JP3737318B2 - Hydraulic hole punching method for cylindrical members - Google Patents

Hydraulic hole punching method for cylindrical members Download PDF

Info

Publication number
JP3737318B2
JP3737318B2 JP16720399A JP16720399A JP3737318B2 JP 3737318 B2 JP3737318 B2 JP 3737318B2 JP 16720399 A JP16720399 A JP 16720399A JP 16720399 A JP16720399 A JP 16720399A JP 3737318 B2 JP3737318 B2 JP 3737318B2
Authority
JP
Japan
Prior art keywords
punching
cylindrical member
hole
punch
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16720399A
Other languages
Japanese (ja)
Other versions
JP2000351030A (en
Inventor
成幸 中川
謙二 金森
久男 谷川
公雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Nissan Motor Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Nissan Motor Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP16720399A priority Critical patent/JP3737318B2/en
Publication of JP2000351030A publication Critical patent/JP2000351030A/en
Application granted granted Critical
Publication of JP3737318B2 publication Critical patent/JP3737318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Punching Or Piercing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、筒状部材の内部の内液圧と穴抜きパンチを利用した筒状部材の穴抜き加工方法に関する。
【0002】
【従来の技術】
近年、CO2 削減のための車体軽量化や強度向上のための車体補強を目的とした車体やシャーシ部品が求められている。こうした車体やシャーシ部品として、中空の筒状部材を内液圧成形した部品を適用する動きが高まってきている。これらの部品は、所定形状に内液圧成形された後、他の部品を取り付けるための穴や位置決めするための穴が加工される。しかし、最近、経済性や加工精度の向上に対する要請に基づいて、内液圧成形の一連の工程内で穴抜きを行う加工法が検討されている。
【0003】
例えば、図5(a)に示すように、筒状部材64の内部に内液圧Pを負荷しつつ、穴抜きパンチ61を筒状部材64の外側から内部側に向かって打ち付けることにより、穴抜き加工する方法が開示されている(特開平6−292929号公報)。また、図5(b)に示すように、筒状部材64の内部に内液圧Pを負荷しつつ、穴抜きパンチ61を後退させ、筒状部材64を変形させて外側に穴抜き加工する方法も開示されている(塑性と加工、Vol.39(No.453),p.1049(1998))。
【0004】
【発明が解決しようとする課題】
しかしながら、図5(a)に示した方法では、穴抜き加工の過程で、抜きカス65となる部分の周辺部67に塑性変形が起こる。そのため、穴抜き加工後に、穴の周辺部67にダレが生じ、穴径の精度が低下するといった問題があった。また、このダレを防止するには内液圧Pを相当大きくしなければならず、そのため、圧力発生装置及び加工設備が大型化して設備投資が大きくなり、スペース効率の低下やコストアップといった問題がある。また、図5(b)に示した方法でも、内液圧Pを相当大きくしなければ穴抜きを行うことができず、同様に圧力発生装置及び加工設備が大型化して設備投資が大きくなり、スペース効率の低下やコストアップといった問題がある。さらに、抜きカス66となる部分は、内液圧Pの負荷によって、筒状部材64の外側にドーム状に膨らみながら破断するため、破断面68の面粗度や穴径の精度が低下するといった問題があった。
【0005】
こうした問題を解決するため、本発明は、低い内液圧であっても穴径の精度や穴抜きされた部分の面精度が高く且つダレの少ない穴を形成できる筒状部材の液圧穴抜き加工方法を提供する。
【0006】
【課題を解決するための手段】
請求項1に記載の筒状部材の液圧穴抜き加工方法は、筒状部材の内部に内液圧を負荷しつつ、穴抜きパンチにより前記筒状部材に穴抜き加工を行う加工方法において、一旦、最終的に穴抜き加工する方向とは逆方向に、凸形状で且つ穴抜きされる寸法と略等しい外形を持った突起を形成することによって、当該突起の外周部に内圧と工具との挟持により、穴抜き形状に沿って全周にわたる肉厚減少部を形成し、前記突起の先端側から前記肉厚減少部の内側を加圧することにより、穴抜き加工を行なうことに特徴を有する。
【0009】
この発明によれば、一旦、最終的に穴抜き加工する方向とは逆方向に、凸形状で且つ穴抜きされる寸法と略等しい外形を持った突起が形成されるとともに、この突起の外周部は工具の角部に押し付けられ、全周にわたる肉厚減少部となる。そしてこの突起を形成した変形部分は、突起の先端側からの加圧に対する剛性が高くなる。こうした突起にその先端側から加圧すると、前記の変形部分は、変形していない部分との境界面に加圧に基づくせん断力が集中し、かつ、この部分は肉厚が減少していることによって容易にせん断し、突起を形成した変形部分が一体となって穴抜きされる。その結果、比較的低い内液圧においても、穴径精度や穴抜きされた部分の面精度に優れると共に、その周辺部にダレの少ない穴を加工することができる。
【0010】
請求項に記載の発明は、請求項に記載の筒状部材の液圧穴抜き加工方法において、前記内液圧を負荷する前または負荷した後に前記穴抜きパンチを後退させ、前記筒状部材の外側に前記内液圧によって凸形状の前記突起を形成し、しかる後に、前記穴抜きパンチを前進させて穴抜き加工することに特徴を有する。
【0011】
この発明によれば、穴抜きパンチは、内液圧を負荷する前または負荷した後に後退するので、後退した部分に、筒状部材の外側に向かって凸形状となる突起および、前記突起の周囲に肉厚減少部が形成される。この突起は、突起の先端側からの加圧に対する剛性が高くなっているので、穴抜きパンチを前進させて突起の先端側から加圧することによって、その突起をなす変形部分を一体として、肉厚減少部から容易に穴抜き加工することができる。
【0012】
請求項に記載の発明は、請求項に記載の筒状部材の液圧穴抜き加工方法において、先端が凸形状の前記穴抜きパンチを前進させ、当該穴抜きパンチによって前記筒状部材の内部側に凸形状の前記突起と、この突起の周囲に肉厚減少部を形成し、しかる後に、前記穴抜きパンチを後退させまたは後退させつつ、前記内液圧によって前記筒状部材の外側方向に穴抜き加工することに特徴を有する。
【0013】
この発明によれば、凸形状の突起は、凸形状の先端を有する穴抜きパンチを前進させることによって筒状部材の内部側に形成される。この突起は、上述のように、突起の先端側からの加圧に対する剛性が高くなっており、また、この突起周囲に肉厚減少部が形成されているので、穴抜きパンチを後退させた後にまたは後退させつつ、比較的低い内液圧で筒状部材の外側方向に穴抜き加工することができる。突起をなす変形部分は、一体として穴抜きされ、穴径精度や穴抜きされた部分の面精度に優れ、ダレのない穴を加工することができる。
【0014】
請求項に記載の発明は、請求項または請求項に記載の筒状部材の液圧穴抜き加工方法において、前記穴抜きパンチは、先端の外周部にシャーエッジが形成されていることに特徴を有する。
【0015】
この発明によれば、穴抜きパンチの先端の外周部にシャーエッジが形成されているので、筒状部材の外側面には、穴抜きパンチの前進によってシャーエッジの食い込み痕が形成される。この食い込み痕は肉厚減少部となり、剛性が高められた突起部分を穴抜き加工する際に加えられるせん断力を、より一層集中させることができるので、穴抜きはより容易になり、破断面がきれいになる。その結果、より一層穴径精度や穴抜きされた部分の面精度に優れ、ダレの少ない穴をより低い内液圧においても加工することができる。
【0016】
【発明の実施の形態】
以下、添付図面を参照して本発明を具体的に説明する。
【0017】
本発明の筒状部材の液圧穴抜き加工方法は、筒状部材の内部に内液圧を負荷しつつ、筒状部材に穴抜き加工を行う加工方法において、一旦、穴抜き形状に沿って全周にわたる肉厚減少部を形成した後、前記肉厚減少部の内側を加圧し、穴抜き加工を行なう方法であり、また、最終的に穴抜き加工する方向とは逆方向に、凸形状で且つ穴抜きされる寸法と略等しい外形を持った突起を形成することによって、その突起の外周部に、内液圧と工具との狭持により肉厚減少部を形成した後、穴抜きパンチまたは内液圧により、その突起の先端側から加圧して肉厚減少部の内側を穴抜き加工する方法である。この液圧穴抜き加工方法は、最終的に穴抜き加工する方向とは逆方向に形成される凸形状の突起を、(i)筒状部材の外側方向に形成する方法と、(ii)筒状部材の内部側に形成する方法の二つの方法に大別される。
【0018】
最初に、第一の方法、すなわち凸形状の突起を筒状部材の外側方向に形成し、その後に肉厚減少部の内側を加圧して穴抜き加工を行う方法について説明する。図1は、本発明の筒状部材の液圧穴抜き加工方法の一例を示す正面断面図である。図1においては、図1(a)から図1(c)の順に加工される。
【0019】
先ず、図1(a)に示すように、穴抜きパンチ11を、筒状部材14の外側表面に配置される工具16の当接面19から所定の長さだけ後退した位置に配置する。穴抜きパンチ11をそうした位置に配置するのは、筒状部材14の内液圧Pを負荷する前であっても負荷した後であってもよい。その方法としては、予め当接面19から所定の長さだけ隔てた位置に配置しても、当接面19と同じ位置から後退させて配置してもよい。このうち、穴抜きパンチ11を工具16の当接面19と同じ位置から後退させる方法としては、内液圧Pと穴抜きパンチ11の駆動手段の圧力Pcとの相対差によって後退させることができる。例えば、内液圧Pを増圧して筒状部材14を変形しつつ穴抜きパンチ11を後退させたり、穴抜きパンチ11の駆動手段の圧力Pcを減圧して、内液圧Pによって筒状部材を変形しつつ穴抜きパンチ11を後退させたりすることができる。また、穴抜きパンチ11を機械的に制御して後退させることもできる。
【0020】
次に、図1(b)に示すように、筒状部材14を内液圧Pによって塑性変形し、筒状部材14の外側方向に凸形状となる突起15を形成する。上述のように、穴抜きパンチ11は、筒状部材14の外側表面の位置から所定の間隔を隔てて配置されることになるので、そのスペースに凸形状の突起15を形成できる。この突起15は、穴抜きパンチ11を予め所定の位置に配置する場合には、その後に加えられた筒状部材14の内液圧Pによって形成される。また、穴抜きパンチ11を所定の位置まで後退させて配置する場合には、後退後に加えられた筒状部材14の内液圧Pによって突起15を形成したり、筒状部材14の内液圧Pによって、穴抜きパンチ11を後退させつつ突起15を形成したりすることができる。
【0021】
このうち、内液圧Pによって穴抜きパンチ11を後退させつつ凸形状の突起15を形成する方法には、内液圧Pと穴抜きパンチ11の駆動手段の圧力Pcとの相対差を調節するによって、穴抜きパンチ11を強制後退させながら凸形状の突起15を形成する方法がある。具体的には、内液圧Pを増圧させることによって、圧力Pcとの相対差を拡大して穴抜きパンチ11を強制後退させたり、圧力Pcを減圧させることによって、内液圧Pとの相対差を拡大して穴抜きパンチ11を強制後退させる。また、内液圧Pと圧力Pcの両方を同時に変化させて相対差を拡大して穴抜きパンチ11を強制後退させてもよい。各圧力の相対差によって穴抜きパンチ11を強制後退させる方法は、製造上その制御が簡便となるので、通常好ましく用いられる。
【0022】
こうして形成された突起15は、塑性変形に基づく加工歪みの蓄積やドーム形に変形した突起周辺の形状効果によって、突起15の先端側からの加圧に対する剛性が、塑性変形していない部分に比べて高くなる。なお、塑性変形した突起15の外形寸法は、後退した穴抜きパンチ11の外形寸法とほぼ同じである。さらに、ドーム形に変形した突起周辺は、全周にわたり工具16の角部に押し付けられ、内液圧Pと工具16との狭持により肉厚減少部20が形成される。
【0023】
最後に、図1(c)に示すように、穴抜きパンチ11を筒状部材14の内部側に前進させることによって穴抜き加工する。すなわち、穴抜きパンチ11を、凸形状の突起15の先端側から筒状部材14の内部側に加圧して前進させる。このとき、凸形状の突起15は、上述のように、突起15の先端側からの加圧に対する剛性が高いので、塑性変形して剛性が高くなっている部分と塑性変形しないで剛性が高くなっていない部分との境界部分(以下「境界部」という。)は、穴抜きパンチ11で加圧されることによって、せん断力が集中し、なおかつ、この部分は肉厚減少部20となっているため、せん断力が集中しやすくなる。その結果、穴抜きパンチ11を前進させて肉厚減少部20の内側を加圧することによって、凸形状の突起15を形成する変形部分は、一体となって穴抜き加工される。こうして穴抜きされた破断面17は、せん断力が集中して破断されているので、比較的低い内液圧においても穴径の精度や穴抜きされた部分の面精度が優れ、また、穴の周辺部のダレは少ない。なお、このときの穴抜きパンチ11の前進およびその速度等は、上述したような内液圧Pと圧力Pcとの相対差を調節して制御したり、機械的に制御して行うことができる。
【0024】
以上説明したように、凸形状の突起15を筒状部材14の外側方向に形成し、その後に穴抜き加工を行う方法においては、穴抜きパンチ11の形状は、図1に示すように、その先端12が平坦のものが通常使用される。また、図2に示すように、先端22の形状をより深くして曲率半径の小さい凹形状にした穴抜きパンチは、肉厚減少部20の形成を容易にさせるので、好ましく使用される。さらに、凹形状の先端22の外周部にシャーエッジ23が形成された穴抜きパンチ21を使用することが特に好ましい。この穴抜きパンチ21は、先端22が深い凹形状になっているので、剛性が高まった凸形状の突起25に対して変形応力を加えることがない。また、このシャーエッジ23は、穴抜きパンチ21が筒状部材14の内部側に前進する際に、前述の境界部に食い込むので、穴抜きパンチ21の前進によるせん断力をより一層集中させることができる。その結果、せん断された破断面27は、よりきれいな面となり、穴径精度に優れ、ダレの発生もみられない。
【0025】
次に、第二の方法、すなわち凸形状の突起を筒状部材の内部側に形成することによって突起周囲に肉厚減少部を形成し、その後に肉厚減少部の内側を加圧して穴抜きする方法について説明する。図3は、本発明の筒状部材の液圧穴抜き加工方法の他の一例を示す正面断面図である。図3においては、図1(a)から図1(b)の順に加工される。この方法では、先端32が凸形状の穴抜きパンチ31が用いられる。
【0026】
先ず、図3(a)に示すように、先端32が凸形状の穴抜きパンチ31を、筒状部材14の外側から内部側に前進させて、凸形状の突起35を筒状部材14の内部側に形成する。穴抜きパンチ31を前進させる方法としては、内液圧Pと穴抜きパンチ31の駆動手段の圧力Pcとの相対差によって前進させることができる。具体的には、穴抜きパンチ31の駆動手段の圧力Pcを増圧させることによって、内液圧Pとの相対差を拡大して穴抜きパンチ31を前進させたり、内液圧Pを減圧させることによって、圧力Pとの相対差を拡大して穴抜きパンチ31を前進させる。また、内液圧Pと圧力Pcの両方を同時に変化させて相対差を拡大して穴抜きパンチ31を前進させてもよい。各圧力の相対差を調節することによって穴抜きパンチ31を強制後退させる方法は、製造上その制御が簡便となるので、機械的に制御して前進させるよりも通常好ましく用いられる。
【0027】
穴抜きパンチ31を前進させて形成された凸形状の突起35は、上述した突起15と同じ性質、すなわち塑性変形に基づく加工歪みの蓄積やドーム形に変形した形状効果によって、突起35の先端側からの加圧に対する剛性が、塑性変形していない突起周辺の部分に比べて高くなる。なお、塑性変形した突起35の外形寸法は、前進した穴抜きパンチ31の外形寸法とほぼ同じである。なお、この際、図3(a)に示すように、穴抜きパンチ31をその外周エッジ36まで押し込むことによって、境界部に厚さの薄い肉厚減少部30を形成している。この肉厚減少部30は、突起35の外周部が工具16の角部に押し付けられ、内液圧Pと工具16との狭持によって形成される。
【0028】
次に、図3(b)に示すように、穴抜きパンチ31を、凸形状の突起35の先端側から筒状部材14の外側方向に後退させる。このとき、凸形状の突起35は、上述のように、突起35の先端側からの加圧に対する剛性が高いので、前述の境界部は、内液圧Pで加圧されることによってせん断力が集中し、さらにこの境界部は肉厚減少部30となっているため、せん断力がより一層集中しやすい。その結果、穴抜きパンチ31を後退させて肉厚減少部30の内側を加圧することによって、筒状部材14に形成された凸形状の突起35は、比較的低い内液圧Pでも境界部でせん断し、一体となって穴抜き加工される。このとき、穴抜きパンチ31を後退させた後に内液圧Pで加圧して穴抜きしても、穴抜きパンチ31を後退させつつ内液圧Pで加圧して穴抜きしてもよい。穴抜きパンチ31を後退させる方法は、既に述べた方法、すなわち内液圧Pと穴抜きパンチ31の駆動手段の圧力Pcとの相対差を適宜調節することによって制御したり、機械的に制御して行うことができる。こうして穴抜きされた破断面37は、せん断力が集中して破断されているので、穴径の精度が優れ、また、穴の周辺部のダレは少ない。
【0029】
さらに、先端が凸形状の穴抜きパンチに、シャーエッジを設けたものを用いることもできる。図4は、その一例を示している。この穴抜きパンチ41は、凸形状の先端42が形成されていると共に、外周部にシャーエッジ43が形成されている。また、先端42とシャーエッジ43の間には、凹み44が形成されている。こうした穴抜きパンチ41を筒状部材の内部側に前進させると、筒状部材の内部側には、穴抜きパンチ41の先端42で押し込まれた凸形状の突起が形成される。その際、穴抜きパンチ41に設けられたシャーエッジ43によって、筒状部材の外側表面に食い込み痕が形成される。この食い込み痕は、通常、境界部に概ね一致し、その部分には見かけ上の肉厚減少部が形成される。その結果、その後に穴抜きパンチが後退したとき、凸形状の突起の先端側から加わる圧力によって、食い込み痕にせん断力がより一層集中してせん断しやすくなる。こうして穴抜き加工された後の破断面は、よりきれいになり、穴径精度もより優れたものとなる。
【0030】
以上説明したように、本発明の筒状部材の液圧穴抜き加工方法においては、最終的に穴抜き加工する方向とは逆方向に形成される凸形状の突起を、筒状部材の外側方向に形成する方法であっても、筒状部材の内部側に形成する方法であっても、打抜かれる部分にあらがじめ肉厚減少部を形成しておくことによって、比較的低い内液圧においても、穴径精度や穴抜きされた部分の面精度が優れて、ダレのない穴抜き加工を行うことができる。なお、この方法によって穴抜きする穴形状は、丸穴、角穴、異形穴の何れの形状でもよく、求める形状に適合した穴抜きパンチを用いることができる。
【0031】
また、本発明で用いられる筒状部材は、通常アルミニウム合金が用いられるが、材料や合金の種類は特に限定されるものではない。さらに、本発明の穴抜き加工方法は、一般的に用いられている内液圧加工方法に適用することができる。従って、その条件、すなわち流体の種類や内液圧は内液圧成形加工装置の一般的な条件の範囲内で行われる。例えば、内液圧としては、約500〜1500気圧の圧力範囲で行われる。
【0032】
【発明の効果】
以上説明したように、本発明の筒状部材の液圧穴抜き加工方法によれば、一旦、穴抜き形状に沿って全周にわたる肉厚減少部を形成した後、前記肉厚減少部の内側を加圧し、穴抜き加工を行なう方法であり、さらに一旦、最終的に穴抜き加工する方向とは逆方向に形成される突起が、その突起の先端側からの加圧に対して剛性が高くなっているので、その突起の先端側から加圧すると、剛性が高められている突起の部分と、剛性が高められていない突起周辺部分との境界部である前記肉厚減少部にせん断力が集中し、剛性が高められている突起の部分が一体となってせん断し、穴抜き加工される。その結果、穴径精度や穴抜きされた部分の面精度に優れると共に、その周辺部にダレの少ない穴を、比較的低い内液圧においても加工することができる。
【0033】
本発明の穴抜き加工方法を採用することによって、パイプ状の中空筒状部材を内液圧成形法によって成形加工する際に、成形加工と穴抜き加工を、内液圧成形加工の一連の工程内で同時に行うことができる。その結果、経済性にも優れた車体やシャーシ部品を得ることができる。
【図面の簡単な説明】
【図1】本発明の筒状部材の液圧穴抜き加工方法の一例を示す正面断面図である。
【図2】本発明に用いられる他の形状の穴抜きパンチを用いた穴抜き形態を示す正面断面図である。
【図3】本発明の筒状部材の液圧穴抜き加工方法の他の一例を示す正面断面図である。
【図4】本発明に用いられる穴抜きパンチの先端形状の一例を示す正面断面図である。
【図5】従来の筒状部材の液圧穴抜き加工方法の一例を示す正面断面図である。
【符号の説明】
11、21、31、41 穴抜きパンチ
12、22、32、42 先端
14 筒状部材
15、25、35 突起
16 工具
17、27、37 破断面
19 当接面
20、30 肉厚減少部
23、43 シャーエッジ
36 外周エッジ
44 凹み
P 内液圧
Pc 穴抜きパンチの駆動手段の圧力
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for punching a tubular member using internal fluid pressure inside the tubular member and a punching punch.
[0002]
[Prior art]
In recent years, there has been a demand for a vehicle body and chassis parts for the purpose of reducing the weight of the vehicle body for reducing CO 2 and reinforcing the vehicle body for improving strength. As such vehicle body and chassis parts, there is an increasing movement to apply parts obtained by internal pressure molding of hollow cylindrical members. These components are subjected to internal fluid pressure molding into a predetermined shape, and then holes for attaching other components and holes for positioning are processed. However, recently, based on a demand for improvement in economic efficiency and processing accuracy, a processing method in which hole punching is performed in a series of processes of internal hydraulic forming has been studied.
[0003]
For example, as shown in FIG. 5A, the hole punch 61 is struck from the outside to the inside of the tubular member 64 while applying the internal fluid pressure P to the inside of the tubular member 64. A method of punching is disclosed (JP-A-6-292929). Further, as shown in FIG. 5B, while the internal hydraulic pressure P is applied to the inside of the cylindrical member 64, the punching punch 61 is retracted, the cylindrical member 64 is deformed, and the outer punching process is performed. A method is also disclosed (plasticity and processing, Vol. 39 (No. 453), p. 1049 (1998)).
[0004]
[Problems to be solved by the invention]
However, in the method shown in FIG. 5A, plastic deformation occurs in the peripheral portion 67 of the portion that becomes the punched residue 65 in the process of punching. For this reason, there has been a problem that, after punching, sagging occurs in the peripheral portion 67 of the hole, and the accuracy of the hole diameter is reduced. Further, in order to prevent this sagging, the internal fluid pressure P has to be considerably increased. For this reason, the pressure generating device and the processing equipment are increased in size, resulting in an increase in capital investment, and problems such as a reduction in space efficiency and an increase in cost. is there. Further, even in the method shown in FIG. 5 (b), the hole cannot be punched unless the internal hydraulic pressure P is considerably increased. Similarly, the pressure generating device and the processing equipment are enlarged, and the equipment investment is increased. There are problems such as reduced space efficiency and increased cost. Further, the portion that becomes the punched residue 66 is broken while expanding in a dome shape outside the cylindrical member 64 due to the load of the internal hydraulic pressure P, so that the surface roughness of the fracture surface 68 and the accuracy of the hole diameter are reduced. There was a problem.
[0005]
In order to solve these problems, the present invention provides a hydraulic member punching process for a cylindrical member that can form a hole with high hole diameter accuracy and surface accuracy of a holed portion and low sagging even at low internal fluid pressure. Provide a method.
[0006]
[Means for Solving the Problems]
The hydraulic hole punching method for a cylindrical member according to claim 1 is a processing method in which a hole is punched in the cylindrical member by a punching punch while applying an internal hydraulic pressure to the inside of the cylindrical member. Finally, by forming a protrusion having a convex shape and an outer shape substantially equal to the dimension to be punched in a direction opposite to the direction in which the hole is to be punched, the inner pressure and the tool are sandwiched on the outer periphery of the protrusion. Thus, the thickness reduction part is formed over the entire circumference along the hole punching shape, and the inside of the thickness reduction part is pressurized from the tip side of the protrusion, thereby performing the hole punching process.
[0009]
According to this invention, a protrusion having a convex shape and an outer shape substantially equal to the dimension to be punched is formed in a direction opposite to the direction in which the hole is finally punched, and the outer peripheral portion of the protrusion. Is pressed against the corners of the tool and becomes a thickness-decreasing portion over the entire circumference. And the deformation | transformation part which formed this protrusion becomes high to the rigidity with respect to the pressurization from the front end side of a protrusion. When pressure is applied to these protrusions from the tip side, the deformed part is concentrated on the boundary surface between the deformed part and the undeformed part, and the thickness of this part is reduced. Therefore, the deformed portion which is easily sheared and formed with the protrusion is integrally punched. As a result, even at a relatively low internal fluid pressure, the hole diameter accuracy and the surface accuracy of the holed portion can be excellent, and a hole with less sagging can be processed in the peripheral portion.
[0010]
According to a second aspect of the present invention, in the method of punching a cylindrical member according to the first aspect , the punching punch is retracted before or after the internal hydraulic pressure is loaded, The projection having a convex shape is formed on the outer side by the internal fluid pressure, and thereafter the punching punch is advanced to perform punching.
[0011]
According to the present invention, the punching punch retreats before or after applying the internal hydraulic pressure, so that the protrusion that protrudes toward the outside of the cylindrical member and the periphery of the protrusion on the retracted portion. A reduced thickness portion is formed. Since this protrusion has high rigidity against pressure from the tip end side of the protrusion, the deformed part forming the protrusion is integrated into the wall thickness by advancing the punching punch and applying pressure from the tip end side of the protrusion. Hole punching can be easily performed from the reduced portion.
[0012]
According to a third aspect of the present invention, in the hydraulic punching method for the cylindrical member according to the first aspect , the punching punch having a convex tip is advanced, and the inside of the cylindrical member is formed by the punching punch. Forming a protrusion having a convex shape on the side and a thickness reducing portion around the protrusion, and then retreating or retreating the punching punch while moving the tubular member outwardly by the internal hydraulic pressure. It is characterized by punching.
[0013]
According to this invention, the convex protrusion is formed on the inner side of the tubular member by advancing the punching punch having the convex tip. As described above, the protrusion has high rigidity against the pressure from the tip end side of the protrusion, and a thickness reduction portion is formed around the protrusion. Alternatively, it is possible to perform a hole punching process in the outer direction of the cylindrical member with a relatively low internal hydraulic pressure while being retracted. The deformed portion forming the protrusion is punched as a single piece, and is excellent in hole diameter accuracy and surface accuracy of the holed portion, and can process a hole without sagging.
[0014]
According to a fourth aspect of the present invention, in the hydraulic hole punching method for a cylindrical member according to the second or third aspect , the punching punch has a shear edge formed at an outer peripheral portion of a tip. Has characteristics.
[0015]
According to this invention, since the shear edge is formed on the outer peripheral portion of the tip of the punching punch, the biting mark of the shearing edge is formed on the outer surface of the tubular member by the advancement of the punching punch. This bite mark becomes a reduced thickness portion, and the shearing force applied when punching a projecting portion with increased rigidity can be further concentrated, so hole punching becomes easier and the fracture surface becomes smaller. become clean. As a result, the hole diameter accuracy and the surface accuracy of the holed portion are further improved, and a hole with less sagging can be processed even at a lower internal fluid pressure.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
[0017]
The cylindrical member hydraulic hole punching method according to the present invention is a processing method for punching a cylindrical member while applying an internal hydraulic pressure to the inside of the cylindrical member. This is a method in which after the formation of the reduced thickness portion over the circumference, the inside of the reduced thickness portion is pressurized and punched, and finally, in a direction opposite to the direction of punching, a convex shape is used. In addition, by forming a protrusion having an outer shape substantially equal to the dimension to be punched, a thickness reduction portion is formed on the outer periphery of the protrusion by sandwiching the internal hydraulic pressure and the tool, and then a punching punch or This is a method of punching the inside of the reduced thickness portion by applying pressure from the tip end side of the protrusion by internal liquid pressure. This hydraulic hole punching method includes (i) a method of forming a convex protrusion formed in the direction opposite to the direction of the hole punching process in the outer direction, and (ii) a cylindrical shape. The method is roughly divided into two methods of forming on the inner side of the member.
[0018]
First, a first method, that is, a method of punching by forming convex protrusions in the outer direction of the cylindrical member and then pressurizing the inside of the reduced thickness portion will be described. FIG. 1 is a front cross-sectional view showing an example of a method of hydraulic hole punching of a cylindrical member of the present invention. In FIG. 1, the processing is performed in the order from FIG. 1 (a) to FIG. 1 (c).
[0019]
First, as shown in FIG. 1A, the punching punch 11 is disposed at a position retracted from the contact surface 19 of the tool 16 disposed on the outer surface of the cylindrical member 14 by a predetermined length. The hole punch 11 may be disposed at such a position before or after the internal hydraulic pressure P of the cylindrical member 14 is loaded. As the method, it may be arranged in advance at a position separated from the contact surface 19 by a predetermined length, or may be disposed backward from the same position as the contact surface 19. Among these, as a method of retracting the punching punch 11 from the same position as the contact surface 19 of the tool 16, the punching punch 11 can be retracted by a relative difference between the internal hydraulic pressure P and the pressure Pc of the driving means of the punching punch 11. . For example, the cylindrical member 14 is deformed by increasing the internal fluid pressure P and the hole punch 11 is retracted, or the pressure Pc of the driving means of the hole punch 11 is reduced, and the cylindrical member is driven by the internal fluid pressure P. The punching punch 11 can be moved backward while deforming. Further, the punching punch 11 can be moved back mechanically.
[0020]
Next, as shown in FIG. 1B, the cylindrical member 14 is plastically deformed by the internal hydraulic pressure P to form a protrusion 15 having a convex shape in the outer direction of the cylindrical member 14. As described above, the punching punch 11 is disposed at a predetermined interval from the position of the outer surface of the cylindrical member 14, so that the convex protrusion 15 can be formed in the space. This protrusion 15 is formed by the internal hydraulic pressure P of the cylindrical member 14 added after that when the punching punch 11 is previously arranged at a predetermined position. Further, when the hole punch 11 is retracted to a predetermined position, the protrusion 15 is formed by the internal hydraulic pressure P of the cylindrical member 14 applied after the reverse, or the internal hydraulic pressure of the cylindrical member 14 is set. The protrusion 15 can be formed by retracting the punching punch 11 by P.
[0021]
Of these methods, in the method of forming the convex protrusion 15 while the hole punch 11 is moved backward by the internal pressure P, the relative difference between the internal pressure P and the pressure Pc of the driving means of the hole punch 11 is adjusted. Thus, there is a method of forming the convex protrusion 15 while forcibly retracting the hole punch 11. Specifically, by increasing the internal fluid pressure P, the relative difference from the pressure Pc is expanded to forcibly retract the hole punch 11, or by reducing the pressure Pc, The relative difference is enlarged to forcibly retract the hole punch 11. Alternatively, both the internal hydraulic pressure P and the pressure Pc may be changed simultaneously to increase the relative difference and forcibly retract the hole punch 11. The method of forcibly retracting the punching punch 11 by the relative difference between the pressures is usually preferably used because its control is simple in manufacturing.
[0022]
The protrusion 15 formed in this manner has a higher rigidity against pressure from the tip side of the protrusion 15 than that of the part that is not plastically deformed due to the accumulation of processing strain due to plastic deformation and the shape effect around the protrusion deformed into a dome shape. Become higher. The outer dimensions of the plastically deformed protrusion 15 are substantially the same as the outer dimensions of the retracted punching punch 11. Further, the periphery of the protrusion deformed into a dome shape is pressed against the corner of the tool 16 over the entire circumference, and the thickness reducing portion 20 is formed by the internal fluid pressure P and the tool 16 being pinched.
[0023]
Finally, as shown in FIG. 1C, the hole punching 11 is advanced to the inside of the cylindrical member 14 to perform hole punching. That is, the punching punch 11 is pressed forward from the tip side of the convex protrusion 15 toward the inner side of the tubular member 14 and advanced. At this time, as described above, the convex protrusion 15 has high rigidity against pressurization from the tip side of the protrusion 15, so that the rigidity is increased without plastic deformation and a portion where the rigidity is increased by plastic deformation. A boundary portion (hereinafter referred to as a “boundary portion”) with a non-exposed portion is pressurized by the punching punch 11, whereby the shearing force is concentrated, and this portion is a thickness reducing portion 20. Therefore, it becomes easy to concentrate the shearing force. As a result, when the punching punch 11 is advanced and the inside of the thickness reducing portion 20 is pressurized, the deformed portion forming the convex protrusion 15 is punched integrally. Since the fracture surface 17 thus perforated is fractured due to concentration of shearing force, the accuracy of the hole diameter and the surface accuracy of the perforated part are excellent even at a relatively low internal fluid pressure. There is little sagging around the periphery. The advancement and speed of the punching punch 11 at this time can be controlled by adjusting the relative difference between the internal fluid pressure P and the pressure Pc as described above, or can be controlled mechanically. .
[0024]
As described above, in the method in which the convex protrusion 15 is formed in the outer direction of the cylindrical member 14 and then the hole punching process is performed, the shape of the hole punch 11 is as shown in FIG. A flat tip 12 is usually used. Further, as shown in FIG. 2, a punching punch having a deeper tip 22 and a concave shape with a small radius of curvature facilitates the formation of the reduced thickness portion 20 and is preferably used. Furthermore, it is particularly preferable to use a punching punch 21 in which a shear edge 23 is formed on the outer peripheral portion of the concave tip 22. Since the punch 22 has a deep concave shape at the tip 22, it does not apply deformation stress to the convex protrusion 25 having increased rigidity. Further, since the shear edge 23 bites into the boundary portion when the punching punch 21 advances toward the inside of the cylindrical member 14, the shearing force due to the advancement of the punching punch 21 can be further concentrated. it can. As a result, the sheared fracture surface 27 becomes a clean surface, has excellent hole diameter accuracy, and does not cause sagging.
[0025]
Next, in the second method, that is, by forming a convex protrusion on the inner side of the cylindrical member, a reduced thickness portion is formed around the protrusion, and then the inside of the reduced thickness portion is pressurized to punch holes. How to do will be described. FIG. 3 is a front cross-sectional view showing another example of the method of punching a cylindrical member according to the present invention. In FIG. 3, the processing is performed in the order from FIG. 1 (a) to FIG. 1 (b). In this method, a punching punch 31 having a convex tip 32 is used.
[0026]
First, as shown in FIG. 3A, the punching punch 31 having a convex tip 32 is advanced from the outside to the inside of the cylindrical member 14, so that the convex protrusion 35 is formed inside the cylindrical member 14. Form on the side. As a method of advancing the punching punch 31, it can be advanced by a relative difference between the internal hydraulic pressure P and the pressure Pc of the driving means of the punching punch 31. Specifically, by increasing the pressure Pc of the driving means of the punching punch 31, the relative difference from the internal fluid pressure P is expanded to advance the punching punch 31, or the internal fluid pressure P is reduced. As a result, the relative difference from the pressure P is enlarged and the punching punch 31 is advanced. Alternatively, both the internal hydraulic pressure P and the pressure Pc may be changed simultaneously to increase the relative difference and advance the punching punch 31. The method of forcibly retreating the punching punch 31 by adjusting the relative difference between the pressures is usually more preferable than mechanically controlled advancement because the control is simple in manufacturing.
[0027]
The convex protrusion 35 formed by advancing the punching punch 31 has the same properties as the protrusion 15 described above, that is, accumulation of processing distortion based on plastic deformation and the shape effect deformed into a dome shape. The rigidity with respect to the pressurization is higher than that of the portion around the protrusion that is not plastically deformed. The outer dimensions of the plastically deformed protrusions 35 are substantially the same as the outer dimensions of the advanced punching punch 31. At this time, as shown in FIG. 3 (a), the punching punch 31 is pushed to the outer peripheral edge 36, thereby forming a thin reduced portion 30 at the boundary. The thickness reducing portion 30 is formed by the outer peripheral portion of the protrusion 35 being pressed against the corner portion of the tool 16, and the internal hydraulic pressure P and the tool 16 being held.
[0028]
Next, as shown in FIG. 3B, the punching punch 31 is moved backward from the tip end side of the convex protrusion 35 toward the outer side of the tubular member 14. At this time, as described above, the convex protrusion 35 has high rigidity against pressurization from the tip end side of the protrusion 35, so that the boundary portion is pressurized by the internal hydraulic pressure P, so that shear force is generated. Further, since the boundary portion is the thickness reduction portion 30, the shearing force is more likely to be concentrated. As a result, by retreating the punching punch 31 and pressurizing the inside of the thickness reducing portion 30, the convex protrusion 35 formed on the cylindrical member 14 can be prevented from being generated at the boundary portion even at a relatively low internal fluid pressure P. Shears and is punched together. At this time, the hole punching punch 31 may be retracted and then pressed by the internal liquid pressure P, or may be punched by pressurizing the internal punching pressure 31 while the hole punching punch 31 is retracted. The method of retracting the punching punch 31 is controlled by the method already described, that is, by adjusting the relative difference between the internal fluid pressure P and the pressure Pc of the driving means of the punching punch 31 as appropriate. Can be done. Since the fracture surface 37 thus perforated is broken due to the concentration of shearing force, the accuracy of the hole diameter is excellent, and the sagging of the peripheral portion of the hole is small.
[0029]
Further, it is possible to use a punching punch having a convex tip provided with a shear edge. FIG. 4 shows an example. The punching punch 41 has a convex tip 42 and a shear edge 43 on the outer periphery. A recess 44 is formed between the tip 42 and the shear edge 43. When such a punching punch 41 is advanced to the inside of the cylindrical member, a convex protrusion pushed by the tip 42 of the punching punch 41 is formed on the inner side of the cylindrical member. At that time, the shear edge 43 provided in the punching punch 41 forms a bite mark on the outer surface of the tubular member. This bite mark generally coincides with the boundary portion, and an apparent thickness reduction portion is formed in that portion. As a result, when the hole punching is subsequently retracted, the shearing force is further concentrated on the bite mark due to the pressure applied from the front end side of the convex protrusion, and shearing is facilitated. Thus, the fractured surface after being punched becomes cleaner, and the hole diameter accuracy becomes better.
[0030]
As described above, in the method of punching a cylindrical member according to the present invention, the convex protrusion formed in the direction opposite to the direction of the final punching is formed in the outer direction of the cylindrical member. Regardless of whether it is a method of forming or a method of forming on the inner side of the tubular member, a relatively low internal fluid pressure can be obtained by forming a thickness-reduced portion in advance in the portion to be punched. In this case, the hole diameter accuracy and the surface accuracy of the holed portion are excellent, and the punching process without sagging can be performed. The hole shape to be punched by this method may be any of a round hole, a square hole, and a deformed hole, and a hole punch suitable for the desired shape can be used.
[0031]
Moreover, although the aluminum alloy is normally used for the cylindrical member used by this invention, the kind of material and alloy is not specifically limited. Furthermore, the hole punching method of the present invention can be applied to a generally used internal hydraulic pressure processing method. Therefore, the conditions, that is, the type of fluid and the internal hydraulic pressure are performed within the range of general conditions of the internal hydraulic forming apparatus. For example, the internal liquid pressure is about 500 to 1500 atm.
[0032]
【The invention's effect】
As described above, according to the hydraulic hole punching method of the tubular member of the present invention, after forming the thickness reducing portion over the entire circumference once along the punching shape, the inside of the thickness reducing portion is This is a method of pressurizing and punching, and the protrusion formed in the direction opposite to the direction of the final punching process has higher rigidity against the pressure from the tip end side of the protrusion. Therefore, when pressure is applied from the front end side of the projection, the shearing force is concentrated on the thickness reduction portion, which is a boundary portion between the projection portion having increased rigidity and the peripheral portion of the projection not having increased rigidity. And the part of the protrusion whose rigidity is enhanced is integrally sheared and punched. As a result, the hole diameter accuracy and the surface accuracy of the holed portion are excellent, and a hole with less sagging around the periphery can be processed even at a relatively low internal fluid pressure.
[0033]
By adopting the hole punching method of the present invention, when forming a pipe-shaped hollow cylindrical member by the internal hydraulic forming method, the forming process and the hole punching process are performed in a series of steps of the internal hydraulic forming process. Can be done at the same time. As a result, it is possible to obtain a vehicle body or a chassis component that is excellent in economy.
[Brief description of the drawings]
FIG. 1 is a front cross-sectional view showing an example of a method of punching a cylindrical member according to the present invention.
FIG. 2 is a front cross-sectional view showing a form of punching using another form of punching punch used in the present invention.
FIG. 3 is a front cross-sectional view showing another example of the method of punching a cylindrical member according to the present invention.
FIG. 4 is a front sectional view showing an example of a tip shape of a punching punch used in the present invention.
FIG. 5 is a front sectional view showing an example of a conventional hydraulic hole punching method for a cylindrical member.
[Explanation of symbols]
11, 21, 31, 41 Hole punch 12, 22, 32, 42 Tip 14 Cylindrical member 15, 25, 35 Protrusion 16 Tool 17, 27, 37 Fracture surface 19 Contact surface 20, 30 Thickness reducing portion 23, 43 Shear edge 36 Outer peripheral edge 44 Recess P Internal fluid pressure Pc Pressure of driving means for punching punch

Claims (4)

筒状部材の内部に内液圧を負荷しつつ、穴抜きパンチにより前記筒状部材に穴抜き加工を行う加工方法において、一旦、最終的に穴抜き加工する方向とは逆方向に、凸形状で且つ穴抜きされる寸法と略等しい外形を持った突起を形成することによって、当該突起の外周部に内圧と工具との挟持により、穴抜き形状に沿って全周にわたる肉厚減少部を形成し、前記突起の先端側から前記肉厚減少部の内側を加圧することにより、穴抜き加工することを特徴とする筒状部材の液圧穴抜き加工方法。In the processing method of punching the cylindrical member by a punching punch while applying an internal hydraulic pressure to the inside of the cylindrical member , the convex shape is once opposite to the direction of the final punching process. In addition, by forming a projection having an outer shape substantially equal to the dimension to be punched, a thickness reduction portion is formed over the entire circumference along the punched shape by sandwiching the inner pressure and the tool on the outer periphery of the projection. Then, a hydraulic hole punching method for a cylindrical member , wherein the hole is punched by pressurizing the inside of the thickness reducing portion from the tip side of the protrusion . 前記内液圧を負荷する前または負荷した後に前記穴抜きパンチを後退させ、前記筒状部材の外側に前記内液圧によって凸形状の前記突起を形成し、しかる後に、前記穴抜きパンチを前進させて穴抜き加工することを特徴とする請求項に記載の筒状部材の液圧穴抜き加工方法。Before or after applying the internal hydraulic pressure, the hole punch is retracted to form the convex protrusion on the outside of the cylindrical member by the internal hydraulic pressure, and then the hole punch is advanced. The hydraulic hole punching method for a cylindrical member according to claim 1 , wherein hole punching is performed. 先端が凸形状の前記穴抜きパンチを前進させ、当該穴抜きパンチによって前記筒状部材の内部側に凸形状の前記突起を形成し、しかる後に、前記穴抜きパンチを後退させまたは後退させつつ、前記内液圧によって前記筒状部材の外側方向に穴抜き加工することを特徴とする請求項に記載の筒状部材の液圧穴抜き加工方法。The tip of the punching punch is advanced, the punching punch forms the projection on the inner side of the tubular member, and then the punching punch is retracted or retracted, 2. The method of punching a cylindrical member according to claim 1 , wherein the cylindrical member is punched in the outer direction by the internal hydraulic pressure. 前記穴抜きパンチは、先端の外周部にシャーエッジが形成されていることを特徴とする請求項または請求項に記載の筒状部材の液圧穴抜き加工方法。The hydraulic punching method for a cylindrical member according to claim 2 or 3 , wherein the punching punch has a shear edge formed on an outer peripheral portion of a tip thereof.
JP16720399A 1999-06-14 1999-06-14 Hydraulic hole punching method for cylindrical members Expired - Fee Related JP3737318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16720399A JP3737318B2 (en) 1999-06-14 1999-06-14 Hydraulic hole punching method for cylindrical members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16720399A JP3737318B2 (en) 1999-06-14 1999-06-14 Hydraulic hole punching method for cylindrical members

Publications (2)

Publication Number Publication Date
JP2000351030A JP2000351030A (en) 2000-12-19
JP3737318B2 true JP3737318B2 (en) 2006-01-18

Family

ID=15845344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16720399A Expired - Fee Related JP3737318B2 (en) 1999-06-14 1999-06-14 Hydraulic hole punching method for cylindrical members

Country Status (1)

Country Link
JP (1) JP3737318B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105107932B (en) * 2015-08-07 2018-08-31 大连益联金属成型有限公司 A kind of seal closure piercing die
CN105081062A (en) * 2015-08-07 2015-11-25 大连益联金属成型有限公司 Small hole punching hole protection die for filtering plate
JP7356777B2 (en) * 2020-11-16 2023-10-05 ダイハツ工業株式会社 Drilling equipment and drilling method

Also Published As

Publication number Publication date
JP2000351030A (en) 2000-12-19

Similar Documents

Publication Publication Date Title
KR100948711B1 (en) Metal member with through hole and method of manufacturing the same
JP4846949B2 (en) Compression hydroforming
US6591648B1 (en) Method of stamping and piercing a tube
CA2378733A1 (en) Hydroformed collapsible drive shaft and steering shaft and methods of making the same
KR20060028816A (en) Forging method, forged product and forging apparatus
JP4855928B2 (en) Hydroform processing method and mold used therefor
EP3604087B1 (en) Vehicle structural member and method for producing same
US7127924B1 (en) Double action punch assembly for hydroforming die
JP2832702B2 (en) Double pipe manufacturing method
JP2776796B2 (en) Metal tube thickening processing method
JPH09271857A (en) Bulging method and device therefor
JP3310509B2 (en) Method of forming horizontal hole in tubular member and method of manufacturing water pipe
JP3737318B2 (en) Hydraulic hole punching method for cylindrical members
JP3676619B2 (en) Hydraulic hole punching method for cylindrical members
JP3106960B2 (en) Coupling jig
US8443642B2 (en) Process for pre-forming cylindrical tubes into tubular members having sharp corners
JP3668390B2 (en) Hole drilling method having a seating surface on a cylindrical member and punch for punching used therefor
JP2019056402A (en) Caulking nut, caulking tool for caulking nut and caulking nut attaching method
JP2004344968A (en) Method for manufacturing burring worked part
JP3705979B2 (en) Burring method for hydraulic forming of tubular members
WO2016119940A1 (en) Method and device for producing a collar on a workpiece
JP2004337861A (en) Piercing-working method in hydraulic-pressure bulge-working of pipe
JP3351331B2 (en) A method of manufacturing a deformed metal tube and a method of manufacturing a bent metal tube.
JP4906849B2 (en) Steel pipe expansion forming method and steel pipe expansion forming apparatus
CN114251339A (en) Self-punching rivet with groove

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees