JP3738646B2 - Phone-type sound insulator and transducer with phone-type sound insulator - Google Patents

Phone-type sound insulator and transducer with phone-type sound insulator Download PDF

Info

Publication number
JP3738646B2
JP3738646B2 JP2000077766A JP2000077766A JP3738646B2 JP 3738646 B2 JP3738646 B2 JP 3738646B2 JP 2000077766 A JP2000077766 A JP 2000077766A JP 2000077766 A JP2000077766 A JP 2000077766A JP 3738646 B2 JP3738646 B2 JP 3738646B2
Authority
JP
Japan
Prior art keywords
sound
insulator
sound insulation
phone
sound insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000077766A
Other languages
Japanese (ja)
Other versions
JP2001268682A (en
Inventor
光彦 南利
義幸 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000077766A priority Critical patent/JP3738646B2/en
Publication of JP2001268682A publication Critical patent/JP2001268682A/en
Application granted granted Critical
Publication of JP3738646B2 publication Critical patent/JP3738646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、任意方向の空中あるいは水中音波を広帯域で遮音する遮音体及び任意方向を遮音すると供にそれ以外の方向については無指向性化を実現する前記遮音体付き送受波器に関する。
【0002】
【従来の技術】
音源と受音装置が共存する空間において、特定方向の音源が発する音波が受音装置の妨害音となる場合が多々ある。例えば、船舶に装備する魚群群探知器やソーナー等、音源より音を送波し目標物からの反射音を受音装置にて受波するシステムにおいて、船舶のプロペラノイズや船体からの放射雑音等が受音装置の妨害音となる場合である。
【0003】
また、音源から音を常に放射し、そのエコー音を受音装置で受波する送受同時運用を考えた音響システムにおいて、音源からの直接音が、受音装置の妨害音になる場合等がある。
【0004】
これらの問題を回避するために、従来は「吸音くさびの水圧特性」(海洋音響学会講演論文集、P1、1991年5月)に記載のゴム材に気泡を混入したクサビ状吸音ゴム等で音源の音を吸音したり、「水中伝搬音に対する障壁の遮音効果」(海洋音響学会講演論文集、P13、1991年5月)記載の遮音体のように単なる金属壁で遮音していた。
【0005】
しかしながら、前者のクサビ状吸音ゴムを使用した場合、水圧印加時に気泡がつぶれてしまうため、水深の深い場所では効果がなく、また長時間水中に放置すると水を吸収し特性が変化してしまい性能が劣化する等改良すべき点があった。
【0006】
後者の金属壁を使用した場合は、音源と受音装置を結ぶ音響軸に対して垂直に反射面があるために、そこからの反射音が送受指向性に影響を及ぼす等の改良すべき点があった。
【0007】
その他にホン型遮音体の例として「コニカル状バッフルを有する円筒送波器の指向性」(海洋音響学会講演論文集、P39、1990年5月)に記載された、円筒送波器にコニカル形状のホン型遮音体を形成した例がある。この場合は、筐体反射音が送波器指向性に及ぼす影響の計算を示したに過ぎず、任意の方向の音波を広帯域で抑制する遮音効果は小さい。
【0008】
また、任意方向の感度を抑制する手法として、次のような手法がある。一つは、アレイを構成しその指向性のヌルを感度抑制したい方向に向ける方法である。もう一つは音源音波と逆位相の音波を直接音と重畳させアクティブに音波を消す方法等である。
【0009】
しかしながら、これらの方法では特定の周波数だけの遮音であり、広帯域に感度を抑制することは困難である。
【0010】
【発明が解決しようとする課題】
本発明の目的は、上記点に鑑み、広帯域・高水圧下において任意の方向の遮音を可能とする遮音体を提供することにある。
【0011】
また、この遮音体と球殻等の無指向性送受波器とを組み合わせ、任意の方向を遮音するとともにそれ以外の方向については、無指向性化を実現する送受波器を提供することにある。
【0012】
【発明の実施形態】
以下、本発明の実施例について図面を用いて説明する。まず、遮音体に係わる実施形態を説明する。
【0013】
図1、図2は、音源1、遮音体2、受音装置3との関係を示図、図3は、遮音体付き音源の指向性概念図であり、遮音方向の相対感度レベルと感度抑制指向幅を小さくするための技術を示している。
【0014】
図4は、遮音方向が相対する第1と第2のホン型遮音体5、6の間に第3の遮音体7を挿入し、直径2aの球殻音源4を有する遮音体モデルである。
【0015】
図26は、遮音体の原理図である。以下遮音の原理について説明する。図26において、球殻音源4から遮音体方向に送波された直接波13は、第1、第2、第3の遮音体5、6、7と媒体17の境界及び遮音体内部を伝播、(16)、第1の遮音体5と第3の遮音体7の接合部から回折波14が発生する。この回折波14は音波合成ポイント18において合成し、図3に示すような遮音方向に指向性のローブ19ができる。この回折波14によって発生する指向性のローブ19を小さくし、図3に示す感度抑制指向幅を狭くすることが本特許の目的である。
【0016】
図26において、目標の感度抑制指向幅を実現するために球殻音源4から遮音体方向に送波された直接波13を第1の遮音体5により拡散させる。第1の遮音体5と第3の遮音体7の接合部から発生した回折波14は、音波合成ポイント18において合成するため、このポイントに第3の遮音体7を挿入すると回折波14が第3の遮音体7により反射15され、大きな遮音効果が得られるものである。
【0017】
図4に示す遮音体5の寸法・形状パラメータを変化させ、遮音方向の相対感度レベルと感度抑制指向幅を評価する。評価(計算)は、医療用超音波装置及び水中音響機器等で実績のある時刻歴有限要素解析プログラムを利用することで可能である。(1)第1の遮音体5のホン形状係数μを変化させた場合
第1、第2の遮音体5、6を、図5に示すベッセルホンにて評価する。ここで形状係数をμ、ホン上下端部の断面積をそれぞれとS0、SLと置くと、ベッセル・ホーンの断面半径xは数1の式で表すことができる。
【0018】
【数1】

Figure 0003738646
【0019】
即ち、図5に示すように、小さい方の直径を2d、大きい方の直径を2Wと置き、形状係数μを変化させた時のホン形状関数の計算結果を図6に示す。ここでμ=1.0はパラボラ、μ=2.0はコニカル、μ=∽はエクスポネンシャルホンとなる。ホンの先端に直径2aなる球殻音源4を配置し、音を送波した時の遠距離音場における遮音方向の相対感度レベルと感度抑制指向幅を算出した。ここで、第2の遮音体6の形状係数は2に固定した。そのときの計算結果を図7、図8に示す。kaは球殻音源4の半径aを基準とした周波数の関数であり、波数kはk=2π/λ(λ計算周波数における媒体17の波長)で表すことができる。図からわかるように、2つの評価項目が安定した値となるのはμ>2である。この範囲を越えμ≦2とすると、相対感度レベルは小さくなるが、感度抑制指向幅が広くなってしまい性能が劣化する。つまり、ホンの形状がコニカルホンよりも小さくした方が安定した特性になることを示している。
【0020】
(2)第2の遮音体6のホン形状係数ψを変化させた場合
第2の遮音体6のホン形状は、上記数1の形状係数μをψに置き換えて計算した。また第1の遮音体5の形状係数μを2に固定した。そのときの計算結果を図9、図10に示す。ψを小さくすると相対感度レベルは小さくなり第1の遮音体5と同傾向の結果となるが、感度抑制指向幅については形状係数ψを変化させてもほぼ一定値となる。
【0021】
上記(1)、(2)の結果より、第1、第2の遮音体5、6のホン形状係数μ、ψは、遮音方向の相対感度レベルに影響を与えるが、感度抑制指向幅については、第1の遮音体5の形状係数μのみ関係あり、第2の遮音体6の形状係数ψには影響を受けないことがわかる。
【0022】
(3)第3の遮断体7の長さlを変化させた場合
第1の遮音体5と第2の遮音体7の形状係数をそれぞれμ=3.0、ψ=2.0に固定し、第3の遮音体7の長さlを変化させた場合の計算結果を図11、図12に示す。相対感度レベルは、lが大きくなればなるほど小さくなるが、感度抑制指向幅は変化しない。つまり第3の遮音体7は、第1の遮音体5と第3の遮音体7の接合部で拡散された回折波14が合成するポイント18にあるため、第3の遮音体7にて回折波14を散乱・反射15させることで、後方に発生する指向性のローブ19を抑制することができる。従って、長ければ長いほど回折波14の合成を阻止できるため、lの長さに比例して遮音方向の相対感度レベルが小さくなる。
【0023】
(4)遮音体の板厚tを変化させた場合
上記(1)〜(3)は形状効果確認のため、遮音材料を真空状態で計算した。実際、空中、水中等の空間において真空状態を保つためには、何らかのきょう体が必要になる。そこで遮音体材料をALとし、この板厚を変化させ第1の遮音体5と第2の遮音体7の形状係数をそれぞれμ=3.0、ψ=2.0に固定し指向性を計算した。その結果を図13、図14、図15に示す。これらの結果からわかるように、中実状態では遮音体内部に透過した音波が遮音方向に再放射し、指向性の乱れが遮音方向に発生している。このため遮音方向の指向性のローブも大きくなってしまう。この透過波の影響を押さえるため板厚tを小さくすると、その結果、小さくすればするほど真空状態の指向性に近づく。具体的には遮音周波数における媒体の波長をλとすると板厚tが波長の1/10λ以下で、遮音方向の指向性乱れがなくなり、ローブも小さくなることがわかる。また、金属で遮音体を構成できるため水圧特性が良い。
【0024】
(5)遮音形状を相似比で大きくした場合
第1及び第2の遮音体5、6の形状係数はそれぞれμ=3.0、ψ=2.0に固定で、遮音体を相似的に大きくし計算した。また遮音体の材料は真空状態で計算した。計算結果を図16、図17、図18に示す。相対感度レベルは遮音体が大きければ大きいほど小さくなるが、感度抑制指向幅は変化しない。つまり、遮音体端面の大きい方の直径2Wは感度抑制指向幅の開口角とほぼ同等の大きさとなり、遮音体の高さLは遮音周波数における媒体の波長の3倍以上で効果が現れる。
【0025】
上記(1)〜(5)の結果より、第1の遮音体の形状係数がμ>2、第1、第2の遮音体5、6の長さL及び遮音体の厚みtが、それぞれ遮音周波数における媒体の音波波長の4倍以上及び1/10以下のとき有効な遮音効果が得られる。第3の遮音体7の長さlについては長さに比例して遮音効果が得られる。
【0026】
図19は、本発明の遮音体を示す図である。同図において、船底へ装備したソーナーアレイ9から全方位へ音波を発生する。船尾方向の音波は第1の遮音体5から船首方向へ反射することなく、第1の遮音体5の開口角にほぼ等しい指向幅で船尾方向へ音を放射する。その一部の音波が回折波として船尾方向へ回り込むが、第3の遮音体7により船尾方向への音を反射・減衰させる。一方受波は船尾方向のプロペラ10が雑音源となるが、送受指向性は同じであるため、プロペラ雑音は第3の遮音体7と第1の遮音体5により減衰し、ソーナーアレイ9へ到達することはない。従って、エコー音をS/Nの良い状態で受信することができる。
【0027】
図20〜図25に本発明に関わる遮音体付き球殻送受波器の実施例を示す。
【0028】
図20は、球殻圧電素子11に水密用ウレタン樹脂12でモールドした音源1に本発明の第1の遮音体5を装着した送受波器の実施例である。同図において、ケーブル8を介して球殻圧電素子11に電気信号を供給すると、電気エネルギーを振動エネルギーへ変換し音波を放射する。音源形状が球殻であるため、広帯域で全方位に音波を放射すため、第1の遮音体5にも音波が到来する。第1の遮音体5へ到来した音波は遮音体の外形にそって音波が拡散するため、遮第1の遮音体5の開口角にほぼ等しい指向性で音波を放射する。従って、受音装置3方向の音のレベルが抑制され、受音装置3に入射する直接音とエコー音を分離することができ、送受波同時運用が可能となる。音源1と受音装置3が反対に構成されても良い。
図21は、球殻音源1と受音装置3を本発明の第1の遮音体5と第2の遮音体6で結合した例である。原理は図20と同じであるが、送受供に遮音体を備えているため、遮音効果は図20に比較すると大きくなる。
図22は、図21の送受波器に第3の遮音体7を装備した例である。音源から放射した音波は第1の遮音体5で拡散され、第3の遮音体7へ回折波がぶつかる。この回折波は第3の遮音体7で反射・透過・減衰され受波装置3方向での音波を減衰させエコー音をS/Nの良い状態で受波することができる。
【0029】
図23は、図22の変形例である。回折波は第1の遮音体5から離れた位置にて合成するため、この位置に第3の遮音体7を配置しても良い。
【0030】
図24は、図22の変形例である。第1の遮音体5、第2の遮音体6、第3の遮音体7で構する遮音体を複数個、音源1と受音装置3の間に構成した実施例である。
【0031】
図25は、図22の変形例である。回折波を第1の遮音体5と第3の遮音体7の間、及び第2の遮音体6と第3の遮音体7の間の空間で繰り返し反射させ減衰させる例である。
【0032】
【発明の効果】
以上説明したように、本発明は広帯域・高水圧下において、任意方向の遮音を効果的に実現し、またこの遮音体と球殻等の無指向性送受波器とを組み合わることで、任意の方向を遮音するとともにそれ以外の方向について無指向性化を実現する。
【図面の簡単な説明】
【図1】本発明の音源―遮音体―受音装置の位置関係を示す概念図。
【図2】本発明の音源―遮音体―受音装置の位置関係を示す概念図。
【図3】本発明の遮音体付き音源の指向性概念図。
【図4】本発明の計算パラメータを示す図。
【図5】本発明の計算パラメータを示す図。
【図6】本発明の計算結果を示す特性図。
【図7】本発明の計算結果による感度レベルを示す特性図。
【図8】本発明の計算結果による感度抑制指向幅を示す特性図。
【図9】本発明の計算結果による遮音方向相対感度レベルを示す特性図。
【図10】本発明の計算結果による感度抑制指向幅を示す特性図。
【図11】本発明の計算結果による遮音方向相対感度レベルを示す特性図。
【図12】本発明の計算結果による感度抑制指向幅を示す特性図。
【図13】本発明の計算結果による指向性を示す図。
【図14】本発明の計算結果による遮音方向相対感度レベルを示す特性図。
【図15】本発明の計算結果による感度抑制指向幅を示す特性図。
【図16】本発明の計算結果による指向性を示す図。
【図17】本発明の計算結果による遮音方向相対感度レベルを示す特性図。
【図18】本発明の計算結果による感度抑制指向幅を示す特性図。
【図19】本発明の遮音体の一実施例を示す図。
【図20】本発明の遮音体付き送受波器の一実施例を示す図。
【図21】本発明の遮音体付き送受波器の他の実施例を示す図。
【図22】本発明の遮音体付き送受波器の更に他の実施例を示す図。
【図23】本発明の遮音体付き送受波器の実施例を示す図。
【図24】本発明の遮音体付き送受波器の実施例を示す図。
【図25】本発明の遮音体付き送受波器の実施例を示す図。
【図26】本発明の遮音体の原理図。
【符号の説明】
1・・・・・音源
2・・・・・遮音体
3・・・・・受音装置
4・・・・・球殻音源
5・・・・・第1の遮音体
6・・・・・第2の遮音体
7・・・・・第3の遮音体
8・・・・・ケーブル
9・・・・・ソーナーアレイ
10・・・・プロペラ
11・・・・球殻圧電素子
12・・・・水密用ウレタン樹脂
13・・・・直接波
14・・・・回折波
15・・・・反射波
16・・・・伝搬波
17・・・・媒体
18・・・・回折波の合成ポイント
19・・・・指向性のローブ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sound insulating body for insulating a wide range of aerial or underwater sound waves in an arbitrary direction, and the above-mentioned sound receiving body with a sound insulating body that realizes omnidirectionality in other directions when sound is blocked in an arbitrary direction.
[0002]
[Prior art]
In a space where a sound source and a sound receiving device coexist, a sound wave emitted by a sound source in a specific direction often becomes an interference sound of the sound receiving device. For example, in a system that transmits sound from a sound source and receives a reflected sound from a target with a sound receiving device such as a fish school detector or sonar equipped on the ship, the propeller noise of the ship, radiation noise from the hull, etc. Is a disturbance sound of the sound receiving device.
[0003]
Also, in an acoustic system that considers simultaneous transmission and reception where sound is always emitted from the sound source and the echo sound is received by the sound receiving device, the direct sound from the sound source may become an interference sound of the sound receiving device. .
[0004]
In order to avoid these problems, a sound source is conventionally produced with a wedge-shaped sound absorbing rubber or the like in which bubbles are mixed in a rubber material described in “Hydraulic characteristics of sound absorbing wedge” (Journal of Oceanographic Society of Japan, P1, May 1991). The sound was absorbed by a mere metal wall like the sound insulator described in “The sound insulation effect of the barrier against the underwater propagation sound” (Journal of Ocean Acoustics Society, P13, May 1991).
[0005]
However, if the former wedge-shaped sound absorbing rubber is used, bubbles will be crushed when water pressure is applied, so there is no effect in deep water, and if left in water for a long time, the water will be absorbed and its characteristics will change. There was a point that should be improved, such as deterioration.
[0006]
When the latter metal wall is used, there is a reflecting surface perpendicular to the acoustic axis connecting the sound source and the sound receiving device, so the reflected sound from there affects the directivity of transmission and reception. was there.
[0007]
In addition, as an example of a phone-type sound insulator, the conical shape is described in the cylindrical transmitter described in “Directivity of a cylindrical transmitter having a conical baffle” (Journal of Ocean Acoustics Society, P39, May 1990). There is an example of forming a phone-type sound insulator. In this case, only the calculation of the influence of the case reflected sound on the transmitter directivity is shown, and the sound insulation effect for suppressing the sound wave in an arbitrary direction in a wide band is small.
[0008]
In addition, as a technique for suppressing the sensitivity in an arbitrary direction, there are the following techniques. One is a method of configuring an array and directing the directivity null in a direction in which sensitivity is to be suppressed. The other is a method of superimposing a sound wave having a phase opposite to that of the sound source sound wave directly on the sound and actively extinguishing the sound wave.
[0009]
However, these methods provide sound insulation only at a specific frequency, and it is difficult to suppress sensitivity over a wide band.
[0010]
[Problems to be solved by the invention]
In view of the above points, an object of the present invention is to provide a sound insulator capable of sound insulation in an arbitrary direction under a wide band and high water pressure.
[0011]
Another object of the present invention is to provide a transducer that combines this sound insulator and a non-directional transducer such as a spherical shell to provide sound insulation in any direction and realize omnidirectionality in other directions. .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. First, an embodiment related to a sound insulator will be described.
[0013]
FIGS. 1 and 2 are diagrams showing the relationship between the sound source 1, the sound insulator 2, and the sound receiving device 3. FIG. 3 is a conceptual diagram of directivity of the sound source with the sound insulator, and the relative sensitivity level and sensitivity suppression in the sound insulation direction. A technique for reducing the directivity width is shown.
[0014]
FIG. 4 shows a sound insulator model having a spherical sound source 4 having a diameter of 2a, in which a third sound insulator 7 is inserted between the first and second phone-type sound insulators 5 and 6 whose sound insulation directions are opposite to each other.
[0015]
FIG. 26 is a principle diagram of a sound insulator. The principle of sound insulation will be described below. In FIG. 26, the direct wave 13 transmitted from the spherical shell sound source 4 toward the sound insulation body propagates through the boundary between the first, second and third sound insulation bodies 5, 6, 7 and the medium 17 and the inside of the sound insulation body. (16) A diffracted wave 14 is generated from the joint between the first sound insulator 5 and the third sound insulator 7. This diffracted wave 14 is synthesized at a sound wave synthesis point 18 to form a directional lobe 19 in the sound insulation direction as shown in FIG. The purpose of this patent is to reduce the directivity lobe 19 generated by the diffracted wave 14 and to narrow the sensitivity suppression directivity width shown in FIG.
[0016]
In FIG. 26, the direct sound wave 13 transmitted from the spherical shell sound source 4 toward the sound insulation body is diffused by the first sound insulation body 5 in order to realize the target sensitivity suppression directivity width. Since the diffracted wave 14 generated from the joint between the first sound insulator 5 and the third sound insulator 7 is synthesized at the sound wave synthesis point 18, when the third sound insulator 7 is inserted at this point, the diffracted wave 14 becomes the first wave. 3 is reflected 15 by the sound insulation body 7, and a large sound insulation effect is obtained.
[0017]
The size and shape parameters of the sound insulator 5 shown in FIG. 4 are changed, and the relative sensitivity level and the sensitivity suppression directing width in the sound insulation direction are evaluated. Evaluation (calculation) can be performed by using a time history finite element analysis program that has a proven record in medical ultrasonic devices, underwater acoustic devices, and the like. (1) When the phone shape factor μ of the first sound insulator 5 is changed: The first and second sound insulators 5 and 6 are evaluated by the Bessel phone shown in FIG. Here, when the shape factor is μ and the cross-sectional areas of the upper and lower end portions of the phon are S 0 and S L , respectively, the cross-sectional radius x of the Bessel horn can be expressed by the equation (1).
[0018]
[Expression 1]
Figure 0003738646
[0019]
That is, as shown in FIG. 5, the calculation result of the phone shape function when the smaller diameter is 2d and the larger diameter is 2W and the shape factor μ is changed is shown in FIG. Here, μ = 1.0 is a parabola, μ = 2.0 is a conical, and μ = ∽ is an exponential phone. A spherical shell sound source 4 having a diameter of 2a was arranged at the tip of the phone, and the relative sensitivity level and sensitivity suppression directivity width in the sound insulation direction in the far field when the sound was transmitted were calculated. Here, the shape factor of the second sound insulator 6 was fixed to 2. The calculation results at that time are shown in FIGS. ka is a frequency function based on the radius a of the spherical shell sound source 4, and the wave number k can be expressed by k = 2π / λ (the wavelength of the medium 17 at the λ calculation frequency). As can be seen from the figure, it is μ> 2 that the two evaluation items have stable values. If this range is exceeded and μ ≦ 2, the relative sensitivity level becomes small, but the sensitivity suppression directing width becomes wide and the performance deteriorates. That is, it is shown that the characteristic becomes more stable when the shape of the phone is smaller than that of the conical phone.
[0020]
(2) When the phone shape factor ψ of the second sound insulator 6 is changed The phone shape of the second sound insulator 6 was calculated by replacing the shape factor μ of Equation 1 with ψ. The shape factor μ of the first sound insulator 5 was fixed to 2. The calculation results at that time are shown in FIGS. When ψ is made small, the relative sensitivity level becomes small and results in the same tendency as the first sound insulator 5, but the sensitivity suppression directing width becomes a substantially constant value even if the shape factor ψ is changed.
[0021]
From the results of (1) and (2) above, the phone shape factors μ and ψ of the first and second sound insulation bodies 5 and 6 affect the relative sensitivity level in the sound insulation direction. It can be seen that only the shape factor μ of the first sound insulator 5 is related, and the shape factor ψ of the second sound insulator 6 is not affected.
[0022]
(3) When the length l of the third insulator 7 is changed, the shape factors of the first and second insulators 5 and 7 are fixed to μ = 3.0 and ψ = 2.0, respectively. 11 and 12 show the calculation results when the length l of the third sound insulator 7 is changed. The relative sensitivity level decreases as l increases, but the sensitivity suppression directivity width does not change. In other words, the third sound insulator 7 is located at the point 18 where the diffracted waves 14 diffused at the joint between the first sound insulator 5 and the third sound insulator 7 are combined, so that the third sound insulator 7 is diffracted by the third sound insulator 7. By scattering / reflecting the wave 14, the directional lobe 19 generated behind can be suppressed. Therefore, the longer the length, the more the synthesis of the diffracted wave 14 can be prevented, and the relative sensitivity level in the sound insulation direction becomes smaller in proportion to the length of l.
[0023]
(4) When the thickness t of the sound insulating body is changed In the above (1) to (3), the sound insulating material was calculated in a vacuum state in order to confirm the shape effect. In fact, in order to maintain a vacuum state in a space such as air or water, some kind of housing is required. Therefore, the sound insulation material is set to AL, and the plate thickness is changed, and the shape factors of the first sound insulation body 5 and the second sound insulation body 7 are fixed to μ = 3.0 and ψ = 2.0, respectively, and the directivity is calculated. did. The results are shown in FIG. 13, FIG. 14, and FIG. As can be seen from these results, in the solid state, the sound wave transmitted through the inside of the sound insulation body re-radiates in the sound insulation direction, and the directional disturbance occurs in the sound insulation direction. For this reason, the directivity lobe in the sound insulation direction also becomes large. If the plate thickness t is reduced in order to suppress the influence of the transmitted wave, as a result, the directivity in the vacuum state becomes closer as the thickness is reduced. Specifically, when the wavelength of the medium at the sound insulation frequency is λ, the plate thickness t is 1 / 10λ or less of the wavelength, and the directivity disturbance in the sound insulation direction is eliminated and the lobe is also reduced. Moreover, since the sound insulator can be made of metal, the water pressure characteristic is good.
[0024]
(5) When the sound insulation shape is increased by the similarity ratio, the shape factors of the first and second sound insulation bodies 5 and 6 are fixed at μ = 3.0 and ψ = 2.0, respectively, and the sound insulation body is increased in a similar manner. And calculated. The sound insulation material was calculated in a vacuum state. The calculation results are shown in FIG. 16, FIG. 17, and FIG. The relative sensitivity level decreases as the sound insulator is larger, but the sensitivity suppression directivity width does not change. That is, the larger diameter 2W of the end face of the sound insulation body is almost the same size as the opening angle of the sensitivity suppression directivity width, and the height L of the sound insulation body is effective when it is at least three times the wavelength of the medium at the sound insulation frequency.
[0025]
From the results of the above (1) to (5), the shape factor of the first sound insulator is μ> 2, the length L of the first and second sound insulators 5 and 6, and the thickness t of the sound insulator are respectively sound insulation. An effective sound insulation effect is obtained when the sound wave wavelength of the medium is 4 times or more and 1/10 or less at the frequency. As for the length l of the third sound insulator 7, a sound insulation effect is obtained in proportion to the length.
[0026]
FIG. 19 is a diagram showing a sound insulator of the present invention. In the figure, sound waves are generated in all directions from a sonar array 9 installed on the ship bottom. The sound waves in the stern direction radiate sound in the stern direction with a directivity width substantially equal to the opening angle of the first sound insulator 5 without being reflected from the first sound insulator 5 in the bow direction. Some of the sound waves circulate in the stern direction as diffracted waves, but the sound in the stern direction is reflected and attenuated by the third sound insulator 7. On the other hand, the propeller 10 in the stern direction serves as a noise source for the received wave, but since the transmission and reception directivities are the same, the propeller noise is attenuated by the third sound insulator 7 and the first sound insulator 5 and reaches the sonar array 9. Never do. Therefore, the echo sound can be received with a good S / N.
[0027]
20 to 25 show an embodiment of a spherical shell transducer with a sound insulator according to the present invention.
[0028]
FIG. 20 shows an embodiment of a transducer in which the first sound insulator 5 of the present invention is mounted on the sound source 1 molded with the watertight urethane resin 12 on the spherical shell piezoelectric element 11. In the figure, when an electric signal is supplied to the spherical shell piezoelectric element 11 via the cable 8, the electric energy is converted into vibration energy and a sound wave is emitted. Since the sound source shape is a spherical shell, sound waves are radiated in all directions in a wide band, so that sound waves also arrive at the first sound insulator 5. Since the sound wave arriving at the first sound insulator 5 diffuses along the outer shape of the sound insulator, the sound wave is emitted with directivity substantially equal to the opening angle of the first sound insulator 5. Accordingly, the sound level in the direction of the sound receiving device 3 is suppressed, the direct sound incident on the sound receiving device 3 and the echo sound can be separated, and simultaneous transmission and reception operations are possible. The sound source 1 and the sound receiving device 3 may be configured oppositely.
FIG. 21 is an example in which the spherical shell sound source 1 and the sound receiving device 3 are coupled by the first sound insulator 5 and the second sound insulator 6 of the present invention. The principle is the same as in FIG. 20, but the sound insulation effect is greater than that in FIG.
FIG. 22 shows an example in which the third sound insulator 7 is installed in the transducer shown in FIG. The sound wave radiated from the sound source is diffused by the first sound insulator 5 and a diffracted wave collides with the third sound insulator 7. This diffracted wave is reflected, transmitted and attenuated by the third sound insulator 7 to attenuate the sound wave in the direction of the wave receiving device 3 and receive the echo sound in a good S / N state.
[0029]
FIG. 23 is a modification of FIG. Since the diffracted wave is synthesized at a position away from the first sound insulator 5, the third sound insulator 7 may be disposed at this position.
[0030]
FIG. 24 is a modification of FIG. This is an embodiment in which a plurality of sound insulation bodies composed of the first sound insulation body 5, the second sound insulation body 6, and the third sound insulation body 7 are configured between the sound source 1 and the sound receiving device 3.
[0031]
FIG. 25 is a modification of FIG. In this example, the diffracted wave is repeatedly reflected and attenuated in the space between the first sound insulator 5 and the third sound insulator 7 and between the second sound insulator 6 and the third sound insulator 7.
[0032]
【The invention's effect】
As described above, the present invention effectively realizes sound insulation in an arbitrary direction under a wide band and high water pressure, and can be arbitrarily combined by combining this sound insulation body with an omnidirectional transducer such as a spherical shell. In addition to sound insulation, the other directions are made omnidirectional.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a positional relationship of a sound source—a sound insulator—a sound receiving device according to the present invention.
FIG. 2 is a conceptual diagram showing a positional relationship of a sound source—a sound insulator—a sound receiving device according to the present invention.
FIG. 3 is a conceptual diagram of directivity of a sound source with a sound insulator according to the present invention.
FIG. 4 is a diagram showing calculation parameters of the present invention.
FIG. 5 is a diagram showing calculation parameters of the present invention.
FIG. 6 is a characteristic diagram showing the calculation result of the present invention.
FIG. 7 is a characteristic diagram showing a sensitivity level according to a calculation result of the present invention.
FIG. 8 is a characteristic diagram showing the sensitivity suppression directivity width according to the calculation result of the present invention.
FIG. 9 is a characteristic diagram showing a sound insulation direction relative sensitivity level according to a calculation result of the present invention.
FIG. 10 is a characteristic diagram showing a sensitivity suppression directivity width according to a calculation result of the present invention.
FIG. 11 is a characteristic diagram showing a sound insulation direction relative sensitivity level according to a calculation result of the present invention.
FIG. 12 is a characteristic diagram showing the sensitivity suppression directivity width according to the calculation result of the present invention.
FIG. 13 is a diagram showing directivity according to a calculation result of the present invention.
FIG. 14 is a characteristic diagram showing a sound insulation direction relative sensitivity level according to a calculation result of the present invention.
FIG. 15 is a characteristic diagram showing a sensitivity suppression directivity width according to a calculation result of the present invention.
FIG. 16 is a diagram showing directivity according to the calculation result of the present invention.
FIG. 17 is a characteristic diagram showing a sound insulation direction relative sensitivity level according to a calculation result of the present invention.
FIG. 18 is a characteristic diagram showing the sensitivity suppression directivity width according to the calculation result of the present invention.
FIG. 19 is a view showing an embodiment of a sound insulator according to the present invention.
FIG. 20 is a diagram showing an embodiment of a transducer with a sound insulator according to the present invention.
FIG. 21 is a diagram showing another embodiment of a transducer with a sound insulator according to the present invention.
FIG. 22 is a view showing still another embodiment of a transducer with a sound insulator according to the present invention.
FIG. 23 is a diagram showing an embodiment of a transducer with a sound insulator according to the present invention.
FIG. 24 is a diagram showing an embodiment of a transducer with a sound insulator according to the present invention.
FIG. 25 is a diagram showing an embodiment of a transducer with a sound insulator according to the present invention.
FIG. 26 is a principle diagram of a sound insulator according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sound source 2 ... Sound insulation body 3 ... Sound receiving device 4 ... Spherical shell sound source 5 ... 1st sound insulation body 6 ... 2nd sound insulator 7 ... 3rd sound insulator 8 ... cable 9 ... sonar array 10 ... propeller 11 ... spherical shell piezoelectric element 12 ...・ Watertight urethane resin 13... Direct wave 14... Diffraction wave 15... Reflected wave 16. .... Directive lobes

Claims (6)

空中あるいは水中の音波を遮音する金属、プラスチックまたは空気層に相当する材料等で構成されたホン型遮音体であって、
下記数1にてそのホンの形状定数μがμ>2にて構成されることを特徴とするホン型遮音体。
Figure 0003738646
A phone-type sound insulator composed of a metal, plastic, or a material corresponding to an air layer that blocks sound waves in the air or water,
A phone-type sound insulator having the following formula 1 and a shape constant μ of the phone set to μ> 2.
Figure 0003738646
請求項1記載の遮音体に、ホンの形状係数μがμ≧0にて構成され、遮音方向が第1の遮音体と反対になる第2の遮音体を備えたことを特徴とするホン型遮音体。A phone type characterized in that the sound insulation body according to claim 1 is provided with a second sound insulation body in which the shape factor μ of the phone is μ ≧ 0 and the sound insulation direction is opposite to the first sound insulation body. Sound insulation. 請求項1〜2記載の遮音体であって、回折波を反射・減衰させるための第3の遮音体を音波の遮音方向あるいは第1、第2の遮音体の間に備えたことを特徴とするホン型遮音体。The sound insulation body according to claim 1, wherein a third sound insulation body for reflecting / attenuating a diffracted wave is provided between the sound insulation direction of sound waves or between the first and second sound insulation bodies. A phone-type sound insulator. 請求項1〜3記載の遮音体であって、第1、第2の遮音体の高さLが遮音周波数における媒体の波長の3倍以上で構成されることを特徴とするホン型遮音体。4. The sound insulation body according to claim 1, wherein the first and second sound insulation bodies have a height L that is three times or more the wavelength of the medium at the sound insulation frequency. 請求項1〜4記載の遮音体であって、金属で構成しその厚さtが遮音周波数における媒体の波長の1/10以下にて構成されることを特徴とするホン型遮音体。5. The sound insulation body according to claim 1, wherein the sound insulation body is made of metal and has a thickness t of 1/10 or less of a wavelength of a medium at a sound insulation frequency. 請求項1〜5記載の遮音体に、無指向性送受波器を備えたことを特徴とするホン型遮音体付き送受波器。6. A transmitter / receiver with a phone-type sound insulator, wherein the sound insulator according to claim 1 is provided with an omnidirectional transmitter / receiver.
JP2000077766A 2000-03-15 2000-03-15 Phone-type sound insulator and transducer with phone-type sound insulator Expired - Lifetime JP3738646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000077766A JP3738646B2 (en) 2000-03-15 2000-03-15 Phone-type sound insulator and transducer with phone-type sound insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000077766A JP3738646B2 (en) 2000-03-15 2000-03-15 Phone-type sound insulator and transducer with phone-type sound insulator

Publications (2)

Publication Number Publication Date
JP2001268682A JP2001268682A (en) 2001-09-28
JP3738646B2 true JP3738646B2 (en) 2006-01-25

Family

ID=18595266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000077766A Expired - Lifetime JP3738646B2 (en) 2000-03-15 2000-03-15 Phone-type sound insulator and transducer with phone-type sound insulator

Country Status (1)

Country Link
JP (1) JP3738646B2 (en)

Also Published As

Publication number Publication date
JP2001268682A (en) 2001-09-28

Similar Documents

Publication Publication Date Title
US4314098A (en) Reversible electroacoustic transducer device having a constant directivity characteristic over a wide frequency band
US5719824A (en) Transducer assembly with acoustic damping
US11397263B2 (en) Sonar system with acoustic beam reflector
AU2022202301B2 (en) Sonar Beam Shape Controlling Horn
JP3738646B2 (en) Phone-type sound insulator and transducer with phone-type sound insulator
US20190257930A1 (en) Multi frequency piston transducer
Daigle et al. Beamforming with air-coupled surface waves around a sphere and circular cylinder (L)
US5436874A (en) Method and apparatus for sensing acoustic signals in a liquid
US4480324A (en) Constant beamwidth frequency independent acoustic antenna
US4445207A (en) Frequency independent acoustic antenna
US6349791B1 (en) Submarine bow dome acoustic sensor assembly
KR20070046796A (en) Electroacoustic transducer arrangement for underwater antennas
US7180827B2 (en) Surface acoustic antenna for submarines
JP2520394B2 (en) Underwater receiver
JP5263834B2 (en) Underwater image acquisition device
RU2757358C1 (en) Broadband hydroacoustic antenna
Hawkes et al. Hull-mounted acoustic vector-sensor processing
US5781509A (en) Wide beam array with sharp cutoff
JP7292097B2 (en) Underwater acoustic exploration device and underwater acoustic propagation blocking structure
JP4392321B2 (en) Slot array antenna
US8817575B1 (en) Transducer for high pressure environment
JP3979193B2 (en) Receiver
Mori et al. Preliminary results of numerical analysis of sound field converged by convex acoustic lens with solid-liquid compound structure
US4225955A (en) Thin disk acoustic baffle system
KR20220076749A (en) Sound insulating baffle structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051024

R151 Written notification of patent or utility model registration

Ref document number: 3738646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

EXPY Cancellation because of completion of term