JP3737193B2 - Pattern correction method - Google Patents

Pattern correction method Download PDF

Info

Publication number
JP3737193B2
JP3737193B2 JP12605296A JP12605296A JP3737193B2 JP 3737193 B2 JP3737193 B2 JP 3737193B2 JP 12605296 A JP12605296 A JP 12605296A JP 12605296 A JP12605296 A JP 12605296A JP 3737193 B2 JP3737193 B2 JP 3737193B2
Authority
JP
Japan
Prior art keywords
transparent substrate
shielding film
pattern
film residue
light shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12605296A
Other languages
Japanese (ja)
Other versions
JPH09311434A (en
Inventor
幸二 蛭田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12605296A priority Critical patent/JP3737193B2/en
Publication of JPH09311434A publication Critical patent/JPH09311434A/en
Application granted granted Critical
Publication of JP3737193B2 publication Critical patent/JP3737193B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フォトマスクのパターン修正方法に関し、より詳しくは、フォトマスク上に形成したマスクパターンの欠陥等を修正し、正常なマスクパターンとするフォトマスクのパターン修正方法に関する。
【0002】
【従来の技術】
レチクルと呼ばれるフォトマスクのマスクパターンはクロム膜からなり、写真蝕刻技術を用いて作成されるが、マスクパターンの形成時に、図3に示すように、正規のマスクパターンとして残すべきクロム膜の他に不要なクロム膜残さ(黒欠陥)が残ることがある。そのクロム膜残さは、そのまま転写されて配線やコンタクトホールの欠陥を生じさせるため、除去する必要がある。
【0003】
このような場合、レチクルを最初から作り直さずに、レーザ照射やFIB(Focused Ion Beam)照射によりその欠陥部分のクロム膜残さだけを除去することにより再生している。
レーザ照射の場合、図6(a),(b)に示すように、欠陥部分のクロム膜残さ3にレーザ光を照射することによりクロム膜3を加熱し、蒸発させる。
【0004】
また、FIB照射の場合、図6(a)に示す欠陥部分のクロム膜残さ3に、図7(a)に示すように、金属イオンを衝突させて物理的にクロム膜残さ3をとばす。この場合、透明基板1の表層に金属イオンが注入されるが、この注入層5は露光光の透過率を低下させるため、図7(b)に示すように、透明基板1のエッチング種(F含有ガス)中でFIBを照射することによりその部分だけをエッチングし、除去している。
【0005】
【発明が解決しようとする課題】
しかし、レーザ照射の場合、図6(b)に示すように、クロム膜残さ3を蒸発させるための熱により透明基板1も蒸発してその表面に凹部4aが生じ、しかもその部分4aでは透明基板1の厚さが他の部分よりも薄くなっている。FIB照射の場合も、図7(b)に示すように、金属イオンの注入層5を除去した跡には凹部4bが生じ、また、その部分では透明基板1の厚さが他の部分よりも薄くなっている。
【0006】
ところで、パターンの微細化に対応するため、パターンを転写するための露光光も短波長化し、i線(366nm)やg線(254nm)が用いられるようになると、レチクルの透明基板表面のわずかな凹凸は露光光の散乱を生じさせる。また、透明基板1の全体の厚さのわずかな変動は透明基板1を透過してくる露光光の位相のずれや焦点のずれを生じさせる。これらは、導電膜や絶縁膜の上のマスクの断面形状の異常等を引き起こし、マスクの寸法精度を低下させるという問題がある。
【0007】
本発明は、上記の従来例の問題点に鑑みて創作されたものであり、レチクル上のパターンの修正により生じる透明基板の表面の凹凸や透明基板の厚さの変動を抑制することができるレチクルのパターン修正方法を提供するものである。
【0008】
【課題を解決するための手段】
上記課題は、第1の発明である、遮光膜のパターンを透明基板上に形成した後に該透明基板上に不要な遮光膜残さがあるとき、前記パターン及び前記遮光膜残さで覆われていない部分の透明基板をエッチングし、その表面を後退させる工程と、前記遮光膜残さを除去する工程と、前記遮光膜残さを除去した跡の透明基板の表層を部分的に除去してその表面を後退させ、該表面の高さと前記エッチングにより後退させた表面の高さとをほぼ一致させる工程とを有することを特徴とするパターン修正方法によって解決され、
第2の発明である、前記遮光膜残さを除去する工程は、レーザ光を照射し、熱により前記遮光膜残さを蒸発させるものであることを特徴とする第1の発明に記載のパターン修正方法によって解決され、
第3の発明である、前記遮光膜残さを除去する工程は、集束イオンビームを照射し、前記遮光膜残さに粒子を衝突させて飛散させるものであることを特徴とする第1の発明に記載のパターン修正方法によって解決され、
第4の発明である、前記遮光膜残さを除去した跡の透明基板の表層を部分的に除去する工程は、前記遮光膜残さを除去した跡の透明基板にレーザ光を照射し、熱によりその表層を部分的に蒸発させるものであることを特徴とする第1乃至第3の発明のいずれかに記載のパターン修正方法によって解決され、
第5の発明である、前記遮光膜残さを除去した跡の透明基板の表層を部分的に除去する工程は、フッ素含有ガス中で前記遮光膜残さを除去した跡の透明基板に集束イオンビームを照射し、エッチングによりその表層を部分的に除去するものであることを特徴とする第1乃至第3の発明のいずれかに記載のパターン修正方法によって解決される。
【0009】
本発明のパターン修正方法では、欠陥の修正の前に予めパターン及び遮光膜残さで覆われていない部分の透明基板をエッチングしてその表面を後退させている。
そして、その後の欠陥の修正では、一つの方法として、レーザ光を照射し、その熱により遮光膜残さを蒸発させる。この場合、遮光膜残さと同時にその残さの下の透明基板の一部も蒸発させてその表面の高さと予め後退させた表面の高さとを一致させる。他の方法として、集束イオンビームを照射し、遮光膜残さを物理的に飛散させる。この場合、遮光膜残さが除去されるだけなので、その除去跡の透明基板はそのまま残る。そして、その後除去跡の透明基板の表層を除去してその表面の高さと予め後退させた表面の高さとを一致させる。
【0010】
これにより、いずれの場合も欠陥の修正後にはパターンで覆われていない部分の透明基板の表面はほぼ平坦になり、従って、その部分の透明基板の膜厚は場所によって変化せずに、均一となる。
【0011】
【発明の実施の形態】
以下に、本発明の実施の形態について図面を参照しながら説明する。
(1)本発明の第1の実施の形態
図1(a)〜(c)の左側の図は、本発明の第1の実施の形態に係る、レチクルのパターン修正方法について示す断面図である。また、図1(a),(c)の右側の図は平面図であり、そのII−II線断面図が左側の断面図に相当する。更に、図3にレチクルのパターン修正方法のフローチャートを示す。レーザ光の照射により欠陥を修正し、再生する方法である。
【0012】
まず、大きさ5×5インチ、厚さ2.3mmの石英板からなる透明基板11を準備し(P1)、その上に膜厚約100nmのクロム膜(遮光膜)を形成する。
次いで、クロム膜上にフォトレジスト膜を形成した後、配線パターンを転写する。続いて、現像液を用いてフォトレジスト膜を現像し、不図示のマスクを形成する。
【0013】
次に、マスクに従って四塩化炭素ガスを用いてクロム膜をエッチングし、図1(a)に示すように、レチクルのパターンに対応するクロム膜12を残す(P2)。このとき、残すべきクロム膜(パターン)12以外に不要なクロム膜残さ(遮光膜残さ,黒欠陥)13が残っているとする。
次いで、レチクルのパターンの欠陥検査を行う(P3)。クロム膜残さ13があるので、図1(b)に示すように、弗酸の水溶液、又はCF4 ガス(エッチング種)を用いたドライエッチングによりパターン12及びクロム膜残さ13で覆われていない透明基板11の表層14を厚さ40nmほど除去する(P4)。この厚さ40nmは後の工程でクロム膜残さ13を熱により蒸発させる際に同時に透明基板11が蒸発する厚さに相当する。なお、クロム膜12及びクロム膜残さ13で覆われている部分の透明基板11はエッチングされずにそのまま残る。
【0014】
次に、パターンの修正を行うため、図1(c)に示すように、出力5mJのレーザ光を照射して不要なクロム膜残さ13を加熱し、蒸発させる(P5)。このとき、クロム膜残さ13を蒸発させるのに必要な最小エネルギ以上を有するレーザ光を、予め除去された表層14の厚さに等しい厚さの透明基板11aを除去するのに必要な時間だけ照射する。これにより、不要なクロム膜13が除去されるとともに、不要なクロム膜残さ13の下の透明基板11aも凡そ40nmほどその熱により蒸発する。このため、透明基板11aの表面が予め除去されている透明基板14の表面とほぼ一致するため、パターン12に覆われていない部分の透明基板11の表面はほぼ平坦になる。しかも、透明基板11の表面が平坦化されたため、パターン12に覆われていない部分の透明基板11の厚さは場所により変化せず、均一になる。なお、図4において、21はレーザ光源、22はレーザ光線を絞ったり、透明基板11表面に焦点を合わせるレンズ系、23はレチクル10の載置台である。
【0015】
その後、寸法検査、配置精度等の他の検査を行い(P6)、不具合がなければレチクル10の製作が完了する。
以上のように、第1の実施の形態によれば、欠陥の修正前にクロム膜12及びクロム膜残さ13で覆われていない部分の透明基板11の表層を予めエッチングしてその表面を後退させているので、欠陥の修正後にパターン12に覆われていない部分の透明基板11の表面の凹凸は平坦化される。特に、エッチングされる透明基板11の表層の厚さを欠陥修正の際に除去される透明基板11の表層の厚さとほぼ等しくした場合、その表面はほぼ平坦になり、また、透明基板11の厚さも場所によらず均一になる。
【0016】
これにより、このレチクルを用いて半導体基板上に配線パターン等を転写する場合、パターンの微細化に対応するため、露光光が短波長化しても、レチクルの透明基板11表面で露光光の散乱を抑制し、また、透明基板11を透過してくる露光光の位相のずれや焦点のずれが生じるのを抑制することができる。従って、被パターニング体上に形成されるレジストマスクの寸法精度の低下を防止することができる。
【0017】
なお、上記第1の実施の形態では、欠陥を修正し、欠陥修正後に透明基板の表層を必要な厚さだけ除去するのにともにレーザ光を用いているが、欠陥修正後の透明基板の表層の除去をフッ素含有ガス中で集束イオンビームを照射することにより行ってもよい。この場合、レーザ光の照射により欠陥の修正後に透明基板の表層はすでにある程度除去されているが、さらにその表面の高さと予め後退させている表面の高さを揃えるためにエッチング量の微調整を行うことができる。
【0018】
(2)本発明の第2の実施の形態
図2(a),(b)は、本発明の第2の実施の形態に係る、レチクルのパターン修正方法について示す断面図である。また、図2(a),(b)の右側の図は平面図であり、そのII−II線断面図が左側の断面図に相当する。FIB照射により欠陥を修正し、再生する方法である。図3のフローチャートに従って説明する。
【0019】
図3のP1〜P4の工程はすでに完了し、パターン12以外に不要なクロム膜残さ13があるとする。図3のP1〜P4までの工程は第1の実施の形態の図1(a),(b)に示す工程と同じであるので、説明を省略する。
次に、図5に示すFIB装置を用いて、図2(a)に示すように、欠陥部分にビーム電流密度1A/cm2 の金属イオンビームを照射し、クロム膜残さ13を物理的に飛散させる(P5)。このとき、透明基板11の表層に金属イオンが注入される。なお、図5において、31は金属イオン源であり、金属イオンとしてベリリウム(Be+ ),ボロン(B+ ),アルミニウム(Al+ ),シリコン(Si+ ),ガリウム(Ga+ )等が用いられる。32はビームを絞ったり、透明基板11表面に焦点を合わせるレンズ系、33はレチクル10の載置台である。
【0020】
続いて、金属イオンの注入層15を除去するため、XeF2 ガス(フッ素含有ガス)を透明基板11上に導入し、金属イオンビームの照射を行う。これにより、XeF2 ガスからフッ素活性種が分離して透明基板11のビーム照射領域のみがエッチングされはじめる。このとき、図1(b)の工程で除去された表層14の厚さに等しい厚さの透明基板11aがエッチングされるようにビーム照射時間を調整する。これにより、クロム膜残さ13の下の透明基板11aが凡そ40nmほど除去されてその表面が予め除去されている透明基板14の表面とほぼ一致するため、パターン12に覆われていない部分の透明基板11の表面は平坦になる。しかも、透明基板11の表面が平坦化されたため、パターン12に覆われていない部分の透明基板11の厚さは場所により変化せず、均一になる。
【0021】
その後、第1の実施の形態と同様な他の検査を行い(P6)、不具合がなければレチクル製作が完了する。
以上のように、第2の実施の形態によれば、金属イオンビームの照射によりクロム膜残さ13を除去する前に、金属イオンの注入層15を除去するための厚さ分だけ予め透明基板11の表層14を除去し、その表面を後退させている。このため、金属イオンの注入層15を除去した後にパターン12に覆われていない部分の透明基板11の表面はほぼ平坦になり、また、透明基板11の厚さも場所によらず均一になる。
【0022】
これにより、このレチクルを用いて半導体基板上に配線パターン等を転写する場合、パターンの微細化に対応するため、露光光が短波長化しても、レチクルの透明基板11表面で露光光の散乱を抑制し、また、透明基板11を透過してくる露光光の位相のずれや焦点のずれが生じるのを抑制することができる。従って、被パターニング体上に形成されるレジストマスクの寸法精度の低下を防止することができる。
【0023】
なお、第2の実施の形態では、フッ素含有ガスとしてXeF2 ガスを用いているが、これに限られるものではない。
また、図2(b)の工程において、フッ素含有ガス中で遮光膜残さの除去跡の透明基板に集束イオンビームを照射してその表層をエッチングにより除去している。この場合、同じ集束イオンビーム装置内で欠陥修正と金属イオンの注入層の除去を行うことができるが、場合により、それらを別々の装置内で行うようにしてもよい。即ち、欠陥修正を集束イオンビームを用いて行い、その後の透明基板の表層の除去をレーザ光を用いて行う。
【0024】
更に、上記では、フォトマスクとしてレチクルを用いて説明したが、本発明はこれに限定されるものではなく、透明基板上に遮光膜を形成するものであれば、何にでも適用することができる。
【0025】
【発明の効果】
以上のように、本発明のパターン修正方法においては、欠陥の修正前に、予め、パターン及び遮光膜残さで覆われていない部分の透明基板をエッチングしてその表面を後退させ、欠陥の修正後に後退した表面を前もってエッチングにより後退させた表面とほぼ一致させている。従って、欠陥の修正後にはパターンで覆われていない部分の透明基板の表面はほぼ平坦になり、また、その部分の透明基板の膜厚は場所によって変化せずに、均一となる。
【0026】
これにより、透明基板表面での露光光の散乱を防止し、また、透明基板を透過してくる露光光の位相のずれや焦点のずれを防止することができる。従って、導電膜や絶縁膜の上に形成されたフォトレジストにこのフォトマスクのパターンを露光により転写してマスクを形成した場合、そのマスクの断面形状を正常にし、マスクの寸法精度を向上させることができる。
【図面の簡単な説明】
【図1】図1(a)〜(c)は、本発明の第1の実施の形態に係るレチクルのパターン修正方法について示す断面図及び平面図である。
【図2】図2(a),(b)は、本発明の第2の実施の形態に係るレチクルのパターン修正方法について示す断面図及び平面図である。
【図3】図3は、本発明の実施の形態に係るレチクルのパターン修正方法について示すフローチャートである。
【図4】図4は、本発明の実施の形態に係るレチクルのパターン修正方法に使用するレーザ光の照射装置について示す模式図である。
【図5】図5は、本発明の実施の形態に係るレチクルのパターン修正方法に使用する集束イオンビームの照射装置について示す模式図である。
【図6】図6(a),(b)は、従来例に係るレチクルのパターン修正方法について示す断面図及び平面図である。
【図7】図7(a),(b)は、他の従来例に係るレチクルのパターン修正方法について示す断面図及び平面図である。
【符号の説明】
10 レチクル、
11,11a 透明基板、
12 残すべきクロム膜(パターン)、
13 不要なクロム膜(遮光膜残さ,黒欠陥)、
14 予め除去された表層、
15 金属イオンの注入層、
21 レーザ光源、
22,32 レンズ系、
23,33 載置台、
31 金属イオン源。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photomask pattern correcting method, and more particularly to a photomask pattern correcting method for correcting a defect or the like of a mask pattern formed on a photomask to obtain a normal mask pattern.
[0002]
[Prior art]
A mask pattern of a photomask called a reticle is made of a chrome film and is created by using a photolithography technique. When the mask pattern is formed, as shown in FIG. 3, in addition to the chrome film to be left as a regular mask pattern, Unnecessary chromium film residues (black defects) may remain. Since the chromium film residue is transferred as it is and causes defects in wiring and contact holes, it must be removed.
[0003]
In such a case, the reticle is reproduced by removing only the defective chromium film residue by laser irradiation or FIB (Focused Ion Beam) irradiation without recreating the reticle from the beginning.
In the case of laser irradiation, as shown in FIGS. 6A and 6B, the chromium film 3 is heated and evaporated by irradiating the chromium film residue 3 in the defective portion with laser light.
[0004]
In the case of FIB irradiation, as shown in FIG. 7A, the chromium film residue 3 is physically skipped by colliding metal ions with the defective chromium film residue 3 shown in FIG. 6A. In this case, metal ions are implanted into the surface layer of the transparent substrate 1, but the implanted layer 5 decreases the transmittance of exposure light, and therefore, as shown in FIG. By irradiating the FIB in the contained gas), only that portion is etched and removed.
[0005]
[Problems to be solved by the invention]
However, in the case of laser irradiation, as shown in FIG. 6 (b), the transparent substrate 1 is also evaporated by heat for evaporating the chromium film residue 3, and a concave portion 4a is formed on the surface thereof. The thickness of 1 is thinner than the other parts. Also in the case of FIB irradiation, as shown in FIG. 7 (b), a recess 4b is formed in the trace from which the metal ion implantation layer 5 is removed, and the thickness of the transparent substrate 1 is smaller than that of the other portions. It is getting thinner.
[0006]
By the way, in order to cope with the miniaturization of the pattern, when the exposure light for transferring the pattern is also shortened and i-line (366 nm) and g-line (254 nm) are used, a slight amount of the surface of the transparent substrate of the reticle is slightly increased. Unevenness causes scattering of exposure light. In addition, slight variations in the overall thickness of the transparent substrate 1 cause a phase shift or focus shift of the exposure light transmitted through the transparent substrate 1. These cause problems such as abnormalities in the cross-sectional shape of the mask on the conductive film and the insulating film, and reduce the dimensional accuracy of the mask.
[0007]
The present invention was created in view of the above-described problems of the conventional example, and is a reticle that can suppress irregularities on the surface of the transparent substrate and fluctuations in the thickness of the transparent substrate caused by correcting the pattern on the reticle. A pattern correction method is provided.
[0008]
[Means for Solving the Problems]
The above-mentioned problem is the first aspect of the present invention, when there is an unnecessary light-shielding film residue on the transparent substrate after the light-shielding film pattern is formed on the transparent substrate, the portion not covered with the pattern and the light-shielding film residue Etching the transparent substrate, retreating the surface, removing the light shielding film residue, partially removing the surface layer of the transparent substrate from which the light shielding film residue was removed, and retreating the surface And a pattern correction method comprising the step of substantially matching the height of the surface with the height of the surface retreated by the etching,
The step of removing the light shielding film residue according to the second invention is a method of irradiating a laser beam and evaporating the light shielding film residue by heat, and the pattern correction method according to the first invention Solved by
The step of removing the light shielding film residue, which is a third aspect of the invention, is to irradiate a focused ion beam and cause particles to collide with the light shielding film residue to be scattered. Is solved by the pattern correction method of
In the fourth aspect of the invention, the step of partially removing the surface layer of the transparent substrate from which the light shielding film residue has been removed includes irradiating the transparent substrate from which the light shielding film residue has been removed with laser light, Solved by the pattern correction method according to any one of the first to third inventions, wherein the surface layer is partially evaporated,
The step of partially removing the surface layer of the traced transparent substrate from which the light shielding film residue has been removed is a fifth aspect of the invention, in which a focused ion beam is applied to the traced transparent substrate from which the light shielding film residue has been removed in a fluorine-containing gas. This is solved by the pattern correction method according to any one of the first to third inventions, wherein the surface layer is partially removed by irradiation and etching.
[0009]
In the pattern correction method of the present invention, the surface of the transparent substrate that is not covered with the pattern and the light shielding film residue is etched in advance before the defect is corrected.
In the subsequent defect correction, as one method, laser light is irradiated and the light shielding film residue is evaporated by the heat. In this case, simultaneously with the residue of the light shielding film, a part of the transparent substrate under the residue is also evaporated so that the height of the surface coincides with the height of the surface that has been retracted in advance. As another method, a focused ion beam is irradiated, and the light shielding film residue is physically scattered. In this case, since the light shielding film residue is only removed, the transparent substrate of the removal trace remains as it is. Thereafter, the surface layer of the transparent substrate as a removal trace is removed, and the height of the surface is made to coincide with the height of the surface that has been retracted in advance.
[0010]
As a result, in any case, the surface of the transparent substrate in the portion not covered with the pattern becomes substantially flat after the defect is corrected, so that the thickness of the transparent substrate in that portion does not change depending on the location and is uniform. Become.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
(1) First Embodiment of the Present Invention The left side of FIGS. 1A to 1C is a sectional view showing a reticle pattern correcting method according to the first embodiment of the present invention. . 1A and 1C are plan views, and a sectional view taken along line II-II corresponds to a sectional view on the left side. Further, FIG. 3 shows a flowchart of a reticle pattern correcting method. In this method, defects are corrected by irradiation with laser light and reproduced.
[0012]
First, a transparent substrate 11 made of a quartz plate having a size of 5 × 5 inches and a thickness of 2.3 mm is prepared (P1), and a chromium film (light shielding film) having a film thickness of about 100 nm is formed thereon.
Next, after forming a photoresist film on the chromium film, the wiring pattern is transferred. Subsequently, the photoresist film is developed using a developing solution to form a mask (not shown).
[0013]
Next, according to the mask, the chromium film is etched using carbon tetrachloride gas to leave a chromium film 12 corresponding to the reticle pattern as shown in FIG. 1A (P2). At this time, it is assumed that an unnecessary chromium film residue (light shielding film residue, black defect) 13 is left in addition to the chromium film (pattern) 12 to be left.
Next, a defect inspection of the reticle pattern is performed (P3). Since there is a chromium film residue 13, as shown in FIG. 1B, the pattern 12 and the chromium film residue 13 are not covered by the dry etching using an aqueous solution of hydrofluoric acid or CF 4 gas (etching species). The surface layer 14 of the substrate 11 is removed by a thickness of about 40 nm (P4). This thickness of 40 nm corresponds to the thickness at which the transparent substrate 11 is evaporated at the same time when the chromium film residue 13 is evaporated by heat in a later step. The portion of the transparent substrate 11 covered with the chromium film 12 and the chromium film residue 13 remains without being etched.
[0014]
Next, in order to correct the pattern, as shown in FIG. 1C, laser beam with an output of 5 mJ is irradiated to heat and evaporate the unnecessary chromium film residue 13 (P5). At this time, a laser beam having a minimum energy necessary for evaporating the chromium film residue 13 is irradiated for a time necessary for removing the transparent substrate 11a having a thickness equal to the thickness of the surface layer 14 previously removed. To do. Thereby, the unnecessary chromium film 13 is removed, and the transparent substrate 11a under the unnecessary chromium film residue 13 is also evaporated by the heat of about 40 nm. For this reason, since the surface of the transparent substrate 11a substantially coincides with the surface of the transparent substrate 14 that has been removed in advance, the surface of the transparent substrate 11 that is not covered with the pattern 12 is substantially flat. In addition, since the surface of the transparent substrate 11 is flattened, the thickness of the transparent substrate 11 in a portion not covered with the pattern 12 does not change depending on the location and becomes uniform. In FIG. 4, 21 is a laser light source, 22 is a lens system for focusing the laser beam or focusing on the surface of the transparent substrate 11, and 23 is a mounting table for the reticle 10.
[0015]
Thereafter, other inspections such as dimensional inspection and arrangement accuracy are performed (P6). If there is no defect, the manufacture of the reticle 10 is completed.
As described above, according to the first embodiment, the surface layer of the transparent substrate 11 that is not covered with the chromium film 12 and the chromium film residue 13 is etched in advance before the defect is corrected, and the surface is retreated. Therefore, the unevenness of the surface of the transparent substrate 11 in the portion not covered with the pattern 12 after the defect correction is flattened. In particular, when the thickness of the surface layer of the transparent substrate 11 to be etched is made substantially equal to the thickness of the surface layer of the transparent substrate 11 to be removed at the time of defect correction, the surface becomes substantially flat, and the thickness of the transparent substrate 11 It becomes uniform regardless of the location.
[0016]
Accordingly, when a wiring pattern or the like is transferred onto a semiconductor substrate using this reticle, the exposure light is scattered on the surface of the reticle transparent substrate 11 even if the exposure light is shortened in order to cope with the miniaturization of the pattern. In addition, it is possible to suppress the occurrence of a phase shift or a focus shift of the exposure light transmitted through the transparent substrate 11. Accordingly, it is possible to prevent a decrease in the dimensional accuracy of the resist mask formed on the object to be patterned.
[0017]
In the first embodiment, the laser beam is used to correct the defect and remove the surface layer of the transparent substrate by a necessary thickness after the defect correction. However, the surface layer of the transparent substrate after the defect correction is used. The removal may be performed by irradiating a focused ion beam in a fluorine-containing gas. In this case, the surface layer of the transparent substrate has already been removed to some extent after the defect has been corrected by laser light irradiation, but further fine adjustment of the etching amount is required to align the height of the surface with the height of the surface that has been retracted in advance. It can be carried out.
[0018]
(2) Second Embodiment of the Present Invention FIGS. 2A and 2B are cross-sectional views showing a reticle pattern correcting method according to a second embodiment of the present invention. 2A and 2B are plan views, and a sectional view taken along line II-II corresponds to a sectional view on the left side. In this method, defects are corrected by FIB irradiation and reproduced. This will be described with reference to the flowchart of FIG.
[0019]
Assume that the steps P1 to P4 in FIG. 3 have already been completed, and there is an unnecessary chromium film residue 13 in addition to the pattern 12. The steps from P1 to P4 in FIG. 3 are the same as the steps shown in FIGS. 1A and 1B of the first embodiment, and thus description thereof is omitted.
Next, using the FIB apparatus shown in FIG. 5, as shown in FIG. 2A, the defect portion is irradiated with a metal ion beam having a beam current density of 1 A / cm 2 , and the chromium film residue 13 is physically scattered. (P5). At this time, metal ions are implanted into the surface layer of the transparent substrate 11. In FIG. 5, 31 is a metal ion source, and beryllium (Be + ), boron (B + ), aluminum (Al + ), silicon (Si + ), gallium (Ga + ), etc. are used as metal ions. . Reference numeral 32 denotes a lens system for focusing the beam or focusing on the surface of the transparent substrate 11, and 33 is a mounting table for the reticle 10.
[0020]
Subsequently, in order to remove the metal ion implantation layer 15, XeF 2 gas (fluorine-containing gas) is introduced onto the transparent substrate 11 and irradiated with a metal ion beam. As a result, the fluorine active species are separated from the XeF 2 gas, and only the beam irradiation region of the transparent substrate 11 begins to be etched. At this time, the beam irradiation time is adjusted so that the transparent substrate 11a having a thickness equal to the thickness of the surface layer 14 removed in the step of FIG. As a result, the transparent substrate 11a under the chrome film residue 13 is removed by about 40 nm, and the surface of the transparent substrate 11a substantially coincides with the surface of the transparent substrate 14 previously removed. The surface of 11 becomes flat. In addition, since the surface of the transparent substrate 11 is flattened, the thickness of the transparent substrate 11 in a portion not covered with the pattern 12 does not change depending on the location and becomes uniform.
[0021]
Thereafter, another inspection similar to that of the first embodiment is performed (P6), and if there is no defect, reticle fabrication is completed.
As described above, according to the second embodiment, before removing the chromium film residue 13 by irradiation with the metal ion beam, the transparent substrate 11 is previously provided by the thickness for removing the metal ion implantation layer 15. The surface layer 14 is removed, and the surface is receded. For this reason, the surface of the transparent substrate 11 that is not covered with the pattern 12 after the metal ion implantation layer 15 is removed becomes substantially flat, and the thickness of the transparent substrate 11 becomes uniform regardless of the location.
[0022]
Accordingly, when a wiring pattern or the like is transferred onto a semiconductor substrate using this reticle, the exposure light is scattered on the surface of the reticle transparent substrate 11 even if the exposure light is shortened in order to cope with the miniaturization of the pattern. In addition, it is possible to suppress the occurrence of a phase shift or a focus shift of the exposure light transmitted through the transparent substrate 11. Accordingly, it is possible to prevent a decrease in the dimensional accuracy of the resist mask formed on the object to be patterned.
[0023]
In the second embodiment, XeF 2 gas is used as the fluorine-containing gas, but the present invention is not limited to this.
In the step of FIG. 2B, the surface layer is removed by etching by irradiating the transparent substrate where the light shielding film residue is removed in the fluorine-containing gas with a focused ion beam. In this case, defect correction and metal ion implantation layer removal can be performed in the same focused ion beam apparatus, but in some cases, they may be performed in separate apparatuses. That is, defect correction is performed using a focused ion beam, and then the surface layer of the transparent substrate is removed using a laser beam.
[0024]
Further, in the above description, a reticle is used as a photomask. However, the present invention is not limited to this, and can be applied to anything as long as a light shielding film is formed on a transparent substrate. .
[0025]
【The invention's effect】
As described above, in the pattern correction method of the present invention, before the defect is corrected, the surface of the transparent substrate that is not covered with the pattern and the light shielding film residue is etched in advance to recede the surface, and after the defect is corrected. The receding surface is made to substantially coincide with the surface receded by etching in advance. Therefore, after the defect is corrected, the surface of the portion of the transparent substrate that is not covered with the pattern becomes substantially flat, and the thickness of the transparent substrate in that portion does not change depending on the location, and becomes uniform.
[0026]
Thereby, scattering of the exposure light on the surface of the transparent substrate can be prevented, and a phase shift and a focus shift of the exposure light transmitted through the transparent substrate can be prevented. Therefore, when the mask is formed by transferring the photomask pattern to the photoresist formed on the conductive film or the insulating film by exposure, the cross-sectional shape of the mask is made normal and the dimensional accuracy of the mask is improved. Can do.
[Brief description of the drawings]
FIGS. 1A to 1C are a cross-sectional view and a plan view showing a reticle pattern correcting method according to a first embodiment of the present invention.
FIGS. 2A and 2B are a cross-sectional view and a plan view showing a reticle pattern correcting method according to a second embodiment of the present invention.
FIG. 3 is a flowchart showing a reticle pattern correction method according to an embodiment of the present invention;
FIG. 4 is a schematic diagram showing a laser beam irradiation apparatus used in a reticle pattern correction method according to an embodiment of the present invention.
FIG. 5 is a schematic diagram showing a focused ion beam irradiation apparatus used in a reticle pattern correction method according to an embodiment of the present invention.
6A and 6B are a sectional view and a plan view showing a reticle pattern correcting method according to a conventional example.
7A and 7B are a cross-sectional view and a plan view showing a reticle pattern correcting method according to another conventional example.
[Explanation of symbols]
10 reticle,
11, 11a transparent substrate,
12 Chromium film (pattern) to be left
13 Unnecessary chromium film (light-shielding film residue, black defect),
14 Surface removed previously,
15 Metal ion implantation layer,
21 laser light source,
22, 32 lens system,
23, 33 mounting table,
31 Metal ion source.

Claims (5)

遮光膜のパターンを透明基板上に形成した後に該透明基板上に不要な遮光膜残さがあるとき、前記パターン及び前記遮光膜残さで覆われていない部分の透明基板をエッチングし、その表面を後退させる工程と、
前記遮光膜残さを除去する工程と、
前記遮光膜残さを除去した跡の透明基板の表層を部分的に除去してその表面を後退させ、該表面の高さと前記エッチングにより後退させた表面の高さとをほぼ一致させる工程とを有することを特徴とするパターン修正方法。
After the pattern of the light shielding film is formed on the transparent substrate, when there is an unnecessary light shielding film residue on the transparent substrate, the transparent substrate in the portion not covered with the pattern and the light shielding film residue is etched and the surface is retracted. A process of
Removing the light shielding film residue;
Removing the surface layer of the transparent substrate from which the light-shielding film residue has been removed, retreating the surface thereof, and making the height of the surface substantially coincide with the height of the surface retreated by the etching The pattern correction method characterized by this.
前記遮光膜残さを除去する工程は、レーザ光を照射し、熱により前記遮光膜残さを蒸発させるものであることを特徴とする請求項1に記載のパターン修正方法。The pattern correction method according to claim 1, wherein the step of removing the light shielding film residue includes irradiating a laser beam and evaporating the light shielding film residue by heat. 前記遮光膜残さを除去する工程は、集束イオンビームを照射し、前記遮光膜残さに粒子を衝突させて飛散させるものであることを特徴とする請求項1に記載のパターン修正方法。The pattern correction method according to claim 1, wherein the step of removing the light shielding film residue includes irradiating a focused ion beam to cause particles to collide with the light shielding film residue to be scattered. 前記遮光膜残さを除去した跡の透明基板の表層を部分的に除去する工程は、前記遮光膜残さを除去した跡の透明基板にレーザ光を照射し、熱によりその表層を部分的に蒸発させるものであることを特徴とする請求項1乃至請求項3のいずれかに記載のパターン修正方法。The step of partially removing the surface layer of the transparent substrate from which the light shielding film residue has been removed includes irradiating the transparent substrate from which the light shielding film residue has been removed with laser light, and partially evaporating the surface layer by heat. The pattern correction method according to claim 1, wherein the pattern correction method is a method. 前記遮光膜残さを除去した跡の透明基板の表層を部分的に除去する工程は、フッ素含有ガス中で前記遮光膜残さを除去した跡の透明基板に集束イオンビームを照射し、エッチングによりその表層を部分的に除去するものであることを特徴とする請求項1乃至請求項3のいずれかに記載のパターン修正方法。The step of partially removing the surface layer of the transparent substrate from which the light-shielding film residue has been removed includes irradiating the surface of the transparent substrate from which the light-shielding film residue has been removed in a fluorine-containing gas with a focused ion beam and etching the surface layer. 4. The pattern correcting method according to claim 1, wherein the pattern is partially removed.
JP12605296A 1996-05-21 1996-05-21 Pattern correction method Expired - Lifetime JP3737193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12605296A JP3737193B2 (en) 1996-05-21 1996-05-21 Pattern correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12605296A JP3737193B2 (en) 1996-05-21 1996-05-21 Pattern correction method

Publications (2)

Publication Number Publication Date
JPH09311434A JPH09311434A (en) 1997-12-02
JP3737193B2 true JP3737193B2 (en) 2006-01-18

Family

ID=14925458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12605296A Expired - Lifetime JP3737193B2 (en) 1996-05-21 1996-05-21 Pattern correction method

Country Status (1)

Country Link
JP (1) JP3737193B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923922B2 (en) * 2006-09-28 2012-04-25 凸版印刷株式会社 Extreme ultraviolet exposure mask, manufacturing method thereof, and semiconductor integrated circuit manufacturing method using the same

Also Published As

Publication number Publication date
JPH09311434A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
JP2710967B2 (en) Manufacturing method of integrated circuit device
JP4442962B2 (en) Photomask manufacturing method
JP3388421B2 (en) Photomask residual defect repair method
JP2000267260A (en) Method for correcting mask defect
JP5012952B2 (en) Photomask defect correction method
US6030731A (en) Method for removing the carbon halo caused by FIB clear defect repair of a photomask
US6096459A (en) Method for repairing alternating phase shifting masks
US6114073A (en) Method for repairing phase shifting masks
JP3737193B2 (en) Pattern correction method
JP3071324B2 (en) How to modify the phase shift mask
JP3732118B2 (en) Opaque defect repair method for photomask for opening
JP4926383B2 (en) Photomask defect correction method
JP2007534993A (en) Method for removing defective material from lithography mask
JP3050158B2 (en) How to fix the mask
KR100230389B1 (en) Defect repairing method for photomask
JP4122563B2 (en) Method for correcting circuit pattern portion of photomask
JP3353121B2 (en) Shifter convex defect repair method
JP2703749B2 (en) Optical mask processing method
JPH04368947A (en) Formation of phase shift mask
KR100818705B1 (en) Phase shift mask having dense contact hole pattern region in frame region around chip region and fabricating method thereof
JP2001102296A (en) Method for correcting defect of reticle pattern
JP3440336B2 (en) Convex defect repair method
JP2003121991A (en) Method for modifying void defective part of photomask
JPH05313354A (en) Method for correcting defect of reticule mask
JP2623109B2 (en) Mask correction method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

EXPY Cancellation because of completion of term