JP3738187B2 - Waste water treatment method and waste water treatment system - Google Patents

Waste water treatment method and waste water treatment system Download PDF

Info

Publication number
JP3738187B2
JP3738187B2 JP2001054819A JP2001054819A JP3738187B2 JP 3738187 B2 JP3738187 B2 JP 3738187B2 JP 2001054819 A JP2001054819 A JP 2001054819A JP 2001054819 A JP2001054819 A JP 2001054819A JP 3738187 B2 JP3738187 B2 JP 3738187B2
Authority
JP
Japan
Prior art keywords
water
treated
nitrogen
wastewater treatment
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001054819A
Other languages
Japanese (ja)
Other versions
JP2002254080A (en
Inventor
直樹 広
範行 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001054819A priority Critical patent/JP3738187B2/en
Priority to US10/257,363 priority patent/US6875362B2/en
Priority to CNB028004442A priority patent/CN1212977C/en
Priority to KR1020027014437A priority patent/KR20020089533A/en
Priority to EP02703885A priority patent/EP1367026A4/en
Priority to PCT/JP2002/001599 priority patent/WO2002068340A1/en
Publication of JP2002254080A publication Critical patent/JP2002254080A/en
Application granted granted Critical
Publication of JP3738187B2 publication Critical patent/JP3738187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/465Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electroflotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46128Bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/166Nitrites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【0001】
【発明の属する技術分野】
本発明は、リン酸やリン化合物及びリン酸イオンや有機態窒素、亜硝酸態窒素、硝酸態窒素及びアンモニア態窒素を含む排水処理方法に関するものである。
【0002】
【従来の技術】
従来より、川や湖の富栄養化の原因の1つに窒素化合物及びリン化合物の存在があることは周知である。また、このリン化合物や窒素化合物は、一般家庭の生活排水中や工場排水中に多く存在するが、浄化処理が困難なものであり、有効な対策がとれないのが現状である。一般に、窒素化合物に処理には、生物的処理が行われており、先ずアンモニア態窒素を硝酸態窒素に変換する硝化工程と、硝酸態窒素を窒素ガスに変換する脱窒工程の2つの工程により行われている。
【0003】
他方、リン化合物の処理方法には種々提案されているが、家庭排水については石灰凝集沈殿法が知られている。この技術は、被処理水中のリン酸イオンをカルシウムイオンと反応させて水不溶性の塩、カルシウムヒドロキシアパタイトとして凝縮沈殿させて除去する技術である。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の生物的処理では、2つの反応槽が必要となると共に、処理時間が遅いため、処理効率が低下する問題があった。また、上記従来の方法では、窒素化合物及びリン化合物を含む被処理水を同時に処理するものではないため、装置が大型化する問題があった。
【0005】
また、該生物的処理では、硝化菌及び脱窒素細菌を保有するために、大容量の好気槽及び嫌気槽が必要となり、設備建設コストの高騰、装置設置面積の増大を招く問題があった。更に、該脱窒素細菌は、周囲の温度環境、その他、被処理水中に含まれる成分などにより、著しく影響されるため、特に、温度が低くなる冬場になると、活動が低下し、脱窒素作用が低下し、処理効率が不安定となる問題があった。
【0006】
更に、上記リン化合物の処理方法では、凝縮沈殿生成におけるpHが高いため、リン化合物の処理後にアルカリ性から中性に処理する必要があった。また、使用する石灰の量が大量であり、メンテナンスが困難である問題があった。
【0007】
そこで、本発明は従来の技術的課題を解決するために成されたものであり、効率的に窒素化合物及びリン化合物を含む被処理水の処理を行うことができる排水処理方法を提唱する。
【0008】
【課題を解決するための手段】
本発明は、電気化学的手法により被処理水中の窒素化合物及びリン化合物を処理する方法であって、カソードを構成する金属材料は、導電体であり、アノードを構成する導電性材料は、不溶性材料又はカーボンであると共に、被処理水には、塩化カルシウムを添加することを特徴とする。
【0009】
本発明によれば、電気化学的手法により被処理水中の窒素化合物及びリン化合物を処理する方法において、カソードを構成する金属材料は、導電体であり、アノードを構成する導電性材料は、不溶性材料又はカーボンであると共に、被処理水には、塩化カルシウムを添加するので、塩化カルシウムの塩素イオンにより、被処理水中のアンモニアが例えば次亜塩素酸等の物質と脱窒反応をすることにより、相乗効果によって、硝酸態窒素、アンモニア態窒素及び窒素化合物などの窒素成分を効果的に除去することができるようになる。
【0010】
更に、カソード近傍のpHがアルカリになることを利用して、リン酸イオンを凝縮沈殿させることができるため、処理後に被処理水を中性に調整する必要がなくなる。
【0011】
これにより、一般家庭や工場等から排出される窒素化合物及びリン化合物を含む被処理水から効率的に窒素化合物及びリン化合物を除去することができるようになり、排水処理能力が向上される。
【0012】
また、格別に別個の処理槽を設けることなく、同一の槽内においてリン化合物及び窒素化合物の処理を行うことができるようになり、本発明を実現する処理装置を小型化することができるようになる。
【0013】
請求項2の発明の排水処理方法は、請求項1の発明に加えて、カソードを構成する金属材料は、周期表の第Ib族又は第IIb族を含む導電体、若しくは、同族を導電体に被覆したものを用いることを特徴とする。
【0014】
請求項2の発明によれば、請求項1の発明に加えて、カソードを構成する金属材料は、周期表の第Ib族又は第IIb族を含む導電体、若しくは、同族を導電体に被覆したものを用いるので、被処理水中の硝酸態窒素と亜硝酸態窒素のアンモニアへの還元反応をより一層促進させることができ、還元反応に要する時間を更に短縮することができるようになる。
【0015】
請求項3の発明の排水処理方法は、被処理水中に含まれるカルシウムイオンの量は、被処理水中に含まれるリン酸イオンの量に対してモル比5/3倍以上であることを特徴とする。
【0016】
請求項3の発明によれば、請求項2の発明に加えて、被処理水中に含まれるカルシウムイオンの量は、被処理水中に含まれるリン酸イオンの量に対してモル比5/3倍以上とするので、リン酸イオンを凝集沈殿させるのに十分なカルシウムイオンを被処理水中に存在させることにより、効果的にリンを凝集沈殿させることができ、リンの処理効率を向上させることができるようになる。
【0017】
請求項4の発明の排水処理方法は、請求項1、請求項2又は請求項3の発明に加えて、被処理水は、生物的処理浄化槽により処理した後の水であることを特徴とする。
【0018】
請求項4の発明によれば、請求項1、請求項2又は請求項3の発明に加えて、被処理水は、生物的処理浄化槽により処理した後の水であるので、前記生物的処理浄化槽、例えば活性汚泥処理槽などでCODやBODなどを高度に除去すると共に、活性汚泥処理槽で発生する菌を、次亜塩素酸や活性酸素により殺菌した後、排水処理することができるようになる。
【0019】
請求項5の発明の排水処理システムは、請求項1、請求項2又は請求項3の排水処理方法により被処理水中の窒素化合物及びリン化合物を処理する窒素及びリンの処理装置を生物的処理浄化槽の後段に配置したことを特徴とする排水処理システム。
【0020】
請求項5の発明の排水処理システムによれば、請求項1、請求項2又は請求項3の排水処理方法により被処理水中の窒素化合物及びリン化合物を処理する窒素及びリンの処理装置を生物的処理浄化槽の後段に配置したので、生物的処理浄化槽、例えば活性汚泥処理槽などでCODやBODなどを高度に除去すると共に、活性汚泥処理槽で発生する菌を、次亜塩素酸や活性酸素により殺菌した後、排水処理することができるようになる。
【0021】
【発明の実施の形態】
以下、図面に基づいて本発明の実施形態を詳述する。図1は本発明の窒素及びリン処理方法を実現するための排水処理装置1の概要を示す説明図である。本実施例における排水処理装置1は、内部に図示しない排水の流入口と流出口を有する処理室4を構成する処理槽2と、該処理室4内の被処理水中に少なくとも一部が浸漬するように対向して配置される一対の電極、即ち、アノード5と、カソード6と、該電極5、6に通電するための電源7と、該電極7を制御するための図示しない制御装置とから構成されている。尚、図中10は、処理槽2内を撹拌するための撹拌手段としての撹拌子である。
【0022】
前記カソード6は、周期表の第Ib族又は第IIb族を含む導電体、若しくは、同族を導電体に被覆したものにより構成されており、前記アノード5は、不溶性金属、例えば白金、イリジウム、パラジウム又はその酸化物を含む不溶性電極又はカーボンなどから構成されている。
【0023】
また、アノード5とカソード6との間に位置して、アノード5を囲繞するように、図2に示される如き円筒状に形成された遮蔽部材9が設けられている。該遮蔽部材9は、例えばガラス繊維やプラスチックのメッシュなどの非導電性部材にて構成されており、これにより、アノード5から発生する酸素気泡が、カソード6側に通過することを阻止することができる。このとき、アノード5側に存するイオンは、該遮蔽部材9を通過してカソード6側に移動することができる。
【0024】
以上の構成により、処理槽2内の処理室4に硝酸性窒素及びリン化合物を含む被処理水を貯留し、前記制御装置により電源7をONとし、カソード6及びアノード5に通電する。これにより、カソード6側では、被処理水中に含まれる硝酸イオンは、還元反応により亜硝酸イオンに変換される(反応A)。また、硝酸イオンの還元反応により生成された亜硝酸イオンは、更に、還元反応により、アンモニアに変換される(反応B)。尚、このときカソード6近傍は、アルカリ性となる。以下に、反応A及び反応Bを示す。
反応A NO3 -+H2O+2e-→NO2 -+2OH-
反応B NO2 -+5H2O+6e-→NH3(aq)+7OH-
【0025】
一方、アノード5側では、アノード5の表面から活性酸素や次亜塩素酸が発生し、これにより、被処理水中におけるアンモニアの脱窒作用により、窒素ガスを生成する(反応C)。以下に、反応Cを示す。
反応C NH3(aq)+3(O)→N2↑+3H2
【0026】
これにより、被処理水中の硝酸態窒素、亜硝酸態窒素及びアンモニア態窒素などの窒素化合物を効果的に処理可能となる。
【0027】
また、被処理水中のリン化合物、即ち、リン酸イオンを処理するため、被処理水中に、塩化カルシウムを添加する。これにより、被処理水に加えられた塩化カルシウムのカルシウムイオンは、上述の如くカソード6近傍がアルカリ性であることから、脱リン反応により被処理水中のリン酸イオンと凝集沈殿し、水不溶性のカルシウムヒドロキシアパタイトを生成する(反応D)。以下に、反応Dを示す。
反応D 10Ca2++2OH-+6PO4 3-→Ca10(OH)2(PO46
【0028】
反応式Dに示されるように、リン酸イオンのモル比6に対して、該リン酸イオンを凝集沈殿させるのに必要とするカルシウムイオンのモル比は10である。そのため、被処理水に添加される塩化カルシウムのカルシウムイオンの量は、被処理水中に含まれるリン酸イオンの量に対し、モル比で5/3倍以上を添加する。尚、被処理水中に予めカルシウムイオンが存在している場合には、該カルシウムイオンの量を含めて、被処理水中に含まれるリン酸イオンの量に対し、モル比で5/3倍以上の塩化カルシウムを添加しても良いものとする。
【0029】
これにより、リン酸イオンを凝集沈殿させるのに十分なカルシウムイオンを被処理水中に存在させることにより、効果的にリンを凝集沈殿させることができ、リンの処理効率を向上させることができるようになる。
【0030】
尚、通常、上記脱リン反応Dを起こすためには、溶液中をアルカリ性とするため、格別な薬品を加える必要があるが、本発明では、カソード近傍は、アルカリ性であるため、その必要がない。また、薬品等によりアルカリ性とされた溶液は、排水時にpH調整剤により中性にする必要があるが、本発明では、該pHの調整は不要となる。
【0031】
他方、被処理水に添加された塩化カルシウムの塩素イオンは、アノード5において、酸化され、塩素を生成し(反応E)、生成された塩素は、被処理水中で、水と反応し、次亜塩素酸を生成する(反応F)。そして、生成された次亜塩素酸は、被処理水中に存するアンモニアと反応し、複数の化学変化を経た後、窒素ガスに変換される(反応G)。以下、反応E乃至反応Gを示す。
反応E CaCl2→Ca2++2Cl−2Cl-→Cl2+2e-反応F Cl2+H2O→HClO+HCl反応G 2NH4+4HClO→N2↑+4HCl+4H2
【0032】
ここで、図3に示される実験結果は、アノード5及びカソード6に白金、イリジウム系の電極を使用し、リン酸と、塩化カルシウムを加えて0.001M硝酸カリウム300mlを電解した場合における時間経過に伴う各イオンの濃度変化を示している。
【0033】
図3によると、カソード6において、硝酸イオンは、徐々にアンモニアイオンに変化されるため、時間の経過に伴って減少していき、電気分解開始から170分経過後には、被処理水中に殆ど存在していない。これに対し、カソード6において、生じるアンモニアイオンは、徐々に増加した後、一定時間経過後には、被処理水内に添加された塩化カルシウムの塩素イオンと反応し、徐々に減少し、硝酸イオンの減少に伴い、電気分解開始から170分後には、被処理水中にほぼ存在していない。
【0034】
また、アノード5近傍において、リン酸イオンは、塩化カルシウムのカルシウムイオンと脱リン反応を生じ、これにより、処理槽2の底面等にカルシウムヒドロキシアパタイトの状態で、沈殿生成される。そのため、リン酸イオン及びリン酸イオンの脱リン反応に使用されるカルシウムイオンは、時間の経過に伴って、徐々に減少し、電気分解開始から300分経過後には、リン酸イオンは、被処理水中にほぼ存在していない。
【0035】
これにより、上述の如く塩化カルシウムを被処理水中に添加することにより、カルシウムイオンが脱リン反応に供され、被処理水中のリン酸イオンの脱リン反応を促進させることができると共に、同一処理槽2内において、硝酸態窒素と亜硝酸態窒素のアンモニアへの還元反応を促進させることができ、還元反応に要する時間を短縮することができるようになる。
【0036】
そのため、格別に別個の処理槽を設けることなく、同一の槽内においてリン化合物及び窒素化合物の処理を行うことができ、排水処理装置1を小型化することができるようになる。
【0037】
また、カソード6より生じるアンモニアが、次亜塩素酸の物質と脱窒反応をすることにより、相乗効果によって、硝酸態窒素、アンモニア態窒素及び窒素化合物などの窒素成分を効果的に除去することができるようになる。
【0038】
更に、カソード6近傍のpHがアルカリになることを利用して、リン酸イオンを凝縮沈殿させることができるため、処理後に被処理水を中性に調整する必要がなくなる。
【0039】
これにより、一般家庭や工場等から排出される窒素化合物及びリン化合物を含む被処理水から効率的に窒素化合物及びリン化合物を除去することができるようになり、窒素化合物及びリン化合物の処理能力が向上される。
【0040】
また、本発明の第1の具体的応用例としては、図4に示す如く生物的処理浄化槽、本実施例では所謂活性汚泥処理槽11に被処理水を貯留し、該活性汚泥処理槽11にてCOD及びBODを除去した後、該COD及びBOD処理が成された被処理水を本発明を適用した排水処理装置1の処理槽2にて窒素化合物及びリン化合物の処理を行う。
【0041】
これにより、被処理水を活性汚泥処理槽11にて一旦COD及びBODの処理をした後、更に、排水処理装置1にて窒素化合物及びリン化合物の処理を行うことができるようになり、被処理水を効果的に処理することができるようになる。また、活性汚泥処理槽11にて処理された被処理水は、活性汚泥処理槽11内にて発生する菌が含まれているが、排水処理装置1にて上述の如く次亜塩素酸や活性酸素により殺菌するため、被処理水を環境に適した状態で排水処理することができるようになる。
【0042】
更に、本発明の第2の具体的応用例としては、図5に示す如く、所謂電解浮上によって被処理水中の浮遊物質を除去することもできる。
【0043】
また更に、本発明の第3の具体的応用例としては、図6に示す如く生け簀や水族館などでの魚類を生息させる水槽12の水の窒素化合物及びリン化合物除去に使用することができる。魚類を生息させる水槽には、魚から排出されるアンモニア等の窒素化合物によって水が著しく汚染されるため、定期的に水槽内の水を交換する必要があった。そこで、窒素化合物を含む水槽12内の水を前記排水処理装置1にて窒素化合物の処理を行い、その後、排水処理装置1から排水された被処理水を次亜塩素酸除去装置13にて被処理水中の次亜塩素酸を除去し、水槽12内に戻す。
【0044】
これにより、水槽12内の水を定期的に交換する必要がなくなり、水槽12のメンテナンス作業性を向上させることができる。また、水槽12から排水処理装置1に貯留された被処理水は、次亜塩素酸によって殺菌されるため、その後、係る被処理水が水槽12に戻されることにより、水槽12内の魚の生存率を向上させることができるようになる。
【0045】
また、これ以外に、本発明を適用した排水処理方法は、プールや浴場における被処理水の浄化及び井戸水や地下水の浄化などにも適用することができるものとする。
【0046】
【発明の効果】
以上詳述した如く本発明によれば、電気化学的手法により被処理水中の窒素化合物及びリン化合物を処理する方法において、カソードを構成する金属材料は、導電体であり、アノードを構成する導電性材料は、不溶性材料又はカーボンであると共に、被処理水には、塩化カルシウムを添加するので、塩化カルシウムの塩素イオンにより、被処理水中のアンモニアが、例えば次亜塩素酸等の物質と脱窒反応をすることにより、相乗効果によって、硝酸態窒素、アンモニア態窒素及び窒素化合物などの窒素成分を効果的に除去することができるようになる。
【0047】
更に、カソード近傍のpHがアルカリになることを利用して、リン酸イオンを凝縮沈殿させることができるため、処理後に被処理水を中性に調整する必要がなくなる。
【0048】
これにより、一般家庭や工場等から排出される窒素化合物及びリン化合物を含む被処理水から効率的に窒素化合物及びリン化合物を除去することができるようになり、窒素化合物及びリン化合物の処理能力が向上される。
【0049】
また、格別に別個の処理槽を設けることなく、同一の槽内においてリン化合物及び窒素化合物の処理を行うことができるようになり、本発明を実現する処理装置を小型化することができるようになる。
【0050】
請求項2の発明によれば、請求項1の発明に加えて、カソードを構成する金属材料は、周期表の第Ib族又は第IIb族を含む導電体、若しくは、同族を導電体に被覆したものを用いるので、被処理水中の硝酸態窒素と亜硝酸態窒素のアンモニアへの還元反応をより一層促進させることができ、還元反応に要する時間を更に短縮することができるようになる。
【0051】
請求項3の発明によれば、請求項2の発明に加えて、被処理水中に含まれるカルシウムイオンの量は、被処理水中に含まれるリン酸イオンの量に対してモル比5/3倍以上とするので、リン酸イオンを凝集沈殿させるのに十分なカルシウムイオンを被処理水中に存在させることにより、効果的にリンを凝集沈殿させることができ、リンの処理効率を向上させることができるようになる。
【0052】
請求項4の発明によれば、請求項1、請求項2又は請求項3の発明に加えて、被処理水は、生物的処理浄化槽により処理した後の水であるので、前記生物的処理浄化槽、例えば活性汚泥処理槽などでCODやBODなどを高度に除去すると共に、活性汚泥処理槽で発生する菌を、次亜塩素酸や活性酸素により殺菌した後、排水処理することができるようになる。
【0053】
請求項5の発明の排水処理システムによれば、請求項1、請求項2又は請求項3の排水処理方法により被処理水中の窒素化合物及びリン化合物を処理する排水処理装置を生物的処理浄化槽の後段に配置したので、生物的処理浄化槽、例えば活性汚泥処理槽などでCODやBODなどを高度に除去すると共に、活性汚泥処理槽で発生する菌を、次亜塩素酸や活性酸素により殺菌した後、排水処理することができるようになる。
【図面の簡単な説明】
【図1】本発明の排水処理方法を実現するための排水処理装置の概要を示す説明図である。
【図2】アノードの構造説明図である。
【図3】各イオン濃度の変化を示す図である。
【図4】本発明の第1の具体的応用例を説明する図である。
【図5】本発明の第2の具体的応用例を説明する図である。
【図6】本発明の第3の具体的応用例を説明する図である。
【符号の説明】
1 排水処理装置
2 処理槽
4 排水処理室
5 アノード
6 カソード
7 電源
9 遮蔽部材
10 撹拌子
11 活性汚泥処理槽
12 水槽
13 次亜塩素酸除去装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wastewater treatment method containing phosphoric acid, a phosphorus compound, phosphate ions, organic nitrogen, nitrite nitrogen, nitrate nitrogen, and ammonia nitrogen.
[0002]
[Prior art]
Conventionally, it is well known that the presence of nitrogen compounds and phosphorus compounds is one of the causes of eutrophication of rivers and lakes. In addition, there are many phosphorus compounds and nitrogen compounds in domestic household wastewater and factory wastewater, but purification is difficult, and effective measures cannot be taken. In general, the treatment of nitrogen compounds is carried out by biological treatment. First, the nitrification step for converting ammonia nitrogen to nitrate nitrogen and the denitrification step for converting nitrate nitrogen to nitrogen gas are performed. Has been done.
[0003]
On the other hand, various treatment methods for phosphorus compounds have been proposed, but a lime coagulation precipitation method is known for domestic wastewater. This technique is a technique in which phosphate ions in water to be treated are reacted with calcium ions to be condensed and precipitated as a water-insoluble salt, calcium hydroxyapatite.
[0004]
[Problems to be solved by the invention]
However, the conventional biological treatment requires two reaction tanks and has a problem in that the treatment efficiency is lowered because the treatment time is slow. Moreover, in the said conventional method, since the to-be-processed water containing a nitrogen compound and a phosphorus compound is not processed simultaneously, there existed a problem which an apparatus enlarged.
[0005]
In addition, the biological treatment requires a large-capacity aerobic tank and anaerobic tank in order to retain nitrifying bacteria and denitrifying bacteria, and there is a problem in that the equipment construction cost increases and the installation area of the apparatus increases. . Furthermore, since the denitrifying bacteria are significantly affected by the ambient temperature environment and other components contained in the water to be treated, the activity decreases and the denitrifying action is reduced particularly in winter when the temperature is low. There has been a problem that the processing efficiency becomes unstable.
[0006]
Furthermore, in the processing method of the phosphorus compound, since the pH in the formation of the condensed precipitate is high, it is necessary to perform the processing from alkaline to neutral after the processing of the phosphorus compound. In addition, there is a problem that the amount of lime used is large and maintenance is difficult.
[0007]
Therefore, the present invention has been made to solve the conventional technical problems, and proposes a wastewater treatment method capable of efficiently treating water to be treated containing a nitrogen compound and a phosphorus compound.
[0008]
[Means for Solving the Problems]
The present invention is a method for treating nitrogen compounds and phosphorus compounds in water to be treated by an electrochemical method, wherein the metal material constituting the cathode is a conductor, and the conductive material constituting the anode is an insoluble material. Alternatively, it is carbon and calcium chloride is added to the water to be treated.
[0009]
According to the present invention, in the method for treating nitrogen compounds and phosphorus compounds in water to be treated by an electrochemical method, the metal material constituting the cathode is a conductor, and the conductive material constituting the anode is an insoluble material. In addition, since calcium chloride is added to the water to be treated while being carbon, ammonia in the water to be treated is denitrified with a substance such as hypochlorous acid by the chloride ions of calcium chloride, thereby synergistically. According to the effect, nitrogen components such as nitrate nitrogen, ammonia nitrogen and nitrogen compounds can be effectively removed.
[0010]
Furthermore, since the phosphate ions can be condensed and precipitated by utilizing the fact that the pH in the vicinity of the cathode becomes alkaline, it is not necessary to adjust the water to be treated to neutral after the treatment.
[0011]
As a result, the nitrogen compound and the phosphorus compound can be efficiently removed from the water to be treated containing the nitrogen compound and the phosphorus compound discharged from a general household or a factory, and the wastewater treatment capacity is improved.
[0012]
Moreover, it becomes possible to perform the treatment of the phosphorus compound and the nitrogen compound in the same tank without providing a special separate treatment tank, so that the processing apparatus for realizing the present invention can be miniaturized. Become.
[0013]
In the wastewater treatment method of the invention of claim 2, in addition to the invention of claim 1, the metal material constituting the cathode is a conductor containing Group Ib or Group IIb of the periodic table, or the same group as a conductor. It is characterized by using a coated one.
[0014]
According to the invention of claim 2, in addition to the invention of claim 1, the metal material constituting the cathode is a conductor containing the group Ib or IIb of the periodic table, or a conductor coated with the same group. Since one is used, the reduction reaction of nitrate nitrogen and nitrite nitrogen in the water to be treated to ammonia can be further promoted, and the time required for the reduction reaction can be further shortened.
[0015]
The waste water treatment method of the invention of claim 3 is characterized in that the amount of calcium ions contained in the water to be treated is at least 5/3 times the molar ratio of the amount of phosphate ions contained in the water to be treated. To do.
[0016]
According to the invention of claim 3, in addition to the invention of claim 2, the amount of calcium ions contained in the for-treatment water is 5/3 times the molar ratio of phosphate ions contained in the for-treatment water. As described above, by allowing calcium ions sufficient to coagulate and precipitate phosphate ions in the water to be treated, it is possible to effectively coagulate and precipitate phosphorus and improve the treatment efficiency of phosphorus. It becomes like this.
[0017]
The wastewater treatment method of the invention of claim 4 is characterized in that, in addition to the invention of claim 1, claim 2 or claim 3, the water to be treated is water after being treated by a biological treatment septic tank. .
[0018]
According to the invention of claim 4, in addition to the invention of claim 1, claim 2 or claim 3, the treated water is water after being treated by the biological treatment septic tank. For example, COD and BOD are highly removed in an activated sludge treatment tank or the like, and bacteria generated in the activated sludge treatment tank can be sterilized with hypochlorous acid or active oxygen, and then discharged. .
[0019]
The waste water treatment system of the invention of claim 5 is a biological treatment septic tank for treating a nitrogen and phosphorus treatment apparatus for treating nitrogen compounds and phosphorus compounds in water to be treated by the waste water treatment method of claim 1, claim 2 or claim 3. A wastewater treatment system characterized by being arranged in the subsequent stage.
[0020]
According to the waste water treatment system of the invention of claim 5, the nitrogen and phosphorus treatment apparatus for treating the nitrogen compound and phosphorus compound in the water to be treated by the waste water treatment method of claim 1, claim 2 or claim 3 is biological. Since it is placed after the treatment septic tank, COD and BOD are highly removed in biological treatment septic tanks such as activated sludge treatment tanks, and bacteria generated in the activated sludge treatment tanks are removed by hypochlorous acid and active oxygen. After sterilization, the waste water can be treated.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory view showing an outline of a wastewater treatment apparatus 1 for realizing the nitrogen and phosphorus treatment method of the present invention. The waste water treatment apparatus 1 in the present embodiment is at least partially immersed in the treatment tank 2 that constitutes a treatment chamber 4 having a waste water inlet and outlet (not shown) therein, and the water to be treated in the treatment chamber 4. A pair of electrodes, that is, an anode 5, a cathode 6, a power source 7 for energizing the electrodes 5 and 6, and a control device (not shown) for controlling the electrodes 7. It is configured. In addition, 10 is a stirring element as a stirring means for stirring the inside of the processing tank 2 in the figure.
[0022]
The cathode 6 is made of a conductor containing Group Ib or Group IIb of the periodic table, or a conductor coated with the same group, and the anode 5 is made of an insoluble metal such as platinum, iridium, or palladium. Or it is comprised from the insoluble electrode or carbon containing the oxide.
[0023]
Further, a shielding member 9 formed in a cylindrical shape as shown in FIG. 2 is provided between the anode 5 and the cathode 6 so as to surround the anode 5. The shielding member 9 is made of a non-conductive member such as glass fiber or plastic mesh, for example, thereby preventing oxygen bubbles generated from the anode 5 from passing to the cathode 6 side. it can. At this time, ions existing on the anode 5 side can pass through the shielding member 9 and move to the cathode 6 side.
[0024]
With the above configuration, water to be treated containing nitrate nitrogen and phosphorus compound is stored in the treatment chamber 4 in the treatment tank 2, the power supply 7 is turned on by the control device, and the cathode 6 and the anode 5 are energized. Thereby, on the cathode 6 side, nitrate ions contained in the water to be treated are converted into nitrite ions by a reduction reaction (reaction A). Further, nitrite ions generated by the reduction reaction of nitrate ions are further converted to ammonia by a reduction reaction (reaction B). At this time, the vicinity of the cathode 6 becomes alkaline. Reaction A and reaction B are shown below.
Reaction A NO 3 + H 2 O + 2e → NO 2 + 2OH
Reaction B NO 2 + 5H 2 O + 6e → NH 3 (aq) + 7OH
[0025]
On the other hand, on the anode 5 side, active oxygen and hypochlorous acid are generated from the surface of the anode 5, thereby generating nitrogen gas by denitrification of ammonia in the water to be treated (reaction C). Reaction C is shown below.
Reaction C NH 3 (aq) +3 (O) → N 2 ↑ + 3H 2 O
[0026]
This makes it possible to effectively treat nitrogen compounds such as nitrate nitrogen, nitrite nitrogen, and ammonia nitrogen in the water to be treated.
[0027]
Further, calcium chloride is added to the water to be treated in order to treat phosphorus compounds in the water to be treated, that is, phosphate ions. As a result, the calcium ions of calcium chloride added to the water to be treated coagulate and precipitate with the phosphate ions in the water to be treated by the dephosphorization reaction because the vicinity of the cathode 6 is alkaline as described above. Hydroxyapatite is produced (Reaction D). Reaction D is shown below.
Reaction D 10Ca 2+ + 2OH + 6PO 4 3- → Ca 10 (OH) 2 (PO 4 ) 6
[0028]
As shown in Reaction Formula D, the molar ratio of calcium ions required for coagulating and precipitating the phosphate ions is 10 with respect to the molar ratio of phosphate ions of 6. Therefore, the amount of calcium ions of calcium chloride added to the water to be treated is 5/3 times or more in molar ratio with respect to the amount of phosphate ions contained in the water to be treated. In addition, when calcium ions are present in the treated water in advance, including the amount of the calcium ions, the molar ratio is 5/3 times or more with respect to the amount of phosphate ions contained in the treated water. Calcium chloride may be added.
[0029]
Thereby, phosphorus can be effectively coagulated and precipitated by making calcium ions sufficient for coagulating and precipitating phosphate ions in the water to be treated, so that the processing efficiency of phosphorus can be improved. Become.
[0030]
Normally, in order to cause the dephosphorization reaction D, it is necessary to add a special chemical to make the solution alkaline, but in the present invention, the vicinity of the cathode is alkaline, so that is not necessary. . Further, the solution made alkaline by chemicals or the like needs to be neutralized by a pH adjuster during drainage, but in the present invention, adjustment of the pH is not necessary.
[0031]
On the other hand, the chlorine ions of calcium chloride added to the water to be treated are oxidized at the anode 5 to produce chlorine (reaction E). The produced chlorine reacts with water in the water to be treated, and the hypochlorite. Chloric acid is produced (reaction F). And the produced | generated hypochlorous acid reacts with the ammonia which exists in to-be-processed water, and after passing through several chemical changes, it is converted into nitrogen gas (reaction G). Hereinafter, Reaction E to Reaction G are shown.
Reaction E CaCl 2 → Ca 2+ + 2Cl -2Cl - → Cl 2 + 2e - reaction F Cl 2 + H 2 O → HClO + HCl Reaction G 2NH 4 + 4HClO → N 2 ↑ + 4HCl + 4H 2 O
[0032]
Here, the experimental results shown in FIG. 3 show that time elapsed when platinum and iridium electrodes were used for the anode 5 and the cathode 6 and 300 ml of 0.001M potassium nitrate was electrolyzed by adding phosphoric acid and calcium chloride. The accompanying concentration change of each ion is shown.
[0033]
According to FIG. 3, since nitrate ions are gradually changed to ammonia ions at the cathode 6, they decrease with the passage of time, and are almost present in the water to be treated after 170 minutes from the start of electrolysis. Not done. On the other hand, the ammonia ion generated at the cathode 6 gradually increases and then reacts with the chlorine ions of calcium chloride added to the water to be treated after a certain period of time. Along with the decrease, 170 minutes after the start of electrolysis, it is hardly present in the water to be treated.
[0034]
Further, in the vicinity of the anode 5, phosphate ions undergo a dephosphorylation reaction with calcium ions of calcium chloride, whereby precipitates are formed on the bottom surface of the treatment tank 2 in the form of calcium hydroxyapatite. Therefore, phosphate ions and calcium ions used for the dephosphorization reaction of phosphate ions gradually decrease with time, and after 300 minutes from the start of electrolysis, phosphate ions are treated. Almost no in the water.
[0035]
Thus, by adding calcium chloride to the water to be treated as described above, calcium ions are subjected to a dephosphorylation reaction, and the phosphorous ion dephosphorization reaction in the water to be treated can be promoted and the same treatment tank. 2, the reduction reaction of nitrate nitrogen and nitrite nitrogen to ammonia can be promoted, and the time required for the reduction reaction can be shortened.
[0036]
Therefore, the phosphorus compound and the nitrogen compound can be processed in the same tank without providing a special separate processing tank, and the wastewater treatment apparatus 1 can be downsized.
[0037]
In addition, the ammonia generated from the cathode 6 can effectively remove nitrogen components such as nitrate nitrogen, ammonia nitrogen, and nitrogen compounds by a synergistic effect by performing a denitrification reaction with the hypochlorous acid substance. become able to.
[0038]
Furthermore, since the phosphate ions can be condensed and precipitated by utilizing the fact that the pH in the vicinity of the cathode 6 becomes alkaline, it is not necessary to adjust the water to be treated to neutral after the treatment.
[0039]
As a result, nitrogen compounds and phosphorus compounds can be efficiently removed from the water to be treated containing nitrogen compounds and phosphorus compounds discharged from ordinary households and factories, and the treatment capacity of nitrogen compounds and phosphorus compounds is improved. Be improved.
[0040]
Further, as a first specific application example of the present invention, as shown in FIG. 4, water to be treated is stored in a biological treatment septic tank, in this embodiment a so-called activated sludge treatment tank 11, and the activated sludge treatment tank 11 is stored. After removing COD and BOD, the treated water that has been subjected to the COD and BOD treatment is treated with a nitrogen compound and a phosphorus compound in the treatment tank 2 of the wastewater treatment apparatus 1 to which the present invention is applied.
[0041]
As a result, after the COD and BOD are once treated in the activated sludge treatment tank 11, the wastewater treatment apparatus 1 can further treat the nitrogen compound and the phosphorus compound. It becomes possible to treat water effectively. Further, the water to be treated treated in the activated sludge treatment tank 11 contains bacteria generated in the activated sludge treatment tank 11, but hypochlorite and active in the wastewater treatment apparatus 1 as described above. Since it is sterilized by oxygen, the water to be treated can be drained in a state suitable for the environment.
[0042]
Furthermore, as a second specific application example of the present invention, as shown in FIG. 5, suspended substances in the water to be treated can be removed by so-called electrolytic levitation.
[0043]
Furthermore, as a third specific application example of the present invention, as shown in FIG. 6, it can be used for removing nitrogen compounds and phosphorus compounds of water in the aquarium 12 inhabiting fish in a cage or an aquarium. In the aquarium inhabiting fish, water is significantly polluted by nitrogen compounds such as ammonia discharged from the fish. Therefore, it is necessary to periodically exchange the water in the aquarium. Therefore, the water in the water tank 12 containing the nitrogen compound is treated with the nitrogen compound in the waste water treatment device 1, and then the treated water drained from the waste water treatment device 1 is treated with the hypochlorous acid removal device 13. Hypochlorous acid in the treated water is removed and returned to the water tank 12.
[0044]
Thereby, it becomes unnecessary to exchange the water in the water tank 12 regularly, and the maintenance workability | operativity of the water tank 12 can be improved. Moreover, since the to-be-processed water stored in the waste water treatment apparatus 1 from the water tank 12 is sterilized by hypochlorous acid, the to-be-processed water is returned to the water tank 12 after that, and the survival rate of the fish in the water tank 12 Can be improved.
[0045]
In addition to this, the wastewater treatment method to which the present invention is applied can be applied to purification of water to be treated in a pool or bathhouse, purification of well water or ground water, and the like.
[0046]
【The invention's effect】
As described above in detail, according to the present invention, in the method for treating nitrogen compounds and phosphorus compounds in water to be treated by an electrochemical method, the metal material constituting the cathode is a conductor, and the conductivity constituting the anode. The material is an insoluble material or carbon, and calcium chloride is added to the water to be treated. Therefore, ammonia in the water to be treated is denitrified with substances such as hypochlorous acid by the chlorine ions of calcium chloride. By doing so, nitrogen components such as nitrate nitrogen, ammonia nitrogen and nitrogen compounds can be effectively removed by a synergistic effect.
[0047]
Furthermore, since the phosphate ions can be condensed and precipitated by utilizing the fact that the pH in the vicinity of the cathode becomes alkaline, it is not necessary to adjust the water to be treated to neutral after the treatment.
[0048]
As a result, nitrogen compounds and phosphorus compounds can be efficiently removed from the water to be treated containing nitrogen compounds and phosphorus compounds discharged from ordinary households and factories, and the treatment capacity of nitrogen compounds and phosphorus compounds is improved. Be improved.
[0049]
Moreover, it becomes possible to perform the treatment of the phosphorus compound and the nitrogen compound in the same tank without providing a special separate treatment tank, so that the processing apparatus for realizing the present invention can be miniaturized. Become.
[0050]
According to the invention of claim 2, in addition to the invention of claim 1, the metal material constituting the cathode is a conductor containing the group Ib or IIb of the periodic table, or a conductor coated with the same group. Since one is used, the reduction reaction of nitrate nitrogen and nitrite nitrogen in the water to be treated to ammonia can be further promoted, and the time required for the reduction reaction can be further shortened.
[0051]
According to the invention of claim 3, in addition to the invention of claim 2, the amount of calcium ions contained in the for-treatment water is 5/3 times the molar ratio of phosphate ions contained in the for-treatment water. As described above, by allowing calcium ions sufficient to coagulate and precipitate phosphate ions in the water to be treated, it is possible to effectively coagulate and precipitate phosphorus and improve the treatment efficiency of phosphorus. It becomes like this.
[0052]
According to the invention of claim 4, in addition to the invention of claim 1, claim 2 or claim 3, the treated water is water after being treated by the biological treatment septic tank. For example, COD and BOD are highly removed in an activated sludge treatment tank or the like, and bacteria generated in the activated sludge treatment tank can be sterilized with hypochlorous acid or active oxygen, and then discharged. .
[0053]
According to the waste water treatment system of the invention of claim 5, the waste water treatment apparatus for treating nitrogen compounds and phosphorus compounds in the water to be treated by the waste water treatment method of claim 1, claim 2 or claim 3 Since it is placed in the latter stage, after removing COD and BOD in biological treatment septic tanks, such as activated sludge treatment tanks, and sterilizing bacteria generated in activated sludge treatment tanks with hypochlorous acid and active oxygen It will be possible to treat waste water.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an outline of a wastewater treatment apparatus for realizing a wastewater treatment method of the present invention.
FIG. 2 is an explanatory diagram of the structure of an anode.
FIG. 3 is a diagram showing changes in each ion concentration.
FIG. 4 is a diagram illustrating a first specific application example of the present invention.
FIG. 5 is a diagram illustrating a second specific application example of the present invention.
FIG. 6 is a diagram for explaining a third specific application example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Waste water treatment apparatus 2 Treatment tank 4 Waste water treatment room 5 Anode 6 Cathode 7 Power supply 9 Shielding member 10 Stirrer 11 Activated sludge treatment tank 12 Water tank 13 Hypochlorous acid removal apparatus

Claims (5)

電気化学的手法により被処理水中のリン酸とリン化合物とリン酸イオンのうちの何れか若しくは全て、及び、有機態窒素と亜硝酸態窒素と硝酸態窒素とアンモニア態窒素のうちの何れか若しくは全てを処理する排水処理方法であって、
カソードを構成する金属材料は、導電体であり、アノードを構成する導電性材料は、不溶性材料又はカーボンであると共に、
前記被処理水には、塩化カルシウムを添加する処理と、
前記アノードにおいて前記塩化カルシウムの塩素イオンを酸化させ、次亜塩素酸を生成する処理と、
前記カソードにおいて前記亜硝酸態窒素又は硝酸態窒素を還元した後、前記次亜塩素酸により酸化させて窒素成分を除去する処理と、
前記塩化カルシウムのカルシウムイオンにより前記リン化合物を凝集沈殿する処理と、
からなることを特徴とする排水処理方法。
Any or all of phosphoric acid, phosphorus compound and phosphate ion in the water to be treated by electrochemical technique , and any of organic nitrogen, nitrite nitrogen, nitrate nitrogen and ammonia nitrogen or A wastewater treatment method for treating everything ,
The metal material constituting the cathode is a conductor, and the conductive material constituting the anode is an insoluble material or carbon,
A treatment of adding calcium chloride to the water to be treated;
A process of oxidizing hypochlorite in the anode by oxidizing chlorine ions of the calcium chloride;
After reducing the nitrite nitrogen or nitrate nitrogen at the cathode, oxidizing the hypochlorous acid to remove the nitrogen component;
A treatment of aggregating and precipitating the phosphorus compound with calcium ions of the calcium chloride;
A wastewater treatment method comprising:
前記カソードを構成する金属材料は、周期表の第Ib族又は第IIb族を含む導電体、若しくは、同族を導電体に被覆したものを用いることを特徴とする請求項1の排水処理方法。  The wastewater treatment method according to claim 1, wherein the metal material constituting the cathode is a conductor containing Group Ib or Group IIb of the periodic table, or a conductor coated with the same group. 電気化学的手法により被処理水中のリン酸とリン化合物とリン酸イオンのうちの何れか若しくは全て、及び、有機態窒素と亜硝酸態窒素と硝酸態窒素とアンモニア態窒素のうちの何れか若しくは全てを処理する排水処理方法であって、
カソードを構成する金属材料は、周期表の第Ib族又は第IIb族を含む導電体、若しくは、同族を導電体に被覆したものとし、
アノードを構成する導電性材料は、不溶性材料又はカーボンであると共に、
前記被処理水には、塩化カルシウムを添加してなる排水処理方法において、
前記被処理水中に含まれるカルシウムイオンの量は、被処理水中に含まれるリン酸イオンの量に対してモル比5/3倍以上であることを特徴とする排水処理方法。
Any or all of phosphoric acid, phosphorus compound and phosphate ion in the water to be treated by electrochemical technique , and any of organic nitrogen, nitrite nitrogen, nitrate nitrogen and ammonia nitrogen or A wastewater treatment method for treating everything ,
The metal material constituting the cathode is a conductor containing Group Ib or Group IIb of the periodic table, or a conductor coated with the same group.
The conductive material constituting the anode is an insoluble material or carbon,
In the wastewater treatment method in which calcium chloride is added to the treated water,
The wastewater treatment method characterized in that the amount of calcium ions contained in the water to be treated is at least 5/3 times the molar ratio of the amount of phosphate ions contained in the water to be treated.
前記被処理水は、生物的処理浄化槽により処理した後の水であることを特徴とする請求項1、請求項2又は請求項3の排水処理方法。  The wastewater treatment method according to claim 1, wherein the treated water is water after being treated in a biological treatment septic tank. 前記請求項1、請求項2又は請求項3の排水処理方法により被処理水中のリン酸とリン化合物とリン酸イオンのうちの何れか若しくは全て、及び、有機態窒素と亜硝酸態窒素と硝酸態窒素とアンモニア態窒素のうちの何れか若しくは全てを処理する排水処理装置を生物的処理浄化槽の後段に配置したことを特徴とする排水処理システム。 Any or all of phosphoric acid, phosphorus compound and phosphate ion in water to be treated by the waste water treatment method of claim 1, claim 2 or claim 3 , and organic nitrogen, nitrite nitrogen and nitric acid A wastewater treatment system in which a wastewater treatment apparatus for treating any or all of nitrogen and ammonia nitrogen is disposed in a subsequent stage of a biological treatment septic tank.
JP2001054819A 2001-02-28 2001-02-28 Waste water treatment method and waste water treatment system Expired - Fee Related JP3738187B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001054819A JP3738187B2 (en) 2001-02-28 2001-02-28 Waste water treatment method and waste water treatment system
US10/257,363 US6875362B2 (en) 2001-02-28 2002-02-22 Waste water treating method, waste water treating apparatus, and waste water treating system
CNB028004442A CN1212977C (en) 2001-02-28 2002-02-22 Drain treating method, drain treating device and drain treating system
KR1020027014437A KR20020089533A (en) 2001-02-28 2002-02-22 Drain treating method, drain treating device and drain treating system
EP02703885A EP1367026A4 (en) 2001-02-28 2002-02-22 Drain treating method, drain treating device and drain treating system
PCT/JP2002/001599 WO2002068340A1 (en) 2001-02-28 2002-02-22 Drain treating method, drain treating device and drain treating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001054819A JP3738187B2 (en) 2001-02-28 2001-02-28 Waste water treatment method and waste water treatment system

Publications (2)

Publication Number Publication Date
JP2002254080A JP2002254080A (en) 2002-09-10
JP3738187B2 true JP3738187B2 (en) 2006-01-25

Family

ID=18915091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001054819A Expired - Fee Related JP3738187B2 (en) 2001-02-28 2001-02-28 Waste water treatment method and waste water treatment system

Country Status (1)

Country Link
JP (1) JP3738187B2 (en)

Also Published As

Publication number Publication date
JP2002254080A (en) 2002-09-10

Similar Documents

Publication Publication Date Title
JP3530511B2 (en) Nitrogen treatment method and nitrogen treatment system
JP4040028B2 (en) Method and system for treating water to be treated containing organic matter and nitrogen compound
KR100472884B1 (en) Waste Water Treating Method and Waste Water Treating Apparatus
US6875362B2 (en) Waste water treating method, waste water treating apparatus, and waste water treating system
KR100611688B1 (en) Method of Wastewater Treatment and Wastewater Treatment Apparatus
KR100918555B1 (en) Method and System for Treating Nitrogen-Containing Compound
JP3691461B2 (en) Water purification system and water purification method
JP3738187B2 (en) Waste water treatment method and waste water treatment system
JP3524894B2 (en) Wastewater treatment method and additive for wastewater treatment
JP3738186B2 (en) Nitrogen treatment method and nitrogen treatment system
JP2004097949A (en) Wastewater treatment system
JP2007252965A (en) Apparatus for treating waste water
JP3723530B2 (en) Wastewater treatment method
JP3738188B2 (en) Waste water treatment apparatus and waste water treatment system
JP3998530B2 (en) Waste water treatment method and waste water treatment equipment
JPH11267683A (en) Treating device of waste water containing phosphate ions
JP4024087B2 (en) Organic wastewater treatment method
JP3906180B2 (en) Method for separating phosphorus in organic wastewater
JP4270825B2 (en) Electrolytic wastewater treatment equipment
JP2002248473A (en) Nitrogen treatment method and system
JP3668235B2 (en) Waste water treatment method and waste water treatment equipment
JP3863743B2 (en) Water purification system
JP2000084584A (en) Wastewater treatment device for phosphoric acid ion- containing wastewater
JPH11314093A (en) Treatment of phosphate ion-containing waste water

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees