JP3737137B2 - Air conditioner for electric vehicles - Google Patents

Air conditioner for electric vehicles Download PDF

Info

Publication number
JP3737137B2
JP3737137B2 JP01091294A JP1091294A JP3737137B2 JP 3737137 B2 JP3737137 B2 JP 3737137B2 JP 01091294 A JP01091294 A JP 01091294A JP 1091294 A JP1091294 A JP 1091294A JP 3737137 B2 JP3737137 B2 JP 3737137B2
Authority
JP
Japan
Prior art keywords
heat exchanger
frost
vehicle
temperature
heating operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01091294A
Other languages
Japanese (ja)
Other versions
JPH07218056A (en
Inventor
友紀 前坊
浩 濱本
徹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Climate Systems Corp
Original Assignee
Japan Climate Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Climate Systems Corp filed Critical Japan Climate Systems Corp
Priority to JP01091294A priority Critical patent/JP3737137B2/en
Publication of JPH07218056A publication Critical patent/JPH07218056A/en
Application granted granted Critical
Publication of JP3737137B2 publication Critical patent/JP3737137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/11Sensor to detect if defrost is necessary

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は電気自動車用空調装置の除霜手段、特に、車外側熱交換器での着霜を正確に検出することのできる着霜検出センサを備えた除霜手段に関するものである。
【0002】
【従来の技術】
電気自動車用空調装置では、四方弁を暖房サイクルに切り替え、バッテリー電源を利用してコンプレッサを駆動することにより熱交換媒体を車内側熱交換器、車外側熱交換器の順で循環させ、暖房運転を行なうようにしている。この暖房運転では、車外側熱交換器において周囲雰囲気から吸熱しているため、外気温度が非常に低ければ、この車外側熱交換器の表面に着霜し、熱交換効率が悪化するという問題がある。
【0003】
このため、従来では、前記車外側熱交換器に着霜検出センサを設け、この着霜検出センサでの検出温度に基づいて車外側熱交換器の着霜の有無を推測し、着霜していると判断されれば、四方弁を切り替えて冷房サイクルとすることにより、除霜するようにしている。
【0004】
【発明が解決しようとする課題】
しかしながら、前記着霜検出センサの取付位置の違いによって検出温度に大きな差が生じ、誤動作により車外側熱交換器に着霜していないにも拘わらず、除霜運転を開始するという問題がある。
例えば、着霜検出センサを、ファンからの送風あるいは走行風の当たる位置に設けた場合、車外側熱交換器の温度が非常に低温となって着霜が発生しているにも拘わらず、吹き付けられる空気温度によって実際の車外側熱交換器の表面温度よりも高い温度が検出されることがある。
【0005】
また、暖房運転開始直後では、熱交換媒体の温度が大きく変動し、特に、着霜検出センサを、車外側熱交換器の熱交換媒体の流入口近傍に設けた場合にはこの変動幅が顕著なため、着霜判定の基準となる温度(例えば、−13℃)以下まで低下する結果、誤動作を起こす恐れがある。
本発明は前記問題点に鑑み、着霜状態を正確に検出して除霜運転を行なうことのできる電気自動車用空調装置の除霜手段を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、前記目的を達成するため、コンプレッサで高温・高圧とした熱交換媒体を車内側熱交換器、車外側熱交換器の順で循環させることにより暖房運転を行なうに際し、前記車側熱交換器に取り付けた着霜検出センサからの検出温度に基づいて前記車外側熱交換器の着霜が検出されれば、四方弁を切り替えることにより、熱交換媒体を逆循環させて前記車外側熱交換器から除霜するようにした電気自動車用空調装置において、前記着霜検出センサを、車外側熱交換器の近傍に設けたファンからの送風及び走行風が吹き付けられない位置であって、暖房運転開始直後に、熱交換媒体が車外側熱交換器内に流入する際に発生する初期温度乱れが生じる範囲以外の位置に設け、前記着霜検出センサからの検出温度が、車外側熱交換器に着霜が発生したと判断される設定値以下となっても、検出温度のばらつき度合がある一定範囲を超えていれば暖房運転を続行する除霜制御手段を設けたものである。
【0007】
また、前記着霜検出センサを、熱交換媒体が車外側熱交換器内に流入する際に発生する初期温度乱れが生じる範囲以外の位置に設けるようにしてもよい。
さらに、暖房運転開始から所定時間経過した後に着霜判断を行う除霜制御手段を設けるようにしてもよい。
【0008】
【実施例】
以下、本発明の実施例を添付図面に従って説明する。
図1に示す電気自動車用空調装置では、熱交換媒体が循環するサイクルは四方弁1により暖房サイクルと冷房サイクルとに切り替えられるようになっている。そして、これらサイクル中には、前記四方弁1の外、コンプレッサ2、車内側熱交換器3、車外側熱交換器4及びアキュムレータ5が配設されている。
【0009】
前記四方弁1は、弁本体内に、一対の連通路を備えた回転体を収容した構造で、図示しない制御装置からの制御信号に基づき、暖房時には実線で示すように切り替わり、冷房時には点線で示すように切り替わる。
前記コンプレッサ2は、インバータ2aからの供給電力により駆動し、内部に吸引した熱交換媒体を高温・高圧状態として排出する。
【0010】
前記車内側熱交換器3及び車外側熱交換器4はほぼ同様な構成で、車外側熱交換器4は、図2に示すように、一対のヘッダ6a,6b間に複数の偏平管7を所定間隔で並設し、各偏平管7の間に交互に折り曲げたフィン8を配設することにより形成され、一方のヘッダ6aには、下端部に熱交換媒体の流入口9aが、上端部に流出口9bがそれぞれ設けられている。この車外側熱交換器4は車両前方部に取り付けられ、その近傍2箇所に設けたファン10から周囲の空気が強制的に吹き付けられるようになっている。そして、熱交換媒体が下方側の偏平管7から蛇行しながら上方に流動する際、フィン8を介して前記ファン10によって吹き付けられる空気あるいは走行風から熱を吸収し、前記熱交換媒体に吸熱させるようになっている。
【0011】
一方、前記車内側熱交換器3は、車内側に設けた送風ユニット11内に配設されており、ブロア12の回転駆動によりこの送風ユニット11内に吸引された内気あるいは外気を加熱する。
前記アキュムレータ5は、前記車外側熱交換器4で吸熱された熱交換媒体を加圧状態としてコンプレッサ2に供給する役割を果すものである。
【0012】
ところで、前記車外側熱交換器4には、サーミスタ等の着霜検出センサ13が、図2に示すように、ファン10からの送風が直接当たらない位置に取り付けられている。
前記着霜検出センサ13の取付けは、図3,4あるいは図5,6に示すような取付部材14,15を利用することが可能である。
【0013】
図3,4に示す取付部材14は、車外側熱交換器4のフィン8の間に差し込まれ、先端に形成した係止爪16で脱落を防止される係止部17と、前記着霜検出センサ13の車外側熱交換器4に対向する部分以外を被覆する断熱部18とから構成されている。断熱部18の凹面にはウレタン等の断熱材18aが配設され、着霜検出センサ13が車外側熱交換器4以外から熱影響を受けることを防止するようにしている。
【0014】
また、図5及び図6に示す取付部材15は、取付本体20、断熱部材21及び取付プレート22から構成されている。取付本体20は、前記係止部17と同様な係止部19を備え、着霜検出センサ13を保持する。断熱部材21は、中央部が膨出し、その内面には断熱材21aが配設されることにより着霜検出センサ1を車外側熱交換器4以外から断熱する。取付プレート22は、車外側熱交換器4に対して断熱部材21とは反対側に配設され、断熱部材21をボルト・ナット等で車外側熱交換器4に取り付ける。
【0015】
このように、前記着霜検出センサ13を、ファン10からの送風が吹き付けられない位置で、かつ、断熱部17あるいは断熱部材20で被覆した状態で車外側熱交換器4に取り付けるようにしたので、着霜検出センサ13は車外側熱交換器4以外から熱影響を受けにくく、より適切に車外側熱交換器4の表面温度を検出することができる。
【0016】
また、前記着霜検出センサ13の取付位置は、車外側熱交換器4のほぼ中間位置よりも上方側である。すなわち、図7のグラフに示すように、暖房運転開始直後に車外側熱交換器4内へ熱交換媒体が急激に流入することにより、流入口9a近傍温度にはばらつきが生じるが、前記着霜検出センサ13はその温度変化の影響を受けにくい位置に設けられている。
【0017】
前記着霜検出センサ13の検出温度は着霜検出制御装置23に入力される。着霜検出制御装置23ではこの検出温度に基づいて図8のフローチャートに従って除霜運転を行なう。
【0018】
まず、ステップS1で図示しない暖房スイッチがオンされると、ステップS2で暖房運転が開始される。この暖房運転では、四方弁1を図1中実線で示すように切り替えた状態でコンプレッサ2を駆動することにより、熱交換媒体を車内側熱交換器3、車外側熱交換器4、四方弁1及びアキュムレータ5からコンプレッサ2に循環させる。これにより、コンプレッサ2で高温・高圧となった熱交換媒体が車内側熱交換器3で放熱し、送風ユニット11を通過する空気が加熱された後、車外側熱交換器4で吸熱する。
【0019】
続いて、ステップS3で着霜検出センサ13での検出温度が設定値(本実施例では−13℃に設定する。)以下まで低下したかどうかを判断する。この場合、暖房運転開始直後では、熱交換媒体の温度が安定せず、図7のグラフに示すように大きく変動するため、車外側熱交換器4に着霜していないにも拘わらず、前記設定値以下の温度が検出されることがあるが、前述のように、着霜検出センサ13は車外側熱交換器4のほぼ中間位置よりも上方側に設けられているため、常に、熱交換媒体の温度が安定した状態で検出できる。
【0020】
そして、検出温度が設定値まで低下していなければ車外側熱交換器4には着霜がなく熱交換効率も十分であると判断して暖房運転を続行し、低下していれば着霜が発生して熱交換効率が悪化していると判断してステップS4で除霜運転を開始する。この除霜運転は、前記四方弁1を図1中点線で示すように切り替えて熱交換媒体を逆方向、すなわち、コンプレッサ2から四方弁1、車外側熱交換器4、車内側熱交換器2、四方弁1、アキュムレータ5を介してコンプレッサ2に循環させる。これにより、車内側熱交換器3と車外側熱交換器4の間の加熱及び吸熱状態が逆転し、車外側熱交換器4で除霜が開始される。
【0021】
その後、ステップS5で、着霜検出センサ13での検出温度が所定値よりも高くなったかどうかにより除霜が完了したかどうかを判断し、除霜が完了していなければ除霜運転を続行し、完了していればステップS2に戻って暖房運転を再開する。
【0022】
なお、前記実施例では、車外側熱交換器4のほぼ中間位置よりも上方側に設けた着霜検出センサ13での検出温度に基づいて除霜運転を開始することにより、暖房運転開始直後の熱交換媒体温度のばらつきによる誤動作を防止するようにしたが、次のようにしてもよい。
【0023】
すなわち、暖房運転開始直後から所定時間(例えば、10分)の間、着霜判断を行わないようにする。これは、暖房運転開始直後では、熱交換媒体が車外側熱交換器4内に急激に流入し、流入口9a側の温度が急激に低下するため、図7のグラフに示すように、検出温度のばらつきが大きく、適切な温度測定ができないためである。
【0024】
また、検出温度が設定値以下となっても、ばらつき度合がある一定範囲を超えていれば暖房運転を続行するようにする。これは、暖房運転が開始されてから所定時間の間は着霜が発生していないにも拘わらず、検出温度の変動幅が大きいためである。
【0025】
【発明の効果】
以上の説明から明らかなように、本発明によれば、着霜検出センサを、ファンからの送風及び走行風が吹き付けられない位置であって、熱交換媒体の温度が大きく変動しなくなる位置に設けるようにしたので、誤動作する心配もなく、正確に車外側熱交換器の表面温度を検出することができ、適切な除霜運転を行なうことが可能である。
【0026】
また、前記着霜検出センサでの検出温度が所定値以下で、かつ、単位時間当たりの変動幅が所定範囲内でのみ除霜運転を開始するようにしたので、この着霜検出センサの設ける位置に拘わらず、確実に着霜状態を検出することができる。
さらに、暖房運転の開始直後に着霜判定を行わないようにしたので、より着霜有無判定の精度を高めることができる。
【図面の簡単な説明】
【図1】 本実施例に係る電気自動車用空調装置の概略図である。
【図2】 図1の車外側熱交換器の正面図である。
【図3】 着霜検出センサの取付部材及び車外側熱交換器の一部を示す斜視図である。
【図4】 図3の着霜検出センサ及び取付部材を他の角度から見た状態を示す斜視図である。
【図5】 他の着霜検出センサの取付部材の分解斜視図である。
【図6】 図5の取付部材による取付状態を示す断面図である。
【図7】 外気温度及び検出温度の変化を示すグラフである。
【図8】 図1の着霜検出制御装置による除霜運転制御を示すフローチャートである。
【符号の説明】
4…車外側熱交換器、10…ファン、13…着霜検出センサ、21…断熱部材。
[0001]
[Industrial application fields]
The present invention relates to a defrosting means for an air conditioner for an electric vehicle, and more particularly to a defrosting means provided with a frosting detection sensor capable of accurately detecting frosting in an outside heat exchanger.
[0002]
[Prior art]
In electric vehicle air conditioners, the four-way valve is switched to the heating cycle, and the compressor is driven using battery power to circulate the heat exchange medium in the order of the vehicle interior heat exchanger and vehicle exterior heat exchanger in order of heating. To do. In this heating operation, heat is absorbed from the ambient atmosphere in the outside heat exchanger, so if the outside air temperature is very low, frost forms on the surface of the outside heat exchanger and the heat exchange efficiency deteriorates. is there.
[0003]
For this reason, conventionally, a frost detection sensor is provided in the vehicle exterior heat exchanger, and the presence or absence of frost formation in the vehicle exterior heat exchanger is estimated based on the temperature detected by the frost detection sensor. If it is judged that it is, it defrosts by switching a four-way valve and setting it as a cooling cycle.
[0004]
[Problems to be solved by the invention]
However, there is a problem that a large difference occurs in the detected temperature due to a difference in the attachment position of the frost detection sensor, and the defrosting operation is started even though the outside heat exchanger is not frosted due to a malfunction.
For example, if the frost detection sensor is installed at a position where the air blows from the fan or the traveling wind hits it, the frost is detected even though the temperature of the outside heat exchanger becomes very low and frost is generated. Depending on the air temperature, a temperature higher than the actual surface temperature of the outside heat exchanger may be detected.
[0005]
Further, immediately after the heating operation is started, the temperature of the heat exchange medium greatly fluctuates. In particular, when the frost detection sensor is provided in the vicinity of the inlet of the heat exchange medium of the outside heat exchanger, the fluctuation range is remarkable. Therefore, as a result of the temperature being lowered to a temperature (for example, −13 ° C.) which is a reference for frost determination, there is a risk of malfunction.
In view of the above problems, an object of the present invention is to provide a defrosting means for an air conditioner for an electric vehicle capable of accurately detecting a frosting state and performing a defrosting operation.
[0006]
[Means for Solving the Problems]
The present invention, in order to achieve the object, the interior side heat exchanger heat exchange medium was elevated temperature and pressure in the compressor, when performing a heating operation by circulating in the order of the exterior heat exchanger, the vehicle outer side If frost formation of the outside heat exchanger is detected based on the temperature detected from the frost detection sensor attached to the heat exchanger, the heat exchange medium is reversely circulated by switching the four-way valve to switch the outside of the vehicle. In the air conditioner for an electric vehicle that is defrosted from the heat exchanger, the frost detection sensor is a position where the air blown from the fan provided in the vicinity of the vehicle outside heat exchanger and the traveling wind cannot be blown, Immediately after the start of the heating operation, the heat exchange medium is provided at a position other than the range where the initial temperature disturbance that occurs when the heat exchange medium flows into the outside heat exchanger, and the detected temperature from the frost detection sensor is the outside heat exchange. Frost on the vessel Even if the set value or less and which is determined to have none, it is provided with a defrosting control means to continue the heating operation if beyond a certain range the variation degree of the detected temperature.
[0007]
In addition, the frost detection sensor may be provided at a position other than a range where an initial temperature disturbance occurs when the heat exchange medium flows into the vehicle exterior heat exchanger.
Furthermore, you may make it provide the defrost control means which performs frost determination after predetermined time passes since heating operation start.
[0008]
【Example】
Embodiments of the present invention will be described below with reference to the accompanying drawings.
In the electric vehicle air conditioner shown in FIG. 1, the cycle in which the heat exchange medium circulates can be switched between the heating cycle and the cooling cycle by the four-way valve 1. During these cycles, the compressor 2, the vehicle interior heat exchanger 3, the vehicle exterior heat exchanger 4 and the accumulator 5 are disposed outside the four-way valve 1.
[0009]
The four-way valve 1 has a structure in which a rotating body having a pair of communication passages is accommodated in a valve body. Based on a control signal from a control device (not shown), the four-way valve 1 is switched as indicated by a solid line during heating, and is indicated by a dotted line during cooling. Switch as shown.
The compressor 2 is driven by the electric power supplied from the inverter 2a, and discharges the heat exchange medium sucked inside as a high temperature / high pressure state.
[0010]
The vehicle interior heat exchanger 3 and vehicle exterior heat exchanger 4 have substantially the same configuration, and the vehicle exterior heat exchanger 4 includes a plurality of flat tubes 7 between a pair of headers 6a and 6b as shown in FIG. It is formed by arranging fins 8 arranged in parallel at predetermined intervals and alternately bent between the flat tubes 7. One header 6a has a heat exchange medium inlet 9a at its lower end and an upper end. Are respectively provided with outlets 9b. The vehicle exterior heat exchanger 4 is attached to the front portion of the vehicle, and ambient air is forcibly blown from the fans 10 provided at two locations in the vicinity thereof. When the heat exchange medium flows upward while meandering from the flat tube 7 on the lower side, heat is absorbed from the air or running wind blown by the fan 10 through the fins 8 and the heat exchange medium absorbs heat. It is like that.
[0011]
On the other hand, the vehicle interior heat exchanger 3 is disposed in a blower unit 11 provided on the vehicle interior side, and heats the inside air or the outside air sucked into the blower unit 11 by rotational driving of the blower 12.
The accumulator 5 plays a role of supplying the heat exchange medium absorbed by the vehicle exterior heat exchanger 4 to the compressor 2 in a pressurized state.
[0012]
Meanwhile, a frost detection sensor 13 such as a thermistor is attached to the outside heat exchanger 4 at a position where the air blown from the fan 10 does not directly hit as shown in FIG.
The frost detection sensor 13 can be attached using attachment members 14 and 15 as shown in FIGS.
[0013]
The attachment member 14 shown in FIGS. 3 and 4 is inserted between the fins 8 of the heat exchanger 4 on the outside of the vehicle, and is provided with a locking portion 17 that is prevented from dropping by a locking claw 16 formed at the tip, and the frost detection. It is comprised from the heat insulation part 18 which coat | covers except the part which opposes the vehicle exterior heat exchanger 4 of the sensor 13. FIG. A heat insulating material 18 a such as urethane is disposed on the concave surface of the heat insulating portion 18, so that the frost detection sensor 13 is prevented from being influenced by heat from other than the vehicle exterior heat exchanger 4.
[0014]
Further, the attachment member 15 shown in FIGS. 5 and 6 includes an attachment main body 20, a heat insulating member 21, and an attachment plate 22. The mounting body 20 includes a locking portion 19 similar to the locking portion 17 and holds the frost detection sensor 13. The heat insulating member 21 insulates the frosting detection sensor 1 from other than the vehicle exterior heat exchanger 4 by the central portion expanding and a heat insulating material 21 a disposed on the inner surface thereof. The mounting plate 22 is disposed on the side opposite to the heat insulating member 21 with respect to the vehicle exterior heat exchanger 4, and attaches the heat insulation member 21 to the vehicle exterior heat exchanger 4 with bolts, nuts, or the like.
[0015]
As described above, the frost detection sensor 13 is attached to the vehicle exterior heat exchanger 4 at a position where the air blown from the fan 10 cannot be blown and covered with the heat insulating portion 17 or the heat insulating member 20. The frost detection sensor 13 is less susceptible to heat from other than the outside heat exchanger 4 and can detect the surface temperature of the outside heat exchanger 4 more appropriately.
[0016]
Further, the attachment position of the frost detection sensor 13 is above the substantially intermediate position of the vehicle exterior heat exchanger 4. That is, as shown in the graph of FIG. 7, the heat exchange medium suddenly flows into the outside heat exchanger 4 immediately after the start of the heating operation, so that the temperature near the inlet 9a varies, but the frost formation occurs. The detection sensor 13 is provided at a position that is not easily affected by the temperature change.
[0017]
The detected temperature of the frost detection sensor 13 is input to the frost detection control device 23. The frost detection control device 23 performs the defrosting operation according to the flowchart of FIG. 8 based on the detected temperature.
[0018]
First, when a heating switch (not shown) is turned on in step S1, heating operation is started in step S2. In this heating operation, the compressor 2 is driven in a state in which the four-way valve 1 is switched as shown by a solid line in FIG. 1, so that the heat exchange medium is the vehicle interior heat exchanger 3, the vehicle exterior heat exchanger 4, and the four-way valve 1. And circulates from the accumulator 5 to the compressor 2. As a result, the heat exchange medium that has become high temperature and high pressure in the compressor 2 dissipates heat in the vehicle interior heat exchanger 3, heats the air passing through the blower unit 11, and then absorbs heat in the vehicle exterior heat exchanger 4.
[0019]
Subsequently, in step S3, it is determined whether or not the temperature detected by the frost detection sensor 13 has fallen below a set value (set to -13 ° C. in this embodiment). In this case, immediately after the start of the heating operation, the temperature of the heat exchange medium is not stable and greatly fluctuates as shown in the graph of FIG. Although the temperature below the set value may be detected, as described above, since the frost detection sensor 13 is provided above the substantially intermediate position of the vehicle exterior heat exchanger 4, the heat exchange is always performed. It can be detected in a state where the temperature of the medium is stable.
[0020]
If the detected temperature does not decrease to the set value, the outside heat exchanger 4 determines that there is no frost and the heat exchange efficiency is sufficient, and the heating operation is continued. It is determined that the heat exchange efficiency has deteriorated, and the defrosting operation is started in step S4. In this defrosting operation, the four-way valve 1 is switched as shown by the dotted line in FIG. 1 to change the heat exchange medium in the reverse direction, that is, from the compressor 2 to the four-way valve 1, the vehicle exterior heat exchanger 4, and the vehicle interior heat exchanger 2. And circulate to the compressor 2 through the four-way valve 1 and the accumulator 5. Thereby, the heating and heat absorption states between the vehicle interior heat exchanger 3 and the vehicle exterior heat exchanger 4 are reversed, and the vehicle exterior heat exchanger 4 starts defrosting.
[0021]
Thereafter, in step S5, it is determined whether or not the defrosting is completed depending on whether or not the temperature detected by the frost detection sensor 13 is higher than a predetermined value. If the defrosting is not completed, the defrosting operation is continued. If completed, the process returns to step S2 to resume the heating operation.
[0022]
In addition, in the said Example, by starting defrost operation based on the detected temperature in the frosting detection sensor 13 provided in the upper side rather than the substantially intermediate position of the vehicle outside heat exchanger 4, it is immediately after heating operation start. Although malfunction due to variations in the temperature of the heat exchange medium is prevented, the following may be possible.
[0023]
That is, the frost determination is not performed for a predetermined time (for example, 10 minutes) immediately after the start of the heating operation. This is because immediately after the start of the heating operation, the heat exchange medium suddenly flows into the outside heat exchanger 4 and the temperature on the inflow port 9a side suddenly decreases. Therefore, as shown in the graph of FIG. This is because there is a large variation in the temperature and an appropriate temperature measurement cannot be performed.
[0024]
Even if the detected temperature is equal to or lower than the set value, the heating operation is continued if the degree of variation exceeds a certain range. This is because the fluctuation range of the detected temperature is large even though frosting has not occurred for a predetermined time after the heating operation is started.
[0025]
【The invention's effect】
As is apparent from the above description, according to the present invention, the frost detection sensor is provided at a position where the air blown from the fan and the traveling wind cannot be blown, and the temperature of the heat exchange medium does not fluctuate greatly. As a result, the surface temperature of the vehicle exterior heat exchanger can be accurately detected without fear of malfunctioning, and appropriate defrosting operation can be performed.
[0026]
Further, the defrosting operation is started only when the temperature detected by the frost detection sensor is equal to or lower than a predetermined value and the fluctuation range per unit time is within a predetermined range. Regardless of this, it is possible to reliably detect the frosting state.
Further, since the frost determination is not performed immediately after the start of the heating operation, the accuracy of the determination of the presence or absence of frost can be further increased.
[Brief description of the drawings]
FIG. 1 is a schematic view of an air conditioner for an electric vehicle according to the present embodiment.
FIG. 2 is a front view of the vehicle exterior heat exchanger of FIG. 1;
FIG. 3 is a perspective view showing a part of a frost detection sensor mounting member and a vehicle exterior heat exchanger.
4 is a perspective view showing a state in which the frost detection sensor and the attachment member of FIG. 3 are viewed from another angle.
FIG. 5 is an exploded perspective view of a mounting member of another frost detection sensor.
6 is a cross-sectional view showing a state of attachment by the attachment member of FIG.
FIG. 7 is a graph showing changes in outside air temperature and detected temperature.
FIG. 8 is a flowchart showing defrosting operation control by the frost detection control device of FIG. 1;
[Explanation of symbols]
4 ... Vehicle outside heat exchanger, 10 ... Fan, 13 ... Frosting detection sensor, 21 ... Heat insulation member.

Claims (3)

コンプレッサで高温・高圧とした熱交換媒体を車内側熱交換器、車外側熱交換器の順で循環させることにより暖房運転を行なうに際し、前記車側熱交換器に取り付けた着霜検出センサからの検出温度に基づいて前記車外側熱交換器の着霜が検出されれば、四方弁を切り替えることにより、熱交換媒体を逆循環させて前記車外側熱交換器から除霜するようにした電気自動車用空調装置において、
前記着霜検出センサを、車外側熱交換器の近傍に設けたファンからの送風及び走行風が吹き付けられない位置であって、暖房運転開始直後に、熱交換媒体が車外側熱交換器内に流入する際に発生する初期温度乱れが生じる範囲以外の位置に設け、
前記着霜検出センサからの検出温度が、車外側熱交換器に着霜が発生したと判断される設定値以下となっても、検出温度のばらつき度合がある一定範囲を超えていれば暖房運転を続行する除霜制御手段を設けたことを特徴とする電気自動車用空調装置。
Interior heat exchanger heat exchange medium was elevated temperature and pressure in the compressor, when performing a heating operation by circulating in the order of the exterior heat exchanger, the frost detecting sensor attached to the vehicle outer side heat exchanger If frost formation of the vehicle exterior heat exchanger is detected based on the detected temperature of the vehicle, the four-way valve is switched to reversely circulate the heat exchange medium to defrost the vehicle exterior heat exchanger. In automotive air conditioners,
The frost detection sensor is located at a position where air blown from a fan provided in the vicinity of the vehicle exterior heat exchanger and running air are not blown, and immediately after the heating operation is started, the heat exchange medium is placed in the vehicle exterior heat exchanger. Provided at a position other than the range where the initial temperature disturbance that occurs when flowing in,
Even if the detected temperature from the frost detection sensor is equal to or lower than a set value at which frost formation is determined to occur in the outside heat exchanger, the heating operation is performed if the detected temperature variation degree exceeds a certain range. An air conditioner for an electric vehicle, characterized in that a defrost control means for continuing the operation is provided.
前記着霜センサを、前記車外側熱交換器以外からの熱影響を遮断する断熱部材で被覆したことを特徴とする請求項1に記載の電気自動車用空調装置。  The air conditioner for an electric vehicle according to claim 1, wherein the frost sensor is covered with a heat insulating member that blocks a thermal influence from other than the outside heat exchanger. 暖房運転開始から所定時間経過した後に着霜判断を行う除霜制御手段を設けたことを特徴とする請求項1又は2のいずれか一方に記載の電気自動車用空調装置。  3. The electric vehicle air conditioner according to claim 1, further comprising a defrosting control unit configured to perform frosting determination after a predetermined time has elapsed from the start of the heating operation.
JP01091294A 1994-02-02 1994-02-02 Air conditioner for electric vehicles Expired - Fee Related JP3737137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01091294A JP3737137B2 (en) 1994-02-02 1994-02-02 Air conditioner for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01091294A JP3737137B2 (en) 1994-02-02 1994-02-02 Air conditioner for electric vehicles

Publications (2)

Publication Number Publication Date
JPH07218056A JPH07218056A (en) 1995-08-18
JP3737137B2 true JP3737137B2 (en) 2006-01-18

Family

ID=11763494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01091294A Expired - Fee Related JP3737137B2 (en) 1994-02-02 1994-02-02 Air conditioner for electric vehicles

Country Status (1)

Country Link
JP (1) JP3737137B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110966797B (en) * 2019-12-10 2021-01-15 珠海格力电器股份有限公司 Vehicle heat pump air conditioning system and control method thereof

Also Published As

Publication number Publication date
JPH07218056A (en) 1995-08-18

Similar Documents

Publication Publication Date Title
KR101211007B1 (en) Air conditioning of Thermo defrost the operation method
JPH07198236A (en) Air flow interruption detecting method in heat pump system
JP2002200917A (en) Air conditioner for vehicle
US4439995A (en) Air conditioning heat pump system having an initial frost monitoring control means
JP3737137B2 (en) Air conditioner for electric vehicles
CN111775889A (en) Automobile defogging and defrosting system, automobile and automobile defogging method
KR102418657B1 (en) Airconditioning apparatus for electric vehicle
KR960034883A (en) dehumidifier
JP3767050B2 (en) Air conditioner for vehicles
JP2975878B2 (en) refrigerator
JP4609226B2 (en) Ejector type cycle
JPH1086654A (en) Brine type air conditioner
JP3563479B2 (en) Electric vehicle air conditioner
JPH0240460Y2 (en)
JP2005053474A (en) Control method and device for cooling fan of vehicle
JP3573822B2 (en) Dehumidifier
KR940006908B1 (en) Method of removing frost in evaporater
KR100952830B1 (en) Temperature Sensor Fixing Structure and Operation Method for Evaporator of a Car
JPH0596939A (en) Automotive air-conditioner
JPS593311Y2 (en) air conditioner
KR19990019626A (en) HVAC equipment and its defrosting control method when heated
JPH07195935A (en) Air conditioning device for vehicle
KR100211602B1 (en) Defrosting time control method of airconditioner
JPS6328388Y2 (en)
KR980010195A (en) Air conditioner and its dehumidifying operation method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees