JP3737063B2 - Steam boiler decompression device - Google Patents

Steam boiler decompression device Download PDF

Info

Publication number
JP3737063B2
JP3737063B2 JP2002108641A JP2002108641A JP3737063B2 JP 3737063 B2 JP3737063 B2 JP 3737063B2 JP 2002108641 A JP2002108641 A JP 2002108641A JP 2002108641 A JP2002108641 A JP 2002108641A JP 3737063 B2 JP3737063 B2 JP 3737063B2
Authority
JP
Japan
Prior art keywords
valve
pressure
chamber
main
pilot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002108641A
Other languages
Japanese (ja)
Other versions
JP2003302006A (en
Inventor
隆徳 渡辺
政貴 村田
誉 岩本
Original Assignee
株式会社ヨシタケ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヨシタケ filed Critical 株式会社ヨシタケ
Priority to JP2002108641A priority Critical patent/JP3737063B2/en
Publication of JP2003302006A publication Critical patent/JP2003302006A/en
Application granted granted Critical
Publication of JP3737063B2 publication Critical patent/JP3737063B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Fluid Pressure (AREA)
  • Fluid-Driven Valves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気ボイラ用減圧装置に関する。
【0002】
【従来の技術】
従来、蒸気ボイラ(以下、単にボイラと称する。)で発生させた蒸気を供給する設備にあっては、図6に示す様に、ボイラBより下流の蒸気供給管SGにその上流より順に手動開閉弁aと減圧弁b(図示例ではパイロット作動式)とが設けられ、更に下流(図示せず)ではボイラBからの蒸気を分配供給すべく、その配管適所に手動開閉弁と減圧弁が設けられている。
そして、ボイラBの運転中において、手動開閉弁aと必要に応じ各所の手動開閉弁とを開放し、その下流に設けた蒸気熱利用の温水器や暖房器等の各機器へ蒸気を供給している。
ところが、図6に示す手動開閉弁a又は配管各所の手動開閉弁(以下、手動開閉弁a等と称する。)の閉弁状態、即ち下流への蒸気供給前状態では、配管表面からの熱損失により蒸気の一部が凝縮した凝縮水が配管内に滞留しているため、かかる状態から手動開閉弁a等を急激に開放すると、配管内の凝縮水が蒸気の流れを妨げてボイラBに余計な負荷が生じたり、上流からの蒸気流によって一気に凝縮水が吹き飛ばされて管壁に衝突し、激しい騒音や振動(ウォーターハンマ)が発生することになり、これらの現象を緩和すべく、下流への蒸気供給時には、手動開閉弁a等を時間をかけてゆっくり開放する必要があった。
【0003】
【発明が解決しようとする課題】
従って、蒸気供給設備における下流への蒸気供給時は、作業者が圧力計を見ながら手動開閉弁a等を開放操作して流量を調整せねばならず、かかる作業は甚だ面倒であった。
そこで、本発明のものは、下流への蒸気供給初期から蒸気が所定圧力に上昇するまでは蒸気を小流量で供給してウォーターハンマ等の現象の発生を軽減し、蒸気圧力が所定値に達した後に蒸気の供給を小流量から通常流量(手動開閉弁a等を全開した時の流量に相当)へ連続的に変化する様に自動制御した減圧装置を提供することを目的としている。
【0004】
【課題を解決するための手段】
本発明は、上記課題に鑑み、パイロット弁と減圧弁本体の一次側圧力室との流路を開閉する圧力感知弁を設け、該圧力感知弁の弁棒を、前記流路と気密状に区画された圧力室に突入させると共に、該圧力室内の流体の圧力変動で変位する感圧ダイヤフラムの接離により進退自在に設け、該感圧ダイヤフラムを調節ネジにて弾性力が変更自在な調節バネで圧力感知弁の閉弁方向に付勢した操作弁を設けたパイロット作動式の本流用減圧弁と、該本流用減圧弁の本体より小流量にして、且つ、設定圧力がパイロット弁の設定圧力以下で操作弁の設定圧力より高く設定された支流用減圧弁とを蒸気供給管に並列接続し、前記パイロット弁の圧力制御室を前記本体を介装接続した本管下流に接続し、前記操作弁の圧力室を前記支流用減圧弁を介装接続した側管下流に接続することにより、下流への蒸気供給初期からウォーターハンマ等の現象を生じない圧力に上昇するまでは、支流用減圧弁を介して側管から蒸気を供給し、該側管の下流圧力が上昇して所定値に達したことを操作弁が感知することで本流用減圧弁を機能させ、本管からも蒸気を供給し、この様に自動的に蒸気の流量を調整することによりウォーターハンマ等の現象の発生を軽減する様にして、上記課題を解決する。
【0005】
【発明の実施の形態】
以下本発明の一実施例を図面に基づいて説明する。
図1は本発明に係る蒸気ボイラ用減圧装置1の簡略配管系統図を示す。
この減圧装置1は、ボイラBに接続した蒸気供給管SGに本流用減圧弁の本体1aと支流用減圧弁1bとを並列接続して成り、蒸気供給管SGより分岐した本管MP中に本体1aを介装接続した本流用減圧弁は、その本体1aを制御するパイロット弁2と、支流用減圧弁1bの下流の蒸気圧力を感知して本体1aを制御する操作弁3とを設けている。
尚、本実施例では、減圧装置1を設けた蒸気供給管SGは、ボイラB下流に連続したものを示したが、減圧装置1は蒸気供給管SGの更に下流(図示せず)でヘッダを介して蒸気を分配供給する別途蒸気供給管SGにも設けられる。
支流用減圧弁1bは、本流用減圧弁の本体1aより小流量にして、且つ、その設定圧力がパイロット弁2の設定圧力以下で操作弁3の設定圧力より高く設定された減圧弁であり、蒸気供給管SGより分岐し、且つ本管MPよりも小口径の側管SP中に介装接続されている。
【0006】
本流用減圧弁の本体1aは、その弁箱4の左右側方に入口5及び出口6の夫々を開口形成し、該入口5及び出口6は、弁箱4の内部を隔壁7で上下に区画した一次側圧力室8及び二次側圧力室9の夫々に通じている。
上記隔壁7には、一次側圧力室8と二次側圧力室9とを連通する弁口10を設け、該弁口10を開閉する主弁11を弁口10の上部開口周縁に設けた弁座12に着離自在に設けている。
主弁11の背部と一次側圧力室8の上方に設けたバネ受け間には、圧縮コイル状の主弁バネ13を圧縮介装し、主弁11を閉弁方向に付勢している。
主弁11の弁棒14は、弁口10を挿通して二次側圧力室9をダイヤフラム室15とに上下に区画するダイヤフラム16に連結しており、弁棒14の中途部位は、二次側圧力室9内下方の括れ部17に設けた筒状の弁棒ガイド18に摺動自在に挿通支持され、括れ部17によって上下に区画された二次側圧力室9は、弁棒ガイド18に近接して括れ部17に開設した連通孔19で連通している。
【0007】
パイロット弁2は、本体1a上部に組み付けた操作弁3を介して連通する一次側圧力室8から二次側圧力室9とダイヤフラム室15とへ分流する流路(導管20a、20b、20c)20中に配置され、該流路20を開閉する補助弁21を設けている。
パイロット弁2の弁箱22内部には、導管20aを介して操作弁3と連通する連通室22aと、該連通室22aより上方に連続する直上流路23と、該直上流路23の上方で直交状に交差すると共に、導管20bを介してダイヤフラム室15に連通する直交流路24とを設けて成り、直上流路23の連通室22aに臨む開口部周縁に設けた弁座25に補助弁21を着離自在に設けている。
補助弁21の弁棒26は、直上流路23を挿通すると共に、直上流路23の上部に気密状に区画して設けた圧力調整室27に弁棒26先端側を進退(上下動)自在に突入して成り、かかる突入部位には補助弁バネ28を外嵌装着して補助弁21をその閉弁方向に付勢している。
圧力調整室27は、弁箱22上部に被冠したバネカバー29との間に介装したパイロットダイヤフラム30にてバネカバー29の内部空間と区画され、検出管31を介して本体1aの下流(二次側)と連結している。
バネカバー29内部には、その上部より突入した調節ネジ32により弾性力を調節自在と成した調節バネ33でパイロットダイヤフラム30を補助弁21の開弁方向に付勢し、二次側より検出管31を介して圧力調整室27へ流入する蒸気の圧力変動で変位するパイロットダイヤフラム30の接離(接触及び離脱)により弁棒26を進退自在と成している。
又、直交流路24が連結された導管20bは、その中途に設けた分岐導管20cを本体1aの二次側圧力室9に設けたオリフィス34に連結している。
尚、調節ネジ32により調節されるパイロット弁2の設定圧力は、支流用減圧弁1bの設定圧力以上で、好ましくは同圧力に設定している。
【0008】
操作弁3は、その弁箱35を本体1a上部に一体的に組み付けて成り、パイロット弁2と本体1aの一次側圧力室8とを連結する(上記流路20と同一路線上の)流路36を開閉する圧力感知弁37を弁箱35内部に設けている。
弁箱35内部には、本体1aの一次側圧力室8に連通する直上流路38と、該直上流路38の上方で直交状に交差すると共に、導管20aを介してパイロット弁2の連通室22aに連通する直交流路39とを設けて成り、直上流路38において直交流路39との交差部位に設けた弁座40に圧力感知弁37を着離自在に設けると共に、該圧力感知弁37には圧力感知弁バネ41を外嵌装着して圧力感知弁37をその開弁方向に付勢している。
圧力感知弁37の弁棒42は、直上流路38の上部に区画して設けた圧力室43に弁棒42先端側を進退(上下動)自在に突入し、かかる突入部位にはベローズ44を被冠すると共に、該ベローズ44の底部をこれに対応する弁棒42先端に当接し、一次側圧力室8とパイロット弁2との流路36(直上流路38及び直交流路39)と圧力室43とを気密状に隔離する様にベローズ44の開口部周縁を弁棒42の挿通孔45の下方開口部周縁に固着している。
圧力室43は、弁箱35上部に被冠したバネカバー46との間に介装した感圧ダイヤフラム47にてバネカバー46の内部空間と区画されており、側管SPの支流用減圧弁1bの下流に連結管48を介して圧力室43を接続している。
バネカバー46内部には、その上部より突入した調節ネジ49により弾性力を調節自在と成した調節バネ50で感圧ダイヤフラム47を圧力感知弁37の閉弁方向に付勢し、圧力室43内の蒸気の圧力変動で変位する感圧ダイヤフラム47の接離により弁棒42を進退自在と成している。
そして、調節ネジ49にて調節される操作弁3の設定圧力は、支流用減圧弁1bの設定圧力より低く設定している。
【0009】
次に、本発明に係る蒸気ボイラ用減圧装置の作用について説明する。
図1においてボイラBの起動直後、又は図示しないヘッダを介して蒸気を分配供給する別途蒸気供給管SGにあっては、その下流への蒸気供給直後では、蒸気は、支流用減圧弁1bの減圧機能によって所定圧力に減圧されて側管SPを通過し、その下流へ供給される。
又、側管SP下流に連通している圧力室43内の蒸気圧力は、操作弁3の調節バネ50で設定された圧力以下にあるため、調節バネ50の弾性力により、感圧ダイヤフラム47及びベローズ44(弁棒42)を介して圧力感知弁37が閉弁方向へ押圧され閉弁しており、パイロット弁2には、一次側圧力室8からの蒸気が流動しないため、パイロット弁2は動作せず、ダイヤフラム室15へ蒸気が供給されないので、ダイヤフラム16は主弁11の開弁方向へ変位できず、主弁11の閉弁方向へ作用する主弁バネ13の弾性力及び一次側圧力によって主弁11は閉弁しており、本管MPから蒸気は流れていない。
そして、支流減圧弁1bを経て流入する圧力室43内の蒸気の圧力が、操作弁3の設定圧力(調節バネ50の弾性力)より以上に達すると、かかる圧力を受圧する感圧ダイヤフラム47は圧力感知弁37の開弁方向へ変位し、その結果、圧力感知弁37の開弁方向へ作用する圧力感知弁バネ41及び一次側圧力室8の一次側圧力により、圧力感知弁37は開弁し、一次側圧力室8から流路36、流路20aを介してパイロット弁2の連通室22aへ蒸気が流動する。
パイロット弁2では、その調節バネ33の弾性力により補助弁21が開弁しているため、一次側圧力室8側からの蒸気は、流路23、24から導管20bを経てダイヤフラム室15に流入すると共に、分岐導管20c、オリフィス34を経て二次側圧力室9へ流入する。
そして、上記流路23、24を通る流量がオリフィス34を通る流量より多くなると、ダイヤフラム室15の操作圧が上昇し、主弁11背部の一次側圧力及び主弁バネ13の弾性力に打ち勝って主弁11を押し開き、一次側圧力室8から二次側圧力室9へ蒸気が流れ始める。
又、二次側圧力室9へ流入した蒸気は、検出管31より圧力調整室27へ導かれるため、パイロットダイヤフラム30は二次側圧力を受け、調節バネ33と釣り合い、二次側圧力の増減によりパイロットダイヤフラム30に作用する圧力と、調節バネ33が働き合って補助弁21による開度を加減し、ダイヤフラム室15への流入量を変化させて主弁11による開度を制御し、二次側を適正な圧力にする。
尚、二次側への負荷が無くなると、圧力調整室27の圧力が上昇し、補助弁バネ28により補助弁21が閉弁し、ダイヤフラム室15の操作圧がオリフィス34を通って二次側圧力室9へ逃げ、主弁11は主弁バネ13に押されて閉止する。
【0010】
【発明の効果】
要するに本発明は、パイロット弁2と減圧弁本体1aの一次側圧力室8との流路36を開閉する圧力感知弁37を設け、該圧力感知弁37の弁棒42を、前記流路36と気密状に区画された圧力室43に突入させると共に、該圧力室43内の流体の圧力変動で変位する感圧ダイヤフラム47の接離により進退自在に設け、該感圧ダイヤフラム47を調節ネジ49にて弾性力が変更自在な調節バネ50で圧力感知弁37の閉弁方向に付勢した操作弁3を設けたパイロット作動式の本流用減圧弁と、該本流用減圧弁の本体1aより小流量にして、且つ、設定圧力がパイロット弁2の設定圧力以下で操作弁3の設定圧力より高く設定された支流用減圧弁1bとを蒸気供給管SGに並列接続し、パイロット弁2の圧力制御室27を本体1aを介装接続した本管MP下流に接続し、操作弁3の圧力室43を支流用減圧弁1bを介装接続した側管SP下流に接続したので、下流への蒸気供給当初では、支流用減圧弁1bを介して側管SPから蒸気を小流量で供給することにより、ウォーターハンマ等の現象の発生を軽減できると共に、側管SPの下流圧力が上昇して設定圧力に達したことを操作弁3が感知することにより、本流用減圧弁の本体1aを機能させ、本管MPからも蒸気を供給することが全て自動で行え、作業者が従来手動で行っていた手間、時間を完全に解消できる。
操作弁3の設定圧力は、調節ネジ49にて調節バネ50の弾性力を調整することにより、適宜変更できるため、ボイラBの能力に応じた使用が可能となる等その実用的効果甚だ大である。
【図面の簡単な説明】
【図1】減圧装置の簡略配管系統図である。
【図2】本流用減圧弁の断面図である。
【図3】上記減圧弁の側面図である。
【図4】パイロット弁と操作弁の拡大断面図である。
【図5】操作弁の拡大断面図である。
【図6】従来の蒸気供給設備の簡略配管系統図である。
【符号の説明】
1a 減圧弁本体
1b 支流用減圧弁
2 パイロット弁
3 操作弁
4 弁箱
8 一次側圧力室
9 二次側圧力室
10 弁口
11 主弁
13 主弁バネ
14 弁棒
15 ダイヤフラム室
16 ダイヤフラム
20 流路
21 補助弁
26 弁棒
27 圧力制御室
30 パイロットダイヤフラム
33 調節バネ
36 流路
37 圧力感知弁
42 弁棒
43 圧力室
47 感圧ダイヤフラム
49 調節ネジ
50 調節バネ
SG 蒸気供給管
MP 本管
SP 側管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a decompression device for a steam boiler.
[0002]
[Prior art]
Conventionally, in a facility for supplying steam generated by a steam boiler (hereinafter simply referred to as “boiler”), as shown in FIG. A valve a and a pressure reducing valve b (in the illustrated example, a pilot actuated type) are provided, and a manual on-off valve and a pressure reducing valve are provided at appropriate locations in the piping to distribute and supply steam from the boiler B further downstream (not shown). It has been.
During the operation of the boiler B, the manual on-off valve a and the manual on-off valves at various places are opened as necessary, and steam is supplied to each equipment such as a water heater and a heater using steam heat provided downstream thereof. ing.
However, in the closed state of the manual on-off valve a shown in FIG. 6 or the manual on-off valves (hereinafter referred to as the manual on-off valve a) in various places in the pipe, that is, before the downstream steam supply, heat loss from the pipe surface Condensed water in which part of the steam is condensed in the pipe is retained in the pipe. If the manual open / close valve a or the like is suddenly opened from this state, the condensed water in the pipe prevents the steam from flowing to the boiler B. Heavy loads occur, or condensate is blown off at a stretch by the steam flow from the upstream and collides with the pipe wall, generating severe noise and vibration (water hammer). To alleviate these phenomena, downstream When the steam was supplied, it was necessary to slowly open the manual on-off valve a and the like over time.
[0003]
[Problems to be solved by the invention]
Therefore, when steam is supplied downstream in the steam supply facility, the operator must adjust the flow rate by opening the manual on-off valve a while looking at the pressure gauge, and this work is very troublesome.
Therefore, according to the present invention, the steam is supplied at a small flow rate from the initial stage of steam supply downstream until the steam rises to a predetermined pressure to reduce the occurrence of phenomena such as water hammer, and the steam pressure reaches a predetermined value. It is an object of the present invention to provide a decompression device that is automatically controlled so that the supply of steam continuously changes from a small flow rate to a normal flow rate (corresponding to a flow rate when the manual on-off valve a or the like is fully opened).
[0004]
[Means for Solving the Problems]
In view of the above problems, the present invention provides a pressure sensing valve that opens and closes the flow path between the pilot valve and the primary pressure chamber of the pressure reducing valve body, and the valve rod of the pressure sensing valve is partitioned from the flow path in an airtight manner. The pressure sensitive diaphragm can be moved forward and backward by a pressure sensitive diaphragm that is displaced by the pressure fluctuation of the fluid in the pressure chamber, and the pressure sensitive diaphragm is adjusted by an adjusting spring whose elastic force can be changed by an adjusting screw. A pilot-actuated mainstream pressure reducing valve provided with an operation valve biased in the valve closing direction of the pressure sensing valve, and a flow rate smaller than the mainstream pressure reducing valve body, and the set pressure is lower than the pilot valve set pressure And a tributary pressure reducing valve set higher than the set pressure of the operating valve in parallel with the steam supply pipe, and the pilot valve pressure control chamber is connected downstream of the main pipe with the main body interposed therebetween, and the operating valve The pressure chamber of the tributary is connected via the pressure reducing valve By connecting to the downstream side of the side pipe, the steam is supplied from the side pipe through the tributary pressure reducing valve from the initial stage of steam supply to the downstream until the pressure rises so as not to cause a phenomenon such as water hammer. When the operation valve senses that the downstream pressure has increased and reached a predetermined value, the main flow pressure reducing valve functions, and steam is also supplied from the main pipe, thus automatically adjusting the steam flow rate. This solves the above problem by reducing the occurrence of phenomena such as water hammer.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows a simplified piping system diagram of a steam boiler decompression device 1 according to the present invention.
This decompression device 1 comprises a steam supply pipe SG connected to the boiler B and a main flow decompression valve main body 1a and a branch flow decompression valve 1b connected in parallel, and the main body MP is branched into the main pipe MP branched from the steam supply pipe SG. The mainstream pressure reducing valve connected with 1a is provided with a pilot valve 2 for controlling the main body 1a and an operation valve 3 for sensing the steam pressure downstream of the branch pressure reducing valve 1b to control the main body 1a. .
In the present embodiment, the steam supply pipe SG provided with the decompression device 1 is shown to be continuous downstream of the boiler B, but the decompression device 1 has a header further downstream (not shown) of the steam supply tube SG. It is also provided in a separate steam supply pipe SG that distributes and supplies the steam through it.
The tributary pressure reducing valve 1b is a pressure reducing valve whose flow rate is smaller than that of the main flow reducing valve body 1a and whose set pressure is lower than the set pressure of the pilot valve 2 and higher than the set pressure of the operation valve 3. It branches from the steam supply pipe SG, and is intervened in the side pipe SP having a smaller diameter than the main pipe MP.
[0006]
The main flow reducing valve main body 1a has an inlet 5 and an outlet 6 opened on the left and right sides of the valve box 4, respectively, and the inlet 5 and the outlet 6 are partitioned vertically by partition walls 7 inside the valve box 4. The primary pressure chamber 8 and the secondary pressure chamber 9 communicate with each other.
The partition wall 7 is provided with a valve port 10 for communicating the primary side pressure chamber 8 and the secondary side pressure chamber 9, and a main valve 11 for opening and closing the valve port 10 is provided at the periphery of the upper opening of the valve port 10. It is provided on the seat 12 so as to be freely attached and detached.
A compression coil-shaped main valve spring 13 is interposed between the back of the main valve 11 and a spring receiver provided above the primary pressure chamber 8 to urge the main valve 11 in the valve closing direction.
The valve stem 14 of the main valve 11 is connected to a diaphragm 16 that is inserted through the valve port 10 and divides the secondary pressure chamber 9 into a diaphragm chamber 15 in the vertical direction. The secondary pressure chamber 9 slidably inserted and supported by a cylindrical valve rod guide 18 provided in a constricted portion 17 provided in the lower side of the side pressure chamber 9. It communicates with a communication hole 19 opened in the constricted part 17 in the vicinity.
[0007]
The pilot valve 2 is a flow path (conduit 20a, 20b, 20c) 20 for diverting from the primary side pressure chamber 8 communicating with the secondary side pressure chamber 9 and the diaphragm chamber 15 through the operation valve 3 assembled to the upper part of the main body 1a. An auxiliary valve 21 that is disposed inside and opens and closes the flow path 20 is provided.
In the valve box 22 of the pilot valve 2, a communication chamber 22 a that communicates with the operation valve 3 through a conduit 20 a, a directly upper flow path 23 that continues above the communication chamber 22 a, and a position above the directly upper flow path 23 An orthogonal flow path 24 that intersects perpendicularly and communicates with the diaphragm chamber 15 via the conduit 20b is provided, and an auxiliary valve is provided on the valve seat 25 provided at the periphery of the opening facing the communication chamber 22a of the directly upper flow path 23. 21 is provided so that it can be worn and detached.
The valve stem 26 of the auxiliary valve 21 is inserted through the directly upper flow path 23, and the front end side of the valve stem 26 can be moved forward and backward (moved up and down) in a pressure regulating chamber 27 that is provided in an airtight manner above the directly above flow path 23. The auxiliary valve spring 28 is externally fitted to the entry portion to urge the auxiliary valve 21 in the valve closing direction.
The pressure adjustment chamber 27 is partitioned from the internal space of the spring cover 29 by a pilot diaphragm 30 interposed between the spring cover 29 covered on the upper part of the valve box 22 and downstream (secondary) of the main body 1a via the detection tube 31. Side).
Inside the spring cover 29, an adjustment spring 33 that is elastically adjustable by an adjustment screw 32 that protrudes from the top of the spring cover 29 biases the pilot diaphragm 30 in the valve opening direction of the auxiliary valve 21, and from the secondary side, a detection tube 31 The valve rod 26 can be moved forward and backward by the contact and separation (contact and separation) of the pilot diaphragm 30 that is displaced by the pressure fluctuation of the steam flowing into the pressure regulation chamber 27 via the.
Further, the conduit 20b to which the orthogonal flow path 24 is connected connects the branch conduit 20c provided in the middle thereof to the orifice 34 provided in the secondary pressure chamber 9 of the main body 1a.
The set pressure of the pilot valve 2 adjusted by the adjusting screw 32 is equal to or higher than the set pressure of the tributary pressure reducing valve 1b, preferably the same pressure.
[0008]
The operation valve 3 is formed by integrally assembling the valve box 35 on the upper part of the main body 1a, and connects the pilot valve 2 and the primary pressure chamber 8 of the main body 1a (on the same line as the flow path 20). A pressure sensing valve 37 for opening and closing 36 is provided inside the valve box 35.
In the valve box 35, a directly upper flow path 38 that communicates with the primary pressure chamber 8 of the main body 1a, and a communication chamber of the pilot valve 2 that intersects perpendicularly above the directly upper flow path 38 and through the conduit 20a. The pressure sensing valve 37 is provided in the valve seat 40 provided at the crossing point of the orthogonal flow path 39 in the direct flow path 38, and the pressure sensing valve 37 is detachable. A pressure sensing valve spring 41 is externally fitted to 37 and urges the pressure sensing valve 37 in the valve opening direction.
The valve rod 42 of the pressure sensing valve 37 enters the pressure chamber 43 provided in the upper part of the directly upper flow path 38 so that the front end side of the valve rod 42 can be moved forward and backward (movable up and down). In addition to being crowned, the bottom of the bellows 44 is brought into contact with the tip of the corresponding valve stem 42, and the flow path 36 (directly upward flow path 38 and orthogonal flow path 39) between the primary pressure chamber 8 and the pilot valve 2 and pressure The periphery of the opening of the bellows 44 is fixed to the periphery of the lower opening of the insertion hole 45 of the valve rod 42 so as to isolate the chamber 43 in an airtight manner.
The pressure chamber 43 is partitioned from the internal space of the spring cover 46 by a pressure-sensitive diaphragm 47 interposed between the spring cover 46 covered on the top of the valve box 35, and downstream of the branching pressure reducing valve 1b of the side pipe SP. The pressure chamber 43 is connected to the via a connecting pipe 48.
Inside the spring cover 46, the pressure sensing diaphragm 47 is urged in the valve closing direction of the pressure sensing valve 37 by an adjustment spring 50 that allows the elastic force to be adjusted by an adjustment screw 49 that protrudes from the upper part of the spring cover 46. The valve rod 42 can be moved forward and backward by the contact and separation of a pressure-sensitive diaphragm 47 that is displaced by the pressure fluctuation of the steam .
The set pressure of the operation valve 3 adjusted by the adjusting screw 49 is set lower than the set pressure of the branch flow reducing valve 1b.
[0009]
Next, the operation of the decompression device for a steam boiler according to the present invention will be described.
In FIG. 1, in the separate steam supply pipe SG immediately after the start of the boiler B or the steam that distributes and supplies steam via a header (not shown), the steam is decompressed by the tributary pressure reducing valve 1b immediately after the steam is supplied downstream. The pressure is reduced to a predetermined pressure by the function, passes through the side pipe SP, and is supplied downstream thereof.
Further, since the vapor pressure in the pressure chamber 43 communicating with the downstream side of the side pipe SP is equal to or lower than the pressure set by the adjustment spring 50 of the operation valve 3, the pressure-sensitive diaphragm 47 and The pressure sensing valve 37 is pressed in the valve closing direction via the bellows 44 (valve rod 42), and the pilot valve 2 does not flow into the pilot valve 2. It does not operate and steam is not supplied to the diaphragm chamber 15, so the diaphragm 16 cannot be displaced in the valve opening direction of the main valve 11, and the elastic force and primary pressure of the main valve spring 13 acting in the valve closing direction of the main valve 11 Therefore, the main valve 11 is closed and no steam flows from the main pipe MP.
When the pressure of the steam in the pressure chamber 43 flowing in via the tributary pressure reducing valve 1b exceeds the set pressure of the operation valve 3 (elastic force of the adjusting spring 50), the pressure sensitive diaphragm 47 receiving the pressure is The pressure sensing valve 37 is opened by the primary pressure of the pressure sensing valve spring 41 and the primary pressure chamber 8 that are displaced in the valve opening direction of the pressure sensing valve 37 and consequently act in the valve opening direction of the pressure sensing valve 37. Then, the steam flows from the primary pressure chamber 8 to the communication chamber 22a of the pilot valve 2 through the flow path 36 and the flow path 20a.
In the pilot valve 2, since the auxiliary valve 21 is opened by the elastic force of the adjusting spring 33, the steam from the primary pressure chamber 8 side flows into the diaphragm chamber 15 from the flow paths 23 and 24 through the conduit 20b. At the same time, it flows into the secondary pressure chamber 9 through the branch conduit 20 c and the orifice 34.
When the flow rate through the flow passages 23 and 24 is greater than the flow rate through the orifice 34, the operating pressure in the diaphragm chamber 15 rises and overcomes the primary pressure on the back of the main valve 11 and the elastic force of the main valve spring 13. The main valve 11 is pushed open, and steam begins to flow from the primary side pressure chamber 8 to the secondary side pressure chamber 9.
Further, since the steam flowing into the secondary side pressure chamber 9 is guided to the pressure adjusting chamber 27 from the detection pipe 31, the pilot diaphragm 30 receives the secondary side pressure and balances with the adjusting spring 33 to increase or decrease the secondary side pressure. The pressure acting on the pilot diaphragm 30 and the adjustment spring 33 work together to increase or decrease the opening by the auxiliary valve 21, and change the inflow to the diaphragm chamber 15 to control the opening by the main valve 11, Set the side to the proper pressure.
When there is no load on the secondary side, the pressure in the pressure adjustment chamber 27 increases, the auxiliary valve 21 is closed by the auxiliary valve spring 28, and the operating pressure in the diaphragm chamber 15 passes through the orifice 34 to the secondary side. The main valve 11 is pushed by the main valve spring 13 and closes.
[0010]
【The invention's effect】
In short, the present invention is provided with a pressure sensing valve 37 that opens and closes the flow path 36 between the pilot valve 2 and the primary pressure chamber 8 of the pressure reducing valve main body 1a, and the valve rod 42 of the pressure sensing valve 37 is connected to the flow path 36. The pressure-sensitive diaphragm 47 is inserted into the pressure chamber 43 which is partitioned in an airtight manner, and can be moved forward and backward by the contact and separation of the pressure-sensitive diaphragm 47 which is displaced by the pressure fluctuation of the fluid in the pressure chamber 43. A pilot-actuated mainstream pressure reducing valve provided with an operation valve 3 biased in the closing direction of the pressure sensing valve 37 by an adjustment spring 50 whose elasticity is freely changeable, and a flow rate smaller than the main flow reducing valve main body 1a. And a tributary pressure reducing valve 1b whose set pressure is lower than the set pressure of the pilot valve 2 and higher than the set pressure of the operation valve 3 is connected in parallel to the steam supply pipe SG, and the pressure control chamber of the pilot valve 2 27 is connected downstream of the main pipe MP connected via the main body 1a, and the pressure chamber 43 of the operation valve 3 is connected. Since it is connected downstream of the side pipe SP connected to the diverting pressure reducing valve 1b, at the initial stage of supplying steam downstream, by supplying steam from the side pipe SP through the tributary pressure reducing valve 1b at a small flow rate, Etc., and the operation valve 3 senses that the downstream pressure of the side pipe SP has increased to reach the set pressure, so that the main body 1a of the mainstream pressure reducing valve functions, and the main pipe MP Also, it is possible to automatically supply steam, and the labor and time conventionally performed manually by the operator can be completely eliminated.
The set pressure of the operation valve 3 can be changed as appropriate by adjusting the elastic force of the adjusting spring 50 with the adjusting screw 49, so that it can be used according to the capacity of the boiler B. is there.
[Brief description of the drawings]
FIG. 1 is a simplified piping system diagram of a decompression device.
FIG. 2 is a cross-sectional view of a mainstream pressure reducing valve.
FIG. 3 is a side view of the pressure reducing valve.
FIG. 4 is an enlarged sectional view of a pilot valve and an operation valve.
FIG. 5 is an enlarged cross-sectional view of an operation valve.
FIG. 6 is a simplified piping system diagram of a conventional steam supply facility.
[Explanation of symbols]
1a Pressure reducing valve body
1b Tributary pressure reducing valve 2 Pilot valve 3 Operating valve 4 Valve box 8 Primary pressure chamber 9 Secondary pressure chamber
10 Valve
11 Main valve
13 Main valve spring
14 Valve stem
15 Diaphragm room
16 Diaphragm
20 channels
21 Auxiliary valve
26 Valve stem
27 Pressure control room
30 Pilot diaphragm
33 Adjusting spring
36 flow path
37 Pressure sensing valve
42 Valve stem
43 Pressure chamber
47 Pressure-sensitive diaphragm
49 Adjustment screw
50 Adjustment spring SG Steam supply pipe MP Main pipe SP Side pipe

Claims (1)

弁箱内部に区画した一次側圧力室と二次側圧力室とが連通する弁口を開閉する主弁を主弁バネにて閉弁方向に付勢すると共に、二次側圧力室をダイヤフラム室とに区画するダイヤフラムに主弁の弁棒を連結して成る減圧弁本体と、該本体の一次側圧力室から二次側圧力室とダイヤフラム室とへ分流する流路を開閉する補助弁を設け、該補助弁の弁棒を、補助弁が開閉する前記流路と気密状に区画された圧力制御室に突入させると共に、該圧力制御室内の流体の圧力変動で変位するパイロットダイヤフラムの接離により進退自在に設け、該パイロットダイヤフラムを調節バネにて補助弁の開弁方向に付勢して成るパイロット弁と、該パイロット弁と前記一次側圧力室との流路を開閉する圧力感知弁を設け、該圧力感知弁の弁棒を、前記パイロット弁と一次側圧力室との流路と気密状に区画された圧力室に突入させると共に、該圧力室内の流体の圧力変動で変位する感圧ダイヤフラムの接離により進退自在に設け、該感圧ダイヤフラムを調節ネジにて弾性力が変更自在な別途調節バネで圧力感知弁の閉弁方向に付勢した操作弁とから成る本流用減圧弁と、該本流用減圧弁の本体より小流量にして、且つ、設定圧力がパイロット弁の設定圧力以下で操作弁の設定圧力より高く設定された支流用減圧弁とを蒸気供給管に並列接続し、前記パイロット弁の圧力制御室を前記本体を介装接続した本管下流に接続し、前記操作弁の圧力室を前記支流用減圧弁を介装接続した側管下流に接続したことを特徴とする蒸気ボイラ用減圧装置。The main valve that opens and closes the valve port communicating with the primary side pressure chamber and the secondary side pressure chamber partitioned inside the valve box is energized in the valve closing direction by the main valve spring, and the secondary side pressure chamber is the diaphragm chamber. A pressure reducing valve main body formed by connecting a valve stem of a main valve to a diaphragm divided into two, and an auxiliary valve that opens and closes a flow path for branching from the primary pressure chamber to the secondary pressure chamber and the diaphragm chamber. The valve rod of the auxiliary valve enters into a pressure control chamber that is airtightly defined with the flow path that opens and closes the auxiliary valve, and the pilot diaphragm that is displaced by the pressure fluctuation of the fluid in the pressure control chamber makes contact and separation. Providing a pilot valve that can be moved forward and backward, energizing the pilot diaphragm in the opening direction of the auxiliary valve with an adjustment spring, and a pressure sensing valve that opens and closes the flow path between the pilot valve and the primary pressure chamber The valve stem of the pressure sensing valve is connected to the pilot valve. The pressure sensor is inserted into a pressure chamber partitioned in a gastight manner with a flow path between the valve and the primary pressure chamber, and can be moved forward and backward by a pressure-sensitive diaphragm that is displaced by pressure fluctuations of the fluid in the pressure chamber. The main flow pressure reducing valve is composed of an operation valve that is urged in the valve closing direction of the pressure sensing valve by a separate adjusting spring whose elastic force can be freely changed by an adjusting screw, and a flow rate smaller than that of the main pressure reducing valve body. And a tributary pressure reducing valve whose set pressure is less than or equal to the set pressure of the pilot valve and higher than the set pressure of the operation valve is connected in parallel to the steam supply pipe, and the pressure control chamber of the pilot valve is interposed in the main body A steam boiler decompression device, wherein the steam chamber is connected to a downstream side of a connected main pipe, and a pressure chamber of the operation valve is connected to a downstream side of a side pipe connected to the tributary decompression valve.
JP2002108641A 2002-04-11 2002-04-11 Steam boiler decompression device Expired - Lifetime JP3737063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002108641A JP3737063B2 (en) 2002-04-11 2002-04-11 Steam boiler decompression device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002108641A JP3737063B2 (en) 2002-04-11 2002-04-11 Steam boiler decompression device

Publications (2)

Publication Number Publication Date
JP2003302006A JP2003302006A (en) 2003-10-24
JP3737063B2 true JP3737063B2 (en) 2006-01-18

Family

ID=29392325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002108641A Expired - Lifetime JP3737063B2 (en) 2002-04-11 2002-04-11 Steam boiler decompression device

Country Status (1)

Country Link
JP (1) JP3737063B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110284791A1 (en) * 2010-05-24 2011-11-24 Ernesto Vasquez Spring seat for use with actuators
DE102011012154A1 (en) * 2011-02-24 2012-08-30 Linde Ag Device for reducing pressure

Also Published As

Publication number Publication date
JP2003302006A (en) 2003-10-24

Similar Documents

Publication Publication Date Title
US5735503A (en) Servo pressure regulator for a gas valve
US6418956B1 (en) Pressure controller
MXPA05004513A (en) Pressure regulator and shut-off valve.
JP2010525464A (en) Gas regulator flow boost cartridge
US10883717B2 (en) Solenoid operated valve for reducing excessive piping pressure in a fluid distribution system
JPH01199100A (en) Regulator
GB2344163A (en) Hydraulic balancing device for a central heating system
US3525355A (en) Flow control apparatus
JP3737063B2 (en) Steam boiler decompression device
US6695005B2 (en) Pressure regulating valve
US5035260A (en) Line pressure regulator
US4794846A (en) Proportional action valve with a biased spring unproportionately variable to the load pressure
US2833303A (en) Control and pressure regulating valve
JPS593771B2 (en) You can't wait for a long time.
JP3488712B2 (en) Pressure reducing valve for steam used in steam boiler equipment
US2593557A (en) Pilot controlled gas pressure regulator
US2763280A (en) Pressure regulating system
US3796368A (en) Diaphragm operated flow control device
US2146273A (en) Pressure regulating and reducing apparatus
JP4303717B2 (en) Pressure reducing valve and water supply device
JPS59164477A (en) Valve system
KR100408760B1 (en) Water heater
JP3660339B2 (en) Steam pressure reducing valve
US3025001A (en) Flow control system
JP7424322B2 (en) fluid pressure control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051025

R150 Certificate of patent or registration of utility model

Ref document number: 3737063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term