JP3739144B2 - Automatic painting equipment - Google Patents

Automatic painting equipment Download PDF

Info

Publication number
JP3739144B2
JP3739144B2 JP26044396A JP26044396A JP3739144B2 JP 3739144 B2 JP3739144 B2 JP 3739144B2 JP 26044396 A JP26044396 A JP 26044396A JP 26044396 A JP26044396 A JP 26044396A JP 3739144 B2 JP3739144 B2 JP 3739144B2
Authority
JP
Japan
Prior art keywords
marker
coated
coating machine
coating
abnormal approach
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26044396A
Other languages
Japanese (ja)
Other versions
JPH1099735A (en
Inventor
根 慎 一 中
秀 明 原
原 茂 樹 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trinity Industrial Corp
Original Assignee
Trinity Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trinity Industrial Corp filed Critical Trinity Industrial Corp
Priority to JP26044396A priority Critical patent/JP3739144B2/en
Publication of JPH1099735A publication Critical patent/JPH1099735A/en
Application granted granted Critical
Publication of JP3739144B2 publication Critical patent/JP3739144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Spraying Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、塗装機を被塗物の塗装面に沿って移動させながら当該被塗物を塗装する自動塗装装置に関する。
【0002】
【従来の技術】
静電塗装を行う自動塗装装置は、大きく分けて、間接加電方式,ガン直接加電方式,ワーク加電方式の三つの方式がある。
間接加電方式は、塗装機の周囲に配した針状のグリッド電極に高電圧を印加すると共に塗装機及び被塗物をアース電位として、グリッド電極と被塗物の間に静電場を形成し、塗装機から噴霧された塗料粒子をその静電場で帯電させて被塗物に塗着させる方式であり、ガン直接加電方式は、塗装機自体に高電圧を印加すると共に被塗物をアース電位として、当該塗装機と被塗物との間に静電場を形成し、帯電された塗料粒子を塗装機から噴霧させて被塗物に塗着させる方式である。
また、ワーク加電方式は、前二方式とは全く異なり、塗装機側に高電圧を印加するのではなく、塗装機をアース電位にすると共に被塗物に高電圧を印加することにより静電場を形成し、帯電された塗料粒子を塗装機から噴霧させて被塗物に塗着させる方式である。
【0003】
ところで、静電塗装を行う場合において、塗装機が被塗物に接近しすぎると絶縁破壊を生じスパークを起こすおそれがある。
このため、グリッド電極又は塗装機と、被塗物との間に流れる暗電流を検出し、これが絶縁破壊を起こす電流値より低い所定の電流値を超えたときに、塗装機やグリッドに供給される高電圧を遮断して火花放電を未然に防止している。
この場合に、間接加電方式やガン直接加電方式のものにあっては、塗装機一台ごとに高電圧が供給され、各塗装機ごとに電流検出器を取り付けることにより、暗電流を一台ずつ検出することができるので、いずれかの塗装機が一台でも被塗物に異常接近したときに高電圧を遮断することができる。
【0004】
【発明が解決しようとする課題】
しかしながら、ワーク加電方式の場合は、ワークに高電圧を印加すると同時に複数の塗装機が被塗物に対して近付いたり離れたりするので、例えば一台の塗装機のみが被塗物に異常接近したときの暗電流よりも、複数台の塗装機が火花放電を起こさない範囲で被塗物に接近したときの暗電流の方が、電流値が高いこともあり、暗電流の電流値を検出するだけでは、塗装機が被塗物に異常接近したことを検知することが困難であった。
また、非静電塗装を行う自動塗装装置では、塗装機と被塗物との間に静電場が形成されていないので、塗装機が被塗物に近付き過ぎたときにスパークを生ずることはないが、暗電流が流れていないのでその電流値によって異常接近したか否かを検出することもできず、塗装機の移動中に当該塗装機が被塗物に近付き過ぎたときに塗料が付着し過ぎて塗装不良を生じたり、さらに、塗装機が移動中に被塗物に衝突するおそれがあった。
【0005】
そこで本発明は、例えば、静電塗装を行う場合でも、非静電塗装を行う場合でも、塗装機が被塗物に異常接近したことを確実に検出して、塗装中のスパークの発生,塗装機の異常接近による塗装不良,塗装機と被塗物との衝突などを未然に防止できるようにすることを技術的課題としている。
【0006】
【課題を解決するための手段】
この課題を解決するために、本発明は、塗装機を被塗物の塗装面に沿って移動させながら当該被塗物を塗装する自動塗装装置において、背景と区別し得るマーカを付した塗装機と当該塗装機で塗装される被塗物とを同時に、且つ、前後に重ならない位置から撮像する撮像装置と、当該撮像装置から出力される画像信号に基づいて塗装機が被塗物に異常接近したか否かを判断する画像処理装置とを備え、当該画像処理装置は、被塗物の形状を検出して当該被塗物形状に基づき塗装機に付されたマーカがそれ以上被塗物に接近してはならない領域を異常接近領域として設定する異常接近領域設定手段と、前記撮像装置で撮像された前記マーカの位置を検出するマーカ位置検出手段と、検出されたマーカの位置が前記異常接近領域内に入ったときに異常接近信号を出力する異常接近信号出力手段とを備えたことを特徴とする。
【0007】
本発明によれば、背景と区別し得るマーカを付した塗装機と当該塗装機で塗装される被塗物が、同時に、且つ、前後に重ならないように撮像されているので、その画像信号より被塗物形状とマーカの位置が検出される。
そして、例えば、静電塗装を行う場合は、検出された被塗物形状に基づいて塗装機がそれ以上被塗物に接近したときにスパークが発生する領域を異常接近領域として設定し、検出されたマーカの位置が異常接近領域内に入ったときに異常接近信号が出力させれば、この異常接近信号の出力の有無によって塗装機が異常接近したことを検知することができる。
なお、この場合に、塗装機に付したマーカを検出するようにしているので、全画像信号の情報に基づいて塗装機の形状認識を行う場合に比して極めて短い時間でマーカ位置を検出することができ、マーカの大きさも小さければ小さい程よい。
【0008】
そして、この異常接近信号に基づいて塗装機又は被塗物に印加されている高電圧を遮断すれば、塗装機が被塗物に接近してスパークを発生する前に高電圧が遮断されることとなり、スパークの発生が未然に防止される。
また、塗装中のスパークの発生が防止されるだけでなく、異常接近領域を任意に設定することにより、塗装機の異常接近による塗装不良や、塗装機と被塗物との衝突が未然に防止される。
【0009】
また、本発明に係る他の自動塗装装置によれば、静電塗装を行う場合は、所定時間間隔で検出されたマーカ位置に基づいて現在の塗装機位置における塗装機の移動速度ベクトルが算出され、所定時間経過後に塗装機位置が予測され、その予測された位置が異常接近領域内に入ったときに異常接近信号を出力するようになされており、前述と同様に、塗装中のスパークの発生,塗装機の異常接近による塗装不良,塗装機と被塗物との衝突が未然に防止される。
【0010】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて具体的に説明する。
図1は本発明に係る自動塗装装置を示す概略説明図、図2はその画像処理手順を示すフローチャートである。
【0011】
本例の自動塗装装置1は、絶縁支持された自動車ボディなどの被塗物Wに高電圧発生器2が接続されると共に塗装機3がアースに接続され、被塗物Wに高電圧を印加し塗装機3をアース電位にして塗装機3と被塗物Wの間に静電場を形成した状態で、塗装機3から噴霧された塗料を被塗物Wに静電塗着させるワーク加電方式の静電塗装装置を用いている。
塗装機3は例えば被塗物を搬送するコンベアの左右両側に設置された関節型多軸制御マシン4のロボットアーム5の先端に取り付けられて、塗装機3を被塗物Wの側面に沿って移動させながら塗装するように成され、当該塗装機3には、その先端近傍に背景と異なる色のマーカMが付されている。
【0012】
そして、被塗物Wの搬送方向前方又は後方には、塗装機3と被塗物Wとを同一画面内に撮像する撮像装置6が取り付けられ、前記塗装機3で正常に塗装している状態で、塗装機3と被塗物Wが前後に重ならない位置から撮像するようになされ、当該撮像装置6は、その画像信号に基づいて塗装機3が被塗物Wに異常接近したた否かを判断して、異常接近したときに異常接近信号を出力する画像処理装置7に接続され、画像処理装置7は、その異常接近信号に基づいて被塗物Wに印加されている高電圧を遮断する高電圧遮断回路(図示せず)を備えた前記高電圧発生器2に接続されると共に、被塗物Wに蓄積された静電荷をアースへ逃がす接地スイッチ8に接続されている。
【0013】
画像処理装置7は、被塗物Wの形状を検出して当該被塗物形状に基づき塗装機3に付されたマーカMがそれ以上被塗物Wに接近するとスパークを起こす領域を異常接近領域Aとして設定する異常接近領域設定手段9と、前記撮像装置6で撮像された前記マーカMの位置を検出して塗装機位置として認識するマーカ位置検出手段10と、検出されたマーカ位置が前記異常接近領域A内に入ったときに異常接近信号を出力する異常接近信号出力手段11とを備えている。
なお、マーカ位置検出手段10では、塗装機3に付したマーカMを検出するようにしているので、全画像信号の情報に基づいて塗装機5のパターン認識を行う場合に比して極めて短い時間でマーカ位置を検出することができ。
【0014】
以上が本発明の一例構成であって、次にその作用について、図2を伴って説明する。
被塗物Wが所定の塗装開始位置に到来すると、塗装開始される前に、画像処理装置7による画像処理が開始され、まず、ステップ1(STP1)で撮像装置6から入力された画像に基づいて異常接近警告領域Aが設定される。このとき、被塗物Wは画面の手前側または向う側へゆっくりと移動しそのシルエットは塗装中ほとんど変化しないので、パターン認識を行うことによりその被塗物Wの形状を読み取ってこれに基づき塗装機3がそれ以上被塗物Wに接近したときにスパークを起こす限界の領域を異常接近領域Aとして設定する。
【0015】
ここで、アース電位に維持された塗装機3から塗料を噴霧し、高電圧発生器2から供給される高電圧が印加された被塗物Wに高電圧を印加して静電塗装を開始する。
塗装が開始されると、撮像装置6で取り込まれた画像信号が所定時間間隔で画像装置7に入力され、ステップ2(STP2)でその画像信号が入力される度に、ステップ3(STP3)に移行して塗装機3に付されたマーカMの位置を検出してこれを塗装機位置として認識する。
この場合に、塗装機3に付したマーカMを検出するようにしているので、全画像信号の情報に基づいて塗装機5のパターン認識を行う場合に比して極めて短い時間でマーカ位置を検出することができる。
次いで、ステップ4(STP4)に移行して、ステップ1(STP1)で設定された異常接近領域A内にマーカMが位置するか否かを判別し、塗装機3が異常接近警告領域A内に入っていない場合はステップ2(STP2)に戻って次の画像信号が入力されるまで待機し、マーカMの位置が異常接近領域A内に入ったときはステップ5(STP5)に移行して異常接近信号を出力する。
そして、異常接近信号が出力されると高電圧発生器2内の高電圧遮断回路が作動して被塗物Wに印加されている高電圧が遮断されると同時に、接地スイッチ8が導通されて被塗物に蓄積された静電荷がアースに逃がされ、さらに、塗装機3への塗料の供給も停止されて、塗装が中断される。
【0016】
なお、本例では、被塗物Wが塗装位置に到来する度に異常接近領域Aを設定する場合について説明したが、塗装中に被塗物Wのシルエットが変化する場合は、所定時間ごとに異常接近領域Aを更新してもよい。
また、自動塗装装置1として、非静電塗装を行う塗装装置を用いる場合は、塗装機3に付したマーカMがこれ以上被塗物Wに接近したときに塗装不良を起こす限界の領域や、これ以上被塗物Wに接近したときに当該被塗物Wに衝突する限界の領域を異常接近領域Aとして設定し、異常接近信号が出力されたときに、塗料の噴霧を停止したり、塗装機3を停止又は後退させれば、塗装不良,塗装機の衝突が未然に防止される。
さらに、マーカMは着色したものに限らず、発光体,反射体など背景と区別できるものであれば任意のものを採用することができるが、短時間でマーカMの位置を検出するためにはその面積が小さいほうがよい。
【0017】
図3は本発明に係る他の自動塗装装置を示す概略説明図、図4はその画像処理手順を示すフローチャートである。なお、図1と共通する部分については同一符号を付して詳細説明は省略する。
本例の自動塗装装置21は、所定時間経過後の塗装機位置を予測するように成したもので、背景と異なる色のマーカMを付した塗装機3と被塗物Wとを同一画面内に、且つ、前後に重ならない位置から撮像する撮像装置6に画像処理装置22が接続されて成る。
【0018】
画像処理装置22は、被塗物Wの形状を検出してその被塗物形状に基づき塗装機3に付したマーカMの位置がそれ以上被塗物Wに接近したときにスパークを起こす領域を異常接近領域Bとして設定する異常接近領域設定手段23と、前記撮像装置6で撮像された前記マーカMの位置を所定時間間隔ごとに検出するマーカ位置検出手段24と、検出されたマーカ位置を順次記憶しておく位置データ記憶手段25と、当該位置データ記憶手段25に記憶された現在の位置データ及びそれ以前に検出された1以上の位置データに基づき少なくとも現在の塗装機3の移動方向及び移動速度からなる移動速度ベクトルを算出して所定時間経過後におけるマーカ位置を予測するマーカ位置予測手段26と、予測されたマーカ位置が前記異常接近領域設定手段23で設定された異常接近領域Bに重なったときに異常接近信号を出力する異常接近信号出力手段27からなる。
【0019】
図4はその画像処理装置7における処理手順を示すフローチャートであって、被塗物Wが所定の塗装開始位置に到来すると、塗装開始される前に、画像処理装置7による画像処理が開始され、まず、ステップ11(STP11)で撮像装置6から入力された画像に基づいて異常接近領域Bが設定される。
ここで、静電塗装が開始されると、ステップ12(STP12) でカウンタがi=1にリセットされ、ステップ13(STP13)で撮像装置6から画像信号が入力され、ステップ14(STP14)に移行してその画像信号に基づき塗装機3に付されたマーカMの位置を塗装機位置として検出し、ステップ15(STP15) に移行して塗装機位置のデータを順次記憶する。
【0020】
そして、ステップ16(STP16)で過去二回の位置データが蓄積されたか否かを判断し、蓄積されていない場合はステップ17(STP17)でカウンタi=2としてステップ13(STP13)に戻り、蓄積された場合はステップ18(STP18)に移行する。
ステップ18(STP18)では、位置データ記憶手段25に記憶された現在のマーカ位置D2 及び前回検出されたマーカ位置D1 に基づいて塗装機3の移動方向及び移動速度からなる移動速度ベクトルVを算出し、現在のマーカ位置D2 を起点として速度ベクトルVに基づいて所定時間経過後(例えば0.01秒)経過後におけるマーカ位置D3 を予測する。
【0021】
次いで、ステップ19(STP19)に移行して、ステップ18(STP18) で予測されたマーカ位置がステップ11(STP11)で設定された異常接近領域B内に位置するか否かを判別し、塗装機3が異常接近領域B内に入っていない場合はステップ13(STP13)に戻って次の画像信号が入力されるまで待機し、塗装機3が異常接近領域B内に入ったときはステップ20(STP20)に移行して異常接近信号を出力して、ステップ11(STP11) に戻る。
【0022】
そして、異常接近信号が出力されると、前述と同様に、高電圧発生器2内の高電圧遮断回路が作動して被塗物Wに印加されている高電圧が遮断されると同時に、接地スイッチ8が導通されて被塗物に蓄積された静電荷がアースに逃がされ、さらに、塗装機3への塗料の供給も停止されて塗装が中断される。
すなわち、塗装機3が異常接近領域B内に入る前に塗装機3への高電圧の供給が停止され、スパークの発生が未然に防止される。
【0023】
なお、本例では、現在の位置データと過去1回の位置データに基づいて速度ベクトルを算出して塗装機3の位置を予測する場合について説明したが、現在の位置データと過去2回以上の位置データに基づいて加速度や軌跡等も算出するようにすれば、さらに正確に塗装機位置を予測することができる。
また、本例も非静電塗装を行う自動塗装装置に適用し得ることは勿論である。
【0024】
【発明の効果】
以上述べたように、本発明によれば、塗装機に付したマーカを検出するようにしているので全画像信号の情報に基づいて塗装機の形状認識を行う場合に比して極めて短い時間でマーカ位置を検出することができ、検出されたマーカの位置が予め設定された異常接近領域内に入ると異常接近信号が出力されるのでこの異常接近信号の出力の有無によって塗装機が異常接近したことを短時間で確実に検知することができるという効果を有するだけでなく、この異常接近信号に基づいて塗装機又は被塗物に印加されている高電圧を遮断すればスパークの発生が防止され、塗料噴霧を中断すれば塗装機の異常接近による塗装不良が防止され、塗装機を停止すれば被塗物との衝突が防止されるという効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る自動塗装装置の一例を示す概略説明図。
【図2】その画像処理手順を示すフローチャート。
【図3】本発明に係る他の自動塗装装置の一例を示す概略説明図。
【図4】その画像処理手順を示すフローチャート。
【符号の説明】
1・・・自動塗装装置
W・・・被塗物
3・・・塗装機
M・・・マーカ
6・・・撮像装置
7・・・画像処理装置
9・・・異常接近領域設定手段
10・・・マーカ位置検出手段
11・・・異常接近信号出力手段
21・・・自動塗装装置
22・・・画像処理装置
23・・・異常接近領域設定手段
24・・・マーカ位置検出手段
25・・・位置データ記憶手段
26・・・マーカ位置予測手段
27・・・異常接近信号出力手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an automatic coating apparatus that coats an object to be coated while moving a coating machine along the coating surface of the object to be coated.
[0002]
[Prior art]
Automatic coating equipment that performs electrostatic coating can be broadly divided into three types: an indirect charging method, a gun direct charging method, and a workpiece charging method.
In the indirect charging method, a high voltage is applied to the needle-shaped grid electrodes arranged around the coating machine, and the coating machine and the object to be coated are grounded to form an electrostatic field between the grid electrode and the object to be coated. In this method, the paint particles sprayed from the coating machine are charged by the electrostatic field and applied to the object to be coated. The gun direct charging method applies a high voltage to the coating machine itself and grounds the object to be coated. As a potential, an electrostatic field is formed between the coating machine and the object to be coated, and charged paint particles are sprayed from the coating machine and applied to the object.
In addition, the workpiece charging method is completely different from the previous two methods. Instead of applying a high voltage to the coating machine side, the workpiece electric field is set to the ground potential and the electrostatic field is applied by applying a high voltage to the workpiece. And charged paint particles are sprayed from a coating machine and applied to an object to be coated.
[0003]
By the way, when performing electrostatic coating, if the coating machine is too close to the object to be coated, there is a risk of causing dielectric breakdown and sparking.
For this reason, when a dark current flowing between the grid electrode or the coating machine and the object to be coated is detected and the current exceeds a predetermined current value that causes a dielectric breakdown, the dark current is supplied to the coating machine or the grid. High voltage is cut off to prevent spark discharge.
In this case, in the case of the indirect charging method or the direct gun charging method, a high voltage is supplied to each coating machine, and a dark current is controlled by attaching a current detector to each coating machine. Since it is possible to detect the units one by one, the high voltage can be cut off when any one of the coating machines abnormally approaches the object to be coated.
[0004]
[Problems to be solved by the invention]
However, in the case of the work charging method, a high voltage is applied to the work, and at the same time, a plurality of coating machines move closer to or away from the object to be coated. For example, only one coating machine is abnormally close to the object to be coated. The dark current when multiple coating machines are close to the object to be coated within the range that does not cause spark discharge is higher than the dark current when It is difficult to detect that the coating machine has abnormally approached the object to be coated.
In addition, in an automatic coating apparatus that performs non-electrostatic coating, since no electrostatic field is formed between the coating machine and the object to be coated, no spark is generated when the coating machine gets too close to the object to be coated. However, since no dark current is flowing, it is impossible to detect whether the current is abnormally approached by the current value, and the paint adheres when the coating machine gets too close to the workpiece while the coating machine is moving. There is a possibility that the coating failure may occur and the coating machine may collide with the object to be coated while moving.
[0005]
Therefore, the present invention reliably detects that the coating machine has abnormally approached the object to be coated, for example, when performing electrostatic coating or non-electrostatic coating, The technical challenge is to prevent coating defects due to abnormal approach of the machine and collision between the machine and the object to be coated.
[0006]
[Means for Solving the Problems]
In order to solve this problem, the present invention provides a coating machine with a marker that can be distinguished from the background in an automatic coating apparatus that coats the object to be coated while moving the coating machine along the coating surface of the object to be coated. And an object to be coated with the coating machine at the same time and from a position that does not overlap in front and back, and the coating machine abnormally approaches the object to be coated based on an image signal output from the imaging apparatus An image processing device for determining whether or not the image processing device detects the shape of the object to be coated, and the marker attached to the coating machine based on the shape of the object to be coated is no longer on the object to be coated. An abnormal approach area setting means for setting an area that should not be approached as an abnormal approach area, a marker position detecting means for detecting the position of the marker imaged by the imaging device, and the detected marker position is the abnormal approach area When entering the area Characterized by comprising a abnormally close signal outputting means for outputting a normal approach signal.
[0007]
According to the present invention, the painting machine with a marker that can be distinguished from the background and the object to be coated by the painting machine are imaged simultaneously and so as not to overlap each other. The shape of the object to be coated and the position of the marker are detected.
For example, when performing electrostatic coating, based on the detected object shape, an area where a spark is generated when the coating machine approaches the object to be coated is set as an abnormally approaching area and detected. If the abnormal approach signal is output when the position of the marker enters the abnormal approach region, it is possible to detect that the coating machine has abnormally approached by the presence or absence of the output of the abnormal approach signal.
In this case, since the marker attached to the coating machine is detected, the marker position is detected in an extremely short time compared to the case of recognizing the shape of the coating machine based on the information of all image signals. The smaller the marker size, the better.
[0008]
Then, if the high voltage applied to the coating machine or the object to be coated is cut off based on this abnormal approach signal, the high voltage is cut off before the coating machine approaches the object and generates a spark. Thus, the occurrence of sparks is prevented.
In addition to preventing the occurrence of sparks during painting, by arbitrarily setting the abnormal approach area, coating failure due to abnormal approach of the paint machine and collision between the paint machine and the object to be coated can be prevented. Is done.
[0009]
Further, according to another automatic coating apparatus according to the present invention, when electrostatic coating is performed, the moving speed vector of the coating machine at the current coating machine position is calculated based on the marker position detected at predetermined time intervals. The coating machine position is predicted after a predetermined time, and an abnormal approach signal is output when the predicted position enters the abnormal approach area. , Coating failure due to abnormal approach of the coating machine and collision between the coating machine and the object to be coated are prevented.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings.
FIG. 1 is a schematic explanatory view showing an automatic coating apparatus according to the present invention, and FIG. 2 is a flowchart showing an image processing procedure thereof.
[0011]
In the automatic coating apparatus 1 of this example, a high voltage generator 2 is connected to a workpiece W such as an automobile body that is insulated and supported, and a coating machine 3 is connected to the ground so that a high voltage is applied to the workpiece W. The workpiece electrification in which the paint sprayed from the coating machine 3 is electrostatically applied to the workpiece W in a state where the coating machine 3 is grounded and an electrostatic field is formed between the coating machine 3 and the workpiece W. A type electrostatic coating device is used.
The coating machine 3 is attached to the tip of the robot arm 5 of the articulated multi-axis control machine 4 installed on both the left and right sides of the conveyor that conveys the coating object, for example, and the coating machine 3 is moved along the side surface of the coating object W. The coating machine 3 is provided with a marker M of a color different from the background in the vicinity of its tip.
[0012]
And the imaging device 6 which images the coating machine 3 and the to-be-coated object W in the same screen is attached to the front or back of the conveyance direction of the to-be-coated object W, and the coating machine 3 is painting normally Thus, imaging is performed from a position where the coating machine 3 and the workpiece W do not overlap each other, and the imaging device 6 determines whether the coating machine 3 has abnormally approached the workpiece W based on the image signal. Is connected to an image processing device 7 that outputs an abnormal approach signal when an abnormal approach occurs, and the image processing device 7 cuts off the high voltage applied to the workpiece W based on the abnormal approach signal. In addition to being connected to the high voltage generator 2 provided with a high voltage cut-off circuit (not shown), it is connected to a grounding switch 8 for releasing the electrostatic charge accumulated in the article W to be grounded.
[0013]
The image processing device 7 detects the shape of the workpiece W, and determines that the region where the marker M attached to the coating machine 3 is closer to the workpiece W based on the shape of the workpiece W An abnormal approach region setting means 9 set as A, a marker position detecting means 10 for detecting the position of the marker M imaged by the imaging device 6 and recognizing it as a coating machine position, and the detected marker position being the abnormal And an abnormal approach signal output means 11 for outputting an abnormal approach signal when entering the approach area A.
Since the marker position detection means 10 detects the marker M attached to the coating machine 3, it takes an extremely short time compared to the case where the pattern recognition of the coating machine 5 is performed based on the information of all image signals. The marker position can be detected with.
[0014]
The above is an example of the configuration of the present invention. Next, its operation will be described with reference to FIG.
When the workpiece W arrives at a predetermined painting start position, image processing by the image processing device 7 is started before the painting is started. First, based on the image input from the imaging device 6 in step 1 (STP1). Thus, an abnormal approach warning area A is set. At this time, the object to be coated W slowly moves toward the front side or the opposite side of the screen, and its silhouette hardly changes during painting. Therefore, the shape of the object to be coated W is read by performing pattern recognition, and the coating machine is based on this. The limit area where the spark is generated when 3 approaches the workpiece W more than that is set as the abnormal approach area A.
[0015]
Here, the paint is sprayed from the coating machine 3 maintained at the ground potential, and the high voltage is applied to the workpiece W to which the high voltage supplied from the high voltage generator 2 is applied to start electrostatic coating. .
When painting is started, the image signal captured by the imaging device 6 is input to the image device 7 at predetermined time intervals, and whenever the image signal is input in step 2 (STP2), the image signal is input to step 3 (STP3). The position of the marker M attached to the painting machine 3 is detected and recognized as the painting machine position.
In this case, since the marker M attached to the coating machine 3 is detected, the marker position is detected in an extremely short time compared with the case where the pattern recognition of the coating machine 5 is performed based on the information of all image signals. can do.
Next, the process proceeds to step 4 (STP4), and it is determined whether or not the marker M is located in the abnormal approach area A set in step 1 (STP1), and the coating machine 3 enters the abnormal approach warning area A. If not, return to step 2 (STP2) and wait until the next image signal is input. If the position of the marker M enters the abnormal approaching area A, the process proceeds to step 5 (STP5) and abnormal. Output an approach signal.
When an abnormal approach signal is output, the high voltage cut-off circuit in the high voltage generator 2 is activated to cut off the high voltage applied to the workpiece W, and at the same time the ground switch 8 is turned on. The electrostatic charge accumulated in the object to be coated is released to the ground, and further, the supply of the paint to the coating machine 3 is stopped and the painting is interrupted.
[0016]
In this example, the case where the abnormal approach area A is set every time the article W arrives at the painting position has been described. However, when the silhouette of the article W changes during painting, every predetermined time. The abnormal approach area A may be updated.
Moreover, when using the coating apparatus which performs non-electrostatic coating as the automatic coating apparatus 1, the area | region of the limit which causes a coating defect when the marker M attached | subjected to the coating machine 3 approaches the to-be-coated article W further, The limit area that collides with the workpiece W when approaching the workpiece W is set as the abnormal approach area A, and when the abnormal approach signal is output, the spraying of the paint is stopped or painted If the machine 3 is stopped or moved backward, coating failure and collision of the painting machine can be prevented.
Furthermore, the marker M is not limited to a colored one, and any one can be adopted as long as it can be distinguished from the background, such as a light emitter or a reflector, but in order to detect the position of the marker M in a short time. The area should be small.
[0017]
FIG. 3 is a schematic explanatory view showing another automatic painting apparatus according to the present invention, and FIG. 4 is a flowchart showing an image processing procedure thereof. In addition, the same code | symbol is attached | subjected about the part which is common in FIG. 1, and detailed description is abbreviate | omitted.
The automatic coating apparatus 21 of this example is configured to predict the position of the coating machine after a predetermined time has elapsed, and the coating machine 3 with the marker M of a color different from the background and the article W to be coated within the same screen. In addition, the image processing device 22 is connected to the image pickup device 6 that picks up images from positions that do not overlap in the front-rear direction.
[0018]
The image processing device 22 detects a shape of the object to be coated W, and generates an area where a spark is generated when the position of the marker M attached to the coating machine 3 is closer to the object to be coated W based on the shape of the object to be coated. An abnormal approach region setting means 23 for setting as an abnormal approach region B, a marker position detecting means 24 for detecting the position of the marker M imaged by the imaging device 6 at predetermined time intervals, and the detected marker position in sequence. Based on the position data storage means 25 to be stored, the current position data stored in the position data storage means 25 and one or more position data detected before, at least the current moving direction and movement of the coating machine 3 A marker position predicting means 26 for calculating a moving speed vector composed of a speed and predicting a marker position after a predetermined time has elapsed; Consisting abnormally close signal outputting means 27 for outputting the abnormal approach signal when the overlapping set abnormal approach region B at 23.
[0019]
FIG. 4 is a flowchart showing a processing procedure in the image processing apparatus 7. When the workpiece W arrives at a predetermined painting start position, image processing by the image processing apparatus 7 is started before painting is started. First, the abnormal approach region B is set based on the image input from the imaging device 6 in step 11 (STP11).
When electrostatic coating is started, the counter is reset to i = 1 in step 12 (STP12), an image signal is input from the imaging device 6 in step 13 (STP13), and the process proceeds to step 14 (STP14). Then, based on the image signal, the position of the marker M attached to the coating machine 3 is detected as the coating machine position, and the process proceeds to step 15 (STP15) to sequentially store the data of the coating machine position.
[0020]
Then, in step 16 (STP16), it is determined whether or not the past two position data has been accumulated. If not, the counter i = 2 is set in step 17 (STP17) and the process returns to step 13 (STP13) to accumulate. If so, the process proceeds to step 18 (STP18).
In step 18 (STP18), the moving velocity vector V consisting of the moving direction and the moving speed of the coating machine 3 on the basis of the position data storage unit 25 current stored in the marker position D 2 and the marker position D 1 of the previously detected Based on the velocity vector V, the marker position D 3 after the elapse of a predetermined time (for example, 0.01 seconds) is predicted based on the current marker position D 2 .
[0021]
Next, the process proceeds to step 19 (STP19), where it is determined whether or not the marker position predicted in step 18 (STP18) is located in the abnormal approach region B set in step 11 (STP11). If 3 does not enter the abnormal approach area B, the process returns to step 13 (STP13) and waits until the next image signal is input. If the coating machine 3 enters the abnormal approach area B, step 20 ( The process proceeds to STP20), an abnormal approach signal is output, and the process returns to step 11 (STP11).
[0022]
When the abnormal approach signal is output, the high voltage cutoff circuit in the high voltage generator 2 is activated and the high voltage applied to the workpiece W is cut off at the same time as described above. When the switch 8 is turned on, the electrostatic charge accumulated in the object to be coated is released to the ground, and further, the supply of the paint to the coating machine 3 is stopped and the painting is interrupted.
That is, before the coating machine 3 enters the abnormal approach region B, the supply of high voltage to the coating machine 3 is stopped, and the occurrence of sparks is prevented.
[0023]
In this example, the case where the speed vector is calculated based on the current position data and the past one position data to predict the position of the coating machine 3 has been described. However, the present position data and the past two or more times are calculated. If the acceleration, trajectory, and the like are calculated based on the position data, the position of the coating machine can be predicted more accurately.
Of course, this example can also be applied to an automatic coating apparatus that performs non-electrostatic coating.
[0024]
【The invention's effect】
As described above, according to the present invention, since the marker attached to the coating machine is detected, the time required for recognizing the shape of the coating machine based on the information of all the image signals is extremely short. The marker position can be detected, and when the detected marker position falls within the preset abnormal approach area, an abnormal approach signal is output. In addition to having the effect of reliably detecting this in a short time, the occurrence of sparks can be prevented by cutting off the high voltage applied to the coating machine or the object to be coated based on this abnormal approach signal. If the paint spraying is interrupted, coating failure due to abnormal approach of the coating machine is prevented, and if the coating machine is stopped, the collision with the object to be coated is prevented.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing an example of an automatic coating apparatus according to the present invention.
FIG. 2 is a flowchart showing the image processing procedure.
FIG. 3 is a schematic explanatory view showing an example of another automatic coating apparatus according to the present invention.
FIG. 4 is a flowchart showing the image processing procedure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Automatic coating apparatus W ... Coated object 3 ... Coating machine M ... Marker 6 ... Imaging apparatus 7 ... Image processing apparatus 9 ... Abnormal approach area setting means 10 ... Marker position detection means 11 ... abnormal approach signal output means 21 ... automatic coating device 22 ... image processing device 23 ... abnormal approach region setting means 24 ... marker position detection means 25 ... position Data storage means 26 ... marker position prediction means 27 ... abnormal approach signal output means

Claims (2)

塗装機(3)を被塗物(W)の塗装面に沿って移動させながら当該被塗物(W)を塗装する自動塗装装置において、
背景と区別し得るマーカ(M)を付した塗装機(3)と当該塗装機(3)で塗装される被塗物(W)とを同時に、且つ、前後に重ならない位置から撮像する撮像装置(6)と、当該撮像装置(6)から出力される画像信号に基づいて塗装機(3)が被塗物(W)に異常接近したか否かを判断する画像処理装置(7)とを備え、
当該画像処理装置(7)は、被塗物(W)の形状を検出して当該被塗物形状に基づき塗装機(3)に付されたマーカ(M)がそれ以上被塗物(W)に接近してはならない領域を異常接近領域(A)として設定する異常接近領域設定手段(9)と、前記撮像装置(6)で撮像された前記マーカ(M)の位置を検出するマーカ位置検出手段(10)と、検出されたマーカ(M)の位置が前記異常接近領域(A)内に入ったときに異常接近信号を出力する異常接近信号出力手段(11)とを備えたことを特徴とする自動塗装装置。
In an automatic coating apparatus for coating the object to be coated (W) while moving the coating machine (3) along the coating surface of the object to be coated (W),
An image pickup apparatus that picks up an image of a coating machine (3) with a marker (M) that can be distinguished from the background and an object (W) to be coated by the coating machine (3) from a position that does not overlap in the front and rear. (6) and an image processing device (7) that determines whether or not the coating machine (3) has abnormally approached the article (W) based on the image signal output from the imaging device (6). Prepared,
The image processing device (7) detects the shape of the object to be coated (W), and the marker (M) attached to the coating machine (3) based on the shape of the object to be coated further increases the object to be coated (W). And an abnormal approach area setting means (9) for setting an area that should not be approached as an abnormal approach area (A), and marker position detection for detecting the position of the marker (M) imaged by the imaging device (6) Means (10) and an abnormal approach signal output means (11) for outputting an abnormal approach signal when the detected position of the marker (M) enters the abnormal approach region (A). Automatic painting equipment.
塗装機(3)を被塗物(W)の塗装面に沿って移動させながら当該被塗物(W)を塗装する自動塗装装置において、
背景と区別し得るマーカ(M)を付した塗装機(3)と当該塗装機(3)で塗装される被塗物(W)とを同時に、且つ、前後に重ならない位置から撮像する撮像装置(6)と、当該撮像装置(6)から出力される画像信号に基づいて塗装機(3)が被塗物(W)に異常接近したか否かを判断する画像処理装置(22)とを備え、
当該画像処理装置(22)は、被塗物(W)の形状を検出して当該被塗物形状に基づき塗装機(3)に付されたマーカ(M)がそれ以上被塗物(W)に接近してはならない領域を異常接近領域(B)として設定する異常接近領域設定手段(23)と、前記撮像装置(6)で撮像された前記マーカ(M)の位置を所定時間間隔ごとに検出するマーカ位置検出手段(24)と、検出された位置データを順次記憶しておく位置データ記憶手段(25)と、当該位置データ記憶手段(25)に記憶された現在の位置データ及びそれ以前に検出された1以上の位置データに基づき少なくとも現在のマーカ位置におけるマーカ(M)の移動速度ベクトルを算出して所定時間経過後におけるマーカ(M)の位置を予測するマーカ位置予測手段(26)と、予測されたマーカ位置が前記異常接近領域設定手段(23)で設定された異常接近領域(B)内に入ったときに異常接近信号を出力する異常接近信号出力手段(27)とを備えたことを特徴とする自動塗装装置。
In an automatic coating apparatus for coating the object to be coated (W) while moving the coating machine (3) along the coating surface of the object to be coated (W),
An image pickup apparatus that picks up an image of a coating machine (3) with a marker (M) that can be distinguished from the background and an object (W) to be coated by the coating machine (3) from a position that does not overlap in the front and rear. (6) and an image processing device (22) for determining whether or not the coating machine (3) has abnormally approached the article (W) based on the image signal output from the imaging device (6). Prepared,
The image processing device (22) detects the shape of the object to be coated (W), and the marker (M) attached to the coating machine (3) based on the shape of the object to be coated further increases the object to be coated (W). The abnormal approach region setting means (23) for setting the region that should not approach the abnormal approach region (B) and the position of the marker (M) imaged by the imaging device (6) at predetermined time intervals Marker position detection means (24) for detection, position data storage means (25) for sequentially storing detected position data, current position data stored in the position data storage means (25) and before Marker position predicting means (26) for calculating a moving speed vector of the marker (M) at least at the current marker position based on the one or more position data detected in the step and predicting the position of the marker (M) after a predetermined time has elapsed. And the predicted marker position And an abnormal approach signal output means (27) for outputting an abnormal approach signal when the vehicle enters the abnormal approach area (B) set by the abnormal approach area setting means (23). Painting equipment.
JP26044396A 1996-10-01 1996-10-01 Automatic painting equipment Expired - Fee Related JP3739144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26044396A JP3739144B2 (en) 1996-10-01 1996-10-01 Automatic painting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26044396A JP3739144B2 (en) 1996-10-01 1996-10-01 Automatic painting equipment

Publications (2)

Publication Number Publication Date
JPH1099735A JPH1099735A (en) 1998-04-21
JP3739144B2 true JP3739144B2 (en) 2006-01-25

Family

ID=17348017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26044396A Expired - Fee Related JP3739144B2 (en) 1996-10-01 1996-10-01 Automatic painting equipment

Country Status (1)

Country Link
JP (1) JP3739144B2 (en)

Also Published As

Publication number Publication date
JPH1099735A (en) 1998-04-21

Similar Documents

Publication Publication Date Title
EP2184112B1 (en) Electrostatic painting apparatus and electrostatic painting method
US11192131B2 (en) Coating method and corresponding coating installation
WO2005009621A1 (en) Electrostatic painting device
CN114026508A (en) Method for determining the position of a workpiece, in particular for controlling an industrial robot
US9354626B2 (en) Method for restarting a robot
KR20070020047A (en) Electrostatic coating apparatus
JP3739144B2 (en) Automatic painting equipment
US9024641B2 (en) Wire breakage detecting method for high voltage generating device
CN110545920A (en) method for painting a workpiece with a sprayer and painting system
EP2952262B1 (en) Electrostatic coater and electrostatic coating method
US4851253A (en) Operating-control method for an electrostatic coating installation
US6068877A (en) Method of detecting workpieces in an electrostatic coating system
JP4649805B2 (en) Coating object inspection device and coating object inspection method
US4042971A (en) Electrostatic charge neutralization
CN114675115A (en) Automatic electrostatic discharge test system
JP3652813B2 (en) Automatic painting equipment
JP2024046949A (en) Electrostatic Painting Equipment
CN106413910B (en) Electrostatic spray gun with external charging point
JP6575416B2 (en) Electrostatic paint grounding inspection method
JPH08527B2 (en) Car wash machine
JPH0483547A (en) Earth checking method in electrostatic coating of bad conductor
CN210098076U (en) Be applied to automatic rubber coating and detection device of industry filter core
JP3316238B2 (en) Abnormal current detector for electrostatic coating equipment
JPS591395B2 (en) Electrostatic painting method
JPS5953107B2 (en) Paint supply control method in electrostatic coating equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees