着して生成される薄膜は緻密で一様なものとなる。緻密な膜はガス透過性が劣るものの多孔質薄膜に比べて面に沿った方向の導電率が数倍程度大きい。例えば、電極膜の集電構造を下地基板に鏡面研磨であらかじめ作成しておけば、この上に電極材料を蒸着するだけで緻密質からなる集電パターン持つ多孔質薄膜電極を作成する事ができ、電気抵抗の小さな優れた特性を持つ電極が作成できる。本発明は、このような点に注目したものであり、下記のような特徴がある。
【0011】
まず、本発明における第1の発明は、固体電解質上に、導電性薄膜を形成する際に、固体電解質の一方の面の表面状態を場所に依存して変化させる工程と、固体電解質に導電性薄膜を堆積して、上記の表面状態の違いにより、導電性薄膜のシート抵抗値が低くガスの透過率の低い配線部と、シート抵抗値が高くガスの透過率の高い多孔質電極部とを同時に形成して作り分ける工程とを含むことを特徴としている。
【0012】
また、本発明における第2の発明は、上記した第1の発明の構成に加えて、凹凸の比較的少ない部分に配線部を形成し、凹凸の比較的多い部分に多孔質電極部を形成することを特徴としている。
【0013】
また本発明における第3の発明は、上記した第1の発明の構成に加えて、固体電解質に導電性薄膜を堆積する方法は、導電性薄膜を形成する分子を飛散させて固着することによる方法であることを特徴としている。
【0014】
また本発明における第4の発明は、上記した第1の発明の構成に加えて、固体電解質に導電性薄膜を堆積する方法は、固体電解質表面における化学変化により形成することによる方法であることを特徴としている。
【0015】
また本発明における第5の発明は、上記した第1の発明の構成に加えて、固体電解質の表面状態を場所に依存して変化させる方法は、場所に関して選択的にエッチングする方法であることを特徴としている。
【0016】
また本発明における第6の発明は、上記した第1の発明の構成に加えて、固体電解質の表面状態を場所に依存して変化させる方法は、場所に関して選択的に研磨する方法であることを特徴としている。
【0017】
【発明の実施の形態】
以下にこの発明の実施の形態を図面に基づいて詳細に説明する。
まず、石英ガラス、ソーダガラス、αアルミナ、マグネシア、β”アルミナ等の基板上に作成したモリブデン電極膜について実施例を説明する。図2は、モリブデン電極膜を、高周波スパッタ装置を用いて、石英ガラス、ソーダガラス、アルミナ、マグネシア等の基板上に作成した試料の断面を示す模式図である。これらの基板の一部を平滑面に、他の一部を粗面に加工した。その表面平滑化には平面研磨機を用い、粗面はサンドブラストで形成した。また、モリブデン膜厚は基板の重量増加より緻密な膜と仮定して計算により求めた。作成した薄膜の抵抗は、膜を5mm幅に加工して直流四端子法で測定し、抵抗率に換算した。
【0018】
図3にガラス基板上に作成したモリブデン(Mo)薄膜の膜厚を変えたときの抵抗率の変化を示す。この結果から、抵抗率は、バルクの値(5.2×10-6Ωcm)より大きく、膜厚が薄くなるに従って増大した事がわかる。また粗面上の膜が平滑面上のものより抵抗率は大きく、膜厚が薄いほどその差が顕著になり1μm以下の膜厚では2倍以上になった。αアルミナやマグネシア、β”アルミナを基板に用いた場合も、これと同様の結果が得られた。また、薄膜のSEM像では、平滑面上には一様な膜があり、粗面上では下地の凹凸の影響を受けてMo粒子が成長している様子が観察され、粗面ではガスの透過率が高いのは明かである。
【0019】
上記の実施例では、基板表面平滑化には平面研磨機を用いたが、基板表面の粗さを変化させる方法としては、研磨法や研磨剤の粒度等を変化させることで行うことができる。また、粗面はサンドブラストで加工したが、サンドブラストでは研磨粒子や吹付け圧を変えるなどにより変えることができる。
【0020】
また、図1(A)〜(C)に示す様に、基板表面の一部だけを平滑にする場合、
(A)全体が粗面であるような基板を用意して、
(B)その一部分のみを研磨して平滑化し、
(C)電極膜をスパッタで形成する方法や、
また、図1(D)〜(F)に示す様に、
(D)逆に全体が平滑な基板を用意して、
(E)その一部を粗面化処理し、
(F)電極膜をスパッタで形成する方法がある。
【0021】
また、電極膜の形成においては、スパッタに限る必要はなく、CVDプロセスを用いて形成することも可能であり、また電子ビームやレーザ光を用いたアブレーションプロセスによって形成することもできる。
【0022】
また、多結晶状態の表面が平滑な基板の場合は、図1(G)〜(I)に示す様に、
(G)全体が平滑な基板を用意して、
(H)フォトリソグラフィーで加工するために、その一部をフォトレジストで覆い、表出した部分をウエットエッチングあるいはドライエッチングを用いて、粗面化処理し、フォトレジストを除去した後、
(I)電極膜をスパッタで形成する、
ことによっても上記と同様な平滑面と粗面とを作り分けることもできる。
【0023】
このような方法により電極膜を作製して、図4に示す様に、多孔質膜と稠密膜を作り分けることができる。この稠密膜は集電体として用いるためには、図5に示す様に、縦横に走る構成とすることが望ましい。
【0024】
さらに、図6に示す様に、平滑面上の集電体のほかに、さらに集電体を形成して多層構造の集電体とすることにより、さらに集電体の抵抗をさらに低減することができる。
【0025】
また、図7に示す様に、トレンチ(溝)を形成して、その表面を粗面にすることにより、多孔質薄膜電極の面積を増加させることができる。従って、この部分で起こる反応あるいは電荷交換をより集約した平面積で行うことができ、装置の出力を増大させることができる。
【0026】
上記した電極膜作製法は、アルカリ金属熱電変換(AMTEC)、燃料電池、ガスセンサ、その他ガス透過性を必要とする電極薄膜に応用でき、工業上有用である。
【0027】
【発明の効果】
この発明は、多孔質電極薄膜を形成する場合、事前に固体電解質等の基板表面に平滑面と粗面とを作り分ける加工を施すことで、多孔質電極と集電パターンを同時に形成するようにしたので、簡単な工程で、優れたガス透過性と高い導電性を併せ持つ多孔質電極膜を作成することができるようになった。この電極膜作製法を、アルカリ金属熱電変換装置(AMTEC)、燃料電池などに応用すれば、電極面積当りの出力密度などの発電特性を改善することができる。
【図面の簡単な説明】
【図1】下地基板の加工手順とその上に作成される電極薄膜構造の模式図である。
【図2】モリブデン電極膜を、高周波スパッタ装置を用いて、基板上に作成した試料の断面を示す模式図である。
【図3】ガラス基板上に作成したモリブデン薄膜の膜厚を変えたときの抵抗率の変化を示す図である。
【図4】部分的に平滑加工した基板上に電極薄膜を蒸着して作成したときの構造例の模式図である。
【図5】平滑加工した基板上に導電性の高い緻密膜ができることを応用して集電パターンを作成した例の模式図である。
【図6】基板加工により作成された集電パターンを外部の集電体と組み合わせた例の模式図である。
【図7】トレンチ(溝)を形成して、その表面を粗面にすることにより、多孔質薄膜電極の面積を増加させた例の模式図である。
【図8】アルカリ金属熱電変換における多孔質薄膜電極の役割と作用メカニズムを示す模式図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous electrode thin film provided with a wiring part necessary for an alkali metal thermoelectric conversion device (AMTEC), a fuel cell, a gas sensor and the like.
[0002]
[Prior art]
As an example of the prior art, the role of the electrode film in the alkali metal thermoelectric converter is shown in FIG. In the power generation part of the alkali metal thermoelectric converter, Na + ions that have passed through the solid electrolyte receive electrons supplied from the current collector side from the thin film electrode and become neutral sodium atoms. The metallic sodium produced here becomes vapor and diffuses outside through the gaps between the particles of the porous electrode thin film. The electrode film is required to have high conductivity so that electrons can be efficiently supplied to Na + ions, and to have excellent gas permeability so that generated metallic sodium vapor can be quickly discharged.
[0003]
A porous thin film electrode used for an alkali metal thermoelectric converter is formed by depositing a conductor such as molybdenum or titanium nitride on a β "alumina solid electrolyte by sputtering or the like. The sintered body is used as it is or after the surface deterioration layer is scraped off and the surface is washed.
[0004]
In this case, since the entire base portion of the thin film has a surface with uniform roughness, the particles constituting the thin film grow into islands and become a uniform porous film. Although attempts have been made to control film properties by changing deposition conditions such as substrate temperature and deposition rate, films are created by actively controlling the surface condition and surface roughness of the substrate. However, it is not performed to change the properties and control the conductivity and gas permeability.
[0005]
In the porous thin-film electrode film thus prepared, the sheet resistance value is not necessarily low enough. Therefore, Japanese Patent Application Laid-Open No. 3-64857 discloses that the electrode film is covered with a metal network such as molybdenum or is sprayed. A structure that improves the current collection efficiency by reducing the resistance by means such as creating a current collection pattern on an electrode portion is disclosed.
[0006]
Japanese Patent Application Laid-Open No. 5-52790 discloses a metal oxide semiconductor thin film gas sensor that performs gas detection using a resistance value change of a metal oxide semiconductor thin film formed on a substrate. A gas sensor is disclosed in which an ultrafine particle thin film is used as an intermediate layer, and a metal oxide semiconductor thin film having an uneven surface corresponding to the unevenness of the intermediate layer is provided thereon.
[0007]
Japanese Patent Application Laid-Open No. 10-79561 discloses a thin film resistor in an insulating resin layer in a wiring board including an insulating resin layer, and a wiring and a thin film resistor provided on the insulating resin layer. There has been disclosed a wiring board characterized in that the surface roughness of the formed region is smaller than the surface roughness of the region where the wiring in the insulating resin layer is formed.
[0008]
[Problems to be solved by the invention]
For example, the characteristics required for the porous thin film electrode used in the above-mentioned alkali metal thermoelectric conversion device are: 1) sufficient conductivity in the direction along the surface, and 2) physical and chemical properties in the working atmosphere. 3) having good air permeability so that the supply or release of the reaction gas or product gas is easy. However, in general, it is difficult to achieve both the electrical conductivity of 1) and the gas permeability of 3) with a homogeneous thin film electrode produced by vapor deposition. That is, a thin film or a rough electrode film has excellent gas permeability, but the contact between the particles is insufficient and the conductivity tends to be low. On the other hand, a thick film and a dense film are excellent in conductivity, but the gas permeability tends to decrease. In this case, as the electrode, the internal resistance increases and the voltage between terminals decreases, output characteristics such as maximum output and output density deteriorate, and energy conversion efficiency decreases.
[0009]
The present invention has been proposed in view of the above, and it is possible to easily make a portion having a low sheet resistance and a portion having a low sheet resistance but a portion having a high gas resistance but a high sheet resistance. An object of the present invention is to provide a method for producing an electrode film.
[0010]
[Means for Solving the Problems]
In general, in a sufficiently smooth substrate such as mirror polishing, a thin film formed by vapor deposition on the substrate is dense and uniform. Although the dense membrane is inferior in gas permeability, the conductivity in the direction along the surface is several times larger than that of the porous thin film. For example, if the current collector structure of the electrode film is prepared in advance by mirror polishing on the underlying substrate, a porous thin film electrode having a dense current collection pattern can be created simply by vapor-depositing the electrode material thereon. In addition, an electrode having excellent characteristics with small electrical resistance can be produced. The present invention pays attention to such points, and has the following features.
[0011]
First, according to the first aspect of the present invention, when forming a conductive thin film on a solid electrolyte, a step of changing the surface state of one surface of the solid electrolyte depending on the location, By depositing a thin film, due to the difference in surface state, a wiring portion having a low sheet resistance value and a low gas permeability of the conductive thin film and a porous electrode portion having a high sheet resistance value and a high gas permeability are provided. And a process of forming and forming at the same time .
[0012]
Further, in the second invention of the present invention, in addition to the configuration of the first invention described above, the wiring portion is formed in a portion with relatively little unevenness and the porous electrode portion is formed in a portion with relatively many unevenness. It is characterized by that.
[0013]
According to a third aspect of the present invention, in addition to the configuration of the first aspect described above, the method for depositing a conductive thin film on a solid electrolyte is a method by scattering and fixing molecules forming the conductive thin film. It is characterized by being.
[0014]
According to a fourth aspect of the present invention, in addition to the structure of the first aspect described above, the method for depositing a conductive thin film on a solid electrolyte is a method based on a chemical change on the surface of the solid electrolyte. It is a feature.
[0015]
According to a fifth aspect of the present invention, in addition to the configuration of the first aspect described above, the method of changing the surface state of the solid electrolyte depending on the location is a method of selectively etching with respect to the location. It is a feature.
[0016]
According to a sixth aspect of the present invention, in addition to the configuration of the first aspect described above, the method of changing the surface state of the solid electrolyte depending on the location is a method of selectively polishing with respect to the location. It is a feature.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
First, an example of a molybdenum electrode film prepared on a substrate such as quartz glass, soda glass, α-alumina, magnesia, β ″ -alumina, etc. will be described. FIG. 2 shows a molybdenum electrode film formed on quartz using a high-frequency sputtering apparatus. It is a schematic diagram showing a cross section of a sample prepared on a substrate such as glass, soda glass, alumina, magnesia, etc. A part of these substrates was processed into a smooth surface and the other part was processed into a rough surface. The surface roughness was formed by sand blasting, and the molybdenum film thickness was calculated by assuming that the film was denser than the increase in the weight of the substrate. The width was processed and measured by the DC four-terminal method, and converted into resistivity.
[0018]
FIG. 3 shows the change in resistivity when the film thickness of the molybdenum (Mo) thin film formed on the glass substrate is changed. From this result, it can be seen that the resistivity was larger than the bulk value (5.2 × 10 −6 Ωcm) and increased as the film thickness became thinner. Further, the resistivity of the film on the rough surface was larger than that on the smooth surface, and the difference became more remarkable as the film thickness was thinner. Similar results were obtained when α-alumina, magnesia, or β ″ -alumina was used for the substrate. Also, in the thin film SEM image, there was a uniform film on the smooth surface, and on the rough surface. It is apparent that the Mo particles are growing under the influence of the unevenness of the base, and the gas permeability is high on the rough surface.
[0019]
In the above embodiment, a planar polishing machine is used for smoothing the substrate surface, but as a method of changing the roughness of the substrate surface, it can be performed by changing the polishing method, the particle size of the abrasive, and the like. The rough surface is processed by sand blasting, but sand blasting can be changed by changing abrasive particles or spraying pressure.
[0020]
Also, as shown in FIGS. 1A to 1C, when smoothing only a part of the substrate surface,
(A) Prepare a substrate whose entire surface is rough,
(B) Only a part thereof is polished and smoothed,
(C) a method of forming an electrode film by sputtering,
In addition, as shown in FIGS.
(D) On the contrary, prepare a substrate that is smooth overall,
(E) A part of the surface is roughened,
(F) There is a method of forming an electrode film by sputtering.
[0021]
In addition, the formation of the electrode film need not be limited to sputtering, and can be formed using a CVD process, or can be formed by an ablation process using an electron beam or laser light.
[0022]
In the case of a substrate having a smooth surface in a polycrystalline state, as shown in FIGS.
(G) Prepare a smooth substrate as a whole,
(H) In order to process by photolithography, a part thereof is covered with a photoresist, and the exposed part is subjected to a roughening process using wet etching or dry etching, and after removing the photoresist,
(I) forming an electrode film by sputtering;
It is also possible to make a smooth surface and a rough surface similar to the above.
[0023]
An electrode film is produced by such a method, and as shown in FIG. 4, a porous film and a dense film can be formed separately. In order to use this dense film as a current collector, as shown in FIG.
[0024]
Furthermore, as shown in FIG. 6, in addition to the current collector on the smooth surface, the current collector is further formed to form a current collector having a multilayer structure, thereby further reducing the resistance of the current collector. Can do.
[0025]
Further, as shown in FIG. 7, the area of the porous thin film electrode can be increased by forming a trench and making the surface rough. Therefore, the reaction or charge exchange occurring in this part can be performed in a more integrated plane area, and the output of the apparatus can be increased.
[0026]
The electrode film preparation method described above can be applied to alkali metal thermoelectric conversion (AMTEC), fuel cells, gas sensors, and other electrode thin films that require gas permeability and is industrially useful.
[0027]
【The invention's effect】
In the present invention, when a porous electrode thin film is formed, a porous electrode and a current collecting pattern are formed at the same time by subjecting a substrate surface such as a solid electrolyte to a smooth surface and a rough surface in advance. Therefore, it has become possible to produce a porous electrode film having both excellent gas permeability and high conductivity by a simple process. If this electrode film manufacturing method is applied to an alkali metal thermoelectric converter (AMTEC), a fuel cell, etc., power generation characteristics such as power density per electrode area can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic view of a base substrate processing procedure and an electrode thin film structure formed thereon.
FIG. 2 is a schematic view showing a cross section of a sample in which a molybdenum electrode film is formed on a substrate using a high-frequency sputtering apparatus.
FIG. 3 is a diagram showing a change in resistivity when the film thickness of a molybdenum thin film formed on a glass substrate is changed.
FIG. 4 is a schematic view of a structural example when an electrode thin film is deposited on a partially smoothed substrate.
FIG. 5 is a schematic view of an example in which a current collection pattern is created by applying the fact that a highly conductive dense film can be formed on a smooth processed substrate.
FIG. 6 is a schematic view of an example in which a current collection pattern created by substrate processing is combined with an external current collector.
FIG. 7 is a schematic view of an example in which the area of the porous thin film electrode is increased by forming a trench and making the surface rough.
FIG. 8 is a schematic view showing the role and action mechanism of a porous thin film electrode in alkali metal thermoelectric conversion.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001287770A JP3740526B2 (en) | 2001-09-20 | 2001-09-20 | Electrode film preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001287770A JP3740526B2 (en) | 2001-09-20 | 2001-09-20 | Electrode film preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003100307A JP2003100307A (en) | 2003-04-04 |
JP3740526B2 true JP3740526B2 (en) | 2006-02-01 |
Family
ID=19110525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001287770A Expired - Lifetime JP3740526B2 (en) | 2001-09-20 | 2001-09-20 | Electrode film preparation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3740526B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009058328A (en) * | 2007-08-31 | 2009-03-19 | Ehime Univ | Volatile organic substance detection sensor |
KR101406721B1 (en) * | 2013-04-03 | 2014-06-16 | 한국에너지기술연구원 | Manufacturing methods of materials powder for performance improved electrode and using the same electrode and its application. |
CN112909157B (en) * | 2021-03-06 | 2022-03-15 | 西北工业大学 | Preparation method of AMTEC high-temperature-resistant TiN/Mo electrode |
-
2001
- 2001-09-20 JP JP2001287770A patent/JP3740526B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003100307A (en) | 2003-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rabin et al. | Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass | |
KR101086178B1 (en) | Electrode and method for the production thereof | |
JP5131629B2 (en) | Method for producing solid oxide fuel cell | |
US20080210662A1 (en) | Thick porous anodic alumina films and nanowire arrays grown on a solid substrate | |
JP2695641B2 (en) | Method for manufacturing solid electrolyte fuel cell | |
JPH04277648A (en) | Electrostatic chuck coated with diamond | |
JPH10335684A (en) | Manufacture of photoelectric converter | |
KR20100066817A (en) | Manufacturing method for solar cell's electrode, solar cell and its substrate used thereby | |
TW201605084A (en) | Manufacturing process of the thermoelectric conversion element | |
JP4243670B2 (en) | Layer having a porous layer region, interference filter including such a layer, and manufacturing method thereof | |
Omampuliyur et al. | Nanostructured thin film silicon anodes for Li-ion microbatteries | |
JP3740526B2 (en) | Electrode film preparation method | |
JP2000231871A (en) | Electron emitting film and field emission type cold cathode device | |
CN106098503B (en) | A kind of graphene ribbon-like electron note field emission cold-cathode and its production method | |
CN108622879A (en) | A kind of dry contact transfer method of vertical carbon nanotube array | |
JP2009164412A (en) | Porous metal thin film and manufacturing method thereof as well as capacitor | |
Bizyaev et al. | Study of surface topography and emission properties of thin Mo and Zr films | |
JP3911555B2 (en) | Silicon-based thin film manufacturing method | |
JP4974672B2 (en) | Pressure wave generator | |
JP2006225678A (en) | Particulate film structure and solid oxide type fuel cell using the same | |
KR100821740B1 (en) | Pd nanowire hydrogen sensors and its manufacturing method | |
KR101766426B1 (en) | Method for forming copper layer | |
JP5051507B2 (en) | Laminated superconducting junction and manufacturing method thereof | |
CN115866904A (en) | Preparation method of nano particle reinforced metal-diamond printed circuit board | |
US20080003415A1 (en) | Surface Pairs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040406 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040607 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051011 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3740526 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |