JP3736023B2 - Biological stimulator - Google Patents

Biological stimulator Download PDF

Info

Publication number
JP3736023B2
JP3736023B2 JP10500197A JP10500197A JP3736023B2 JP 3736023 B2 JP3736023 B2 JP 3736023B2 JP 10500197 A JP10500197 A JP 10500197A JP 10500197 A JP10500197 A JP 10500197A JP 3736023 B2 JP3736023 B2 JP 3736023B2
Authority
JP
Japan
Prior art keywords
stimulation
pulse
living body
frequency
muscle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10500197A
Other languages
Japanese (ja)
Other versions
JPH10295835A (en
Inventor
豊勝 岡本
広次 浅川
祐子 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP10500197A priority Critical patent/JP3736023B2/en
Publication of JPH10295835A publication Critical patent/JPH10295835A/en
Application granted granted Critical
Publication of JP3736023B2 publication Critical patent/JP3736023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Percussion Or Vibration Massage (AREA)
  • Electrotherapy Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば美容機器、特に美顔機器などに用いられ、人間の顔などの生体に電気的低周波刺激を与えて筋肉を強制運動させる生体刺激装置に関する。
【0002】
【従来の技術】
従来、この種の生体刺激装置は、人間の顔などの生体に所定電圧の刺激パルスによって電気的低周波刺激を与えることで皮下の筋肉を強制的に運動させ、これによって、皮下の筋肉を強化させてその健全さを保つと共に、皮下組織および皮下の筋肉の保水能力を維持して張りのある弾力性に富んだ皮膚となるようにするために用いられていた。また、この電気的低周波刺激と共に、皮膚を叩いたり振動させたりする機械的刺激を皮下組織や筋肉に与えることで皮下組織や筋肉をほぐして血行をよくし、電気的低周波刺激による筋肉運動の疲労を柔らげていた。
【0003】
例えば特開平4−312472号公報や特開昭62−32973号公報には、肩こりの治療や美容を目的として、生体に低周波の刺激パルスによる電気的刺激を与えるパルス伝達導子と、生体に機械的な刺激を与える刺激体とを別々に備えた生体刺激装置が提案されている。
【0004】
これらの生体刺激装置は、電気的低周波刺激による強制的な筋肉運動によって筋肉を強化することと、皮下組織や筋肉への血行をよくし表皮活性化のための新陳代謝を盛んにすることで、皮下組織および皮下の筋肉の健全さを向上させると共に、皮下組織および皮下の筋肉の保水能力を向上させて弾力性を増進させる電気的刺激効果と、皮膚を叩いたり振動させたりする機械的な刺激によるマッサージ運動によって筋肉をほぐして筋肉の血行を良くする機械的刺激効果との両方の刺激効果を同時に実現していた。
【0005】
【発明が解決しようとする課題】
ところが、上記従来の構成では、電気的低周波刺激による筋肉運動の収縮期間中に機械的刺激によるほぐし効果で弛緩作用を筋肉に与えると、筋肉の収縮運動が阻害されることになって、電気的低周波刺激による皮下の筋肉運動によって、筋肉の強化が効果的に行えないという問題を有していた。このように、従来は、電気的低周波刺激を行ったとしても得られる効果は抑制され、特に、美容機器においては、如何に短時間で筋肉を効率的に運動させて皮下の筋肉強化をし、弾力性があって張りのある皮膚とするかが重要なポイントであった。
【0006】
本発明は、上記従来の問題を解決するもので、筋肉運動による筋肉の強化とその新陳代謝を効果的に行うことができる生体刺激装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の生体刺激装置は、電気的低周波刺激による筋肉収縮期間中には機械的刺激を与えないことを特徴とするものである。
【0008】
この生体刺激装置において、生体に電気的低周波刺激を与えて筋肉を強制運動させ、生体に機械的刺激を与えて筋肉をほぐす生体刺激装置としては、前記電気的低周波刺激による筋肉収縮期間後の筋肉弛緩期間中に生体に機械的刺激を与えるように制御する刺激制御手段を有していることを特徴とするものである。具体的には、本発明の生体刺激装置は、好ましくは、刺激信号を低周波で発生させる刺激信号発生手段と、この刺激信号発生手段に接続され、この刺激信号を生体に出力して生体に電気的低周波刺激を与える刺激信号伝達導子とが設けられていると共に、生体に機械的刺激を与える刺激体と、この刺激体を振動させる振動機構部とが設けられている。
【0009】
この構成により、低周波の刺激信号による電気的刺激の筋肉収縮中には機械的刺激の叩き動作や振動動作などを与えないので、従来のように、電気的低周波刺激による筋肉運動の収縮期間中に機械的刺激によるほぐし効果で弛緩作用を筋肉に与えて筋肉の収縮運動を阻害させるようなことはなく、筋肉運動による筋肉の強化が効果的に行える。また、機械的刺激の叩き動作などによる筋肉のほぐし効果によって、皮下組織や筋肉の血行をよくするので、その新陳代謝を効果的に行うことが可能となって筋肉疲労を抑えることが可能となる。
【0010】
また、好ましくは、本発明の生体刺激装置における刺激制御手段は、電気的低周波刺激による筋肉収縮期間後の筋肉弛緩期間中に生体に機械的刺激を与え始めるように制御するものである。
【0011】
この構成により、筋肉弛緩期間中に生体に機械的刺激を与え始めるので、皮下組織や筋肉の血行をよくすると共に筋肉の弛緩作用が効果的に行えて、筋肉運動をよりスピーディに行う共に筋肉疲労を抑えることが可能となる。
【0012】
さらに、好ましくは、本発明の生体刺激装置において、電気的低周波刺激を生体に与える刺激信号としては1パルスであってもよく、また、複数の刺激パルスよりなるパルス群であってもよい。この場合、刺激信号は1パルスまたはパルス群毎に筋肉収縮および弛緩させるようになっている。
【0013】
この構成により、刺激信号の周波数が高くなるほど筋肉の収縮強度が強くなって筋肉の運動効率が高くなる。
【0014】
また、好ましくは、本発明の生体刺激装置における刺激信号伝達導子と刺激体とが一体構成され、この刺激体を介して電気的低周波刺激と機械的刺激が生体に付与可能に構成されている。
【0015】
この構成により、刺激信号伝達導子と刺激体の一体的な構成で、電気的低周波刺激と機械的刺激が同一部材から皮下の筋肉などに付与されるので、その構成が簡単であり、扱いやすく管理も容易である。
【0016】
さらに、好ましくは、本発明の生体刺激装置における刺激信号伝達導子は少なくとも陽極と陰極の1組設けられている。
【0017】
この構成により、刺激信号伝達導子が少なくとも陽極と陰極の1組あれば、それらの陽極と陰極間のモータポイント毎に刺激信号を与えて電気的低周波刺激による筋肉運動を行うことが可能となる。
【0018】
【発明の実施の形態】
以下、本発明に係る生体刺激装置の実施形態について図面を参照して説明するが、本発明は以下に示す実施形態に限定されるものではない。
【0019】
(実施形態1)
図1は、本発明の実施形態1の生体刺激装置の制御構成を示すブロック図であり、また、図2は、刺激パルスに対する筋肉の収縮と弛緩を収縮強度曲線で見た場合の図であり、図3(a)および図3(b)は、図1の生体刺激装置における電気的刺激の刺激パルスa1および機械的刺激の駆動パルスb1の出力タイミングの一例を示すタイムチャートである。
【0020】
図1において、電池などの電源手段1は、各部を制御する刺激制御手段2、モータなどの回転駆動手段3および、図3(a)の低周波の刺激パルスa1を発生する刺激信号発生手段4に接続されており、これらに対して直流電力を供給している。また、操作手段5が接続される刺激制御手段2は、たたき機構部6を駆動する回転駆動手段3と、陽極と陰極の一組のパルス伝達導子7にそれぞれ接続された刺激信号発生手段4とに接続されており、刺激信号発生手段4から所定電圧で所定パルス幅の低周波の刺激パルスa1を発生させて一組のパルス伝達導子7に出力して生体に電気的低周波刺激を与えて筋肉を強制運動させると共に、回転駆動手段3の回転駆動力でたたき機構部6を駆動させて生体に機械的なたたき刺激を与えて皮下の筋肉をほぐすように構成されている。この操作手段5には、電源のオン/オフキー、スタートキー、電気的低周波刺激の強度設定キー、機械的刺激の強度設定キーおよび各種駆動プログラムキーなどが配設されており、使用者のキー操作によって刺激制御手段2を制御するようになっている。また、パルス伝達導子7には刺激体10が着脱自在に構成されており、パルス伝達導子7に刺激体10が取り付けられて一体構成され、この刺激体10を介して電気的低周波刺激と機械的刺激が生体に付与可能に構成されている。
【0021】
このとき、例えば電気的低周波刺激の強度制御は、刺激制御手段2が刺激信号発生手段4からの刺激パルスa1のパルス幅または刺激パルスa1の電圧値、電流値を可変することで制御している。要は、その電気的刺激が痛いなどの不快感がないように最大電流1mAに制限して制御している。この1mAの制限は、定電流ダイオード(図示せず)と、1mAを越えた場合にパルス出力を停止する出力停止回路(図示せず)との両方で行っている。刺激パルスa1の電圧値や電流値を可変することで、電気的低周波刺激の強度を制御する場合には、低周波の刺激パルスa1のパルス幅は0.4msecとしているが、0.1msec〜0.4msecであればよい。この刺激パルスaの電圧値や電流値の可変は、オペアンプ(図示せず)のゲインを変えることによって基準パルスを増幅して変化させている。また、刺激パルスaのパルス幅はマイクロコンピュータにて可変させることができる。この刺激パルスa1のパルス幅が0.1msecよりも小さければ、皮下の筋肉に充分な刺激を与えることができない。つまり、筋肉が収縮反応するのに0.1msec程度の時間が必要なためである。また、刺激パルスa1のパルス幅が0.4msecを越えると、使用者やその使用状態にもよるが、皮下の筋肉への刺激が強くなって痛く感じたり不快感を感じる場合があるためである。また、刺激制御手段2は、刺激信号発生手段4に対して低周波の刺激パルスa1を発生させるように制御しているが、操作手段5からの選択操作によって、その刺激パルスa1の周波数を選択制御するかまたは可変可能に制御するようになっている。
【0022】
また、機械的刺激は、回転駆動手段3への電力供給を駆動パルスb1によって行っているが、モータなどの回転駆動手段3の回転駆動による、後述するが偏心カムなどのたたき機構部によって、刺激プローブ9の先端部が揺動して皮膚に押し当てている刺激体10を介して叩かれることで皮下組織および筋肉がほぐされて血行および筋肉の弛緩が促進されるようになっている。この場合、回転駆動手段3への電力供給用の駆動パルスb1のパルス幅は回転駆動手段3のモータ回転軸などを介して、後述する偏心カムが少なくとも略1回転する程度のパルス幅に設定されており、刺激体10で1回だけ皮膚を叩いて皮下の筋肉をほぐすように構成されている。この叩き動作は、本実施形態では筋肉弛緩後に1回としているが、刺激信号発生手段4から次の低周波の刺激パルスa1を出力させるまで連続的に複数回行っても良い。また、この叩き動作は、これよりも振幅が小さくて周波数が高い、筋肉をほぐす効果のある振動動作であってもよい。さらに、機械的刺激の強度制御は、後述する偏心カムの場合には、回転駆動手段3の回転速度を可変することで制御可能である。
【0023】
これらの電源手段1、刺激制御手段2、刺激信号発生手段4および操作手段5は、装置本体8に配設され、また、回転駆動手段3、たたき機構部6および陽極と陰極の一組のパルス伝達導子7は刺激プローブ9に配設されており、これらの装置本体8と刺激プローブ9は4芯ケーブル11で接続されている。この4芯ケーブル11は伸び縮み自在なスパイラル状に構成されており、装置本体8を机上などに置いて刺激プローブ9の後述するグリップ部を手で握って一組のパルス伝達導子7を、目的とする例えば目元などの皮膚上に押し当てて、一組のパルス伝達導子7の間に刺激パルスa1を与えることで皮膚組織および筋肉に電気的低周波刺激を与えて筋肉運動と新陳代謝を行わせるようになっている。
【0024】
ここで、電気的低周波刺激による筋肉運動のタイミングに対する、たたき機構部6を駆動させる回転駆動手段3への電力供給タイミングについて、以下に詳しく説明する。
【0025】
この刺激パルスa1の電気的低周波刺激による筋肉運動において、図2に示すように、筋肉の収縮および弛緩状態を示す筋肉収縮強度曲線は、1パルスの刺激パルスa1が筋肉に与えられた場合に、所定時間だけ遅れるようにして筋肉が収縮し始める。この刺激パルスa1が筋肉に与えられてから約50msec程度の時間までに筋肉の収縮強度がピークになって、その後は筋肉は弛緩し始める。また、刺激パルスa1が筋肉に与えられてから約120msec程度の時間で筋肉の弛緩が終了している。この場合、筋肉収縮期間は刺激パルスa1が筋肉に与えられてから約50msec程度の期間であり、また、筋肉弛緩期間はそれに続く約70msec程度の期間となっている。このようにして、連続した低周波の刺激パルスa1の筋肉への付与毎に、筋肉の収縮反応と弛緩反応が繰り返されることになる。一方、生体に機械的な刺激、例えばたたき刺激や振動刺激などを与えると、皮下の筋肉は血行をよくすると共にほぐされて弛緩作用も働くことになる。
【0026】
したがって、電気的低周波刺激による筋肉運動の収縮期間中に機械的刺激によるほぐし効果で筋肉弛緩作用を筋肉に与えると、筋肉の収縮運動が阻害されて筋肉の強化効果が抑制されるため、刺激制御手段2は、たたき機構部6を駆動させる回転駆動手段3への電力供給タイミングを、刺激信号発生手段4から出力される刺激パルスa1による筋肉収縮が終わって筋肉が弛緩を始めるタイミング以降とするべく制御するようになっている。具体的には、本実施形態では、図3に示すように、刺激信号発生手段4から低周波の刺激パルスa1が出力されてから50msec後にモータなどの回転駆動手段3への電力供給用の駆動パルスb1を出力するようになっている。刺激パルスa1が出力されてから50msec後であれば、図2に示すように、刺激パルスa1による筋肉収縮期間後の筋肉弛緩期間中である。本実施形態では、これらの刺激パルスa1および駆動パルスb1は共に1パルスの場合である。
【0027】
図4(a)は図1の生体刺激装置における刺激プローブ9の構成を示す縦断面図であり、図4(b)は図4(a)のAA線の断面図である。
【0028】
図4(a)において、この生体刺激装置の刺激プローブ9は、上側のプラスチック製カバー部材である外壁部材21と、下側のプラスチック製カバー部材である断面略楕円形状でグリップ部22を兼ねた外壁部材23とが、ゴムなどの弾性体によりなる連結部材24で互いに揺動可能なように連結されている。これらの外壁部材21,23はそれぞれ縦方向に開くように分割された筐体状に構成されており、これらの分割された筐体状の外壁部材21は貫通孔21aを通して、図示しないねじとナットで両側から固定可能に構成されている。また同様に、これらの分割された筐体状の外壁部材23は貫通孔23aを通して、図示しないねじとナットで両側から固定可能に構成されている。もちろん、これらの図示しないねじとナットは外壁部材21,23の凹部内に入って外壁部材21,23の外壁表面からは出ないようになっている。また、連結部材24は、中央部に上下に貫通孔を有する筒状に構成されており、その外形は、外壁部材21,23と同様の断面略楕円形状である。また、この連結部材24の外周部には上下位置にそれぞれ、外壁部材21,23のつば部21b,23bをそれぞれ外周に亘って嵌合可能な各溝部24a,24bがそれぞれ形成されている。
【0029】
この下側の外壁部材23内には、その下方端部から内部に引き込まれ、機械的刺激用の駆動パルスb1と電気的刺激用の刺激パルスa1の4芯ケーブル11と、この4芯ケーブル11の駆動パルス用の2本のリード線に接続されており、上方に伸びたモータ回転軸25を回転駆動させる回転駆動手段3としてのモータ26とが配設されている。また、上側の外壁部材21内には、モータ26の回転軸25の回転力を伝達する弾性体で構成された連結部材27を介して連結された回転軸28と、この回転軸28を回転自在に2個所で軸支している各軸受部材29と、これらの各軸受部材29の間の回転軸28に図4(b)に示すように偏心した状態で貫通して取り付けられ、回転軸28の回転による遠心力で外壁部材21と共にパルス伝達導子7を揺動させる偏心分銅である偏心カム30と、4芯ケーブル11の刺激パルス用の残る2本のリード線に接続されており、刺激プローブ9の長手方向に所定間隔を空けて2個所外部に突出するように配設されると共に、その突出先端部が開放された刺激子用の取付穴31が形成された陽極と陰極の一組のパルス伝達導子7とが配設されている。このパルス伝達導子7の取付穴31には、本実施形態では、刺激子10として綿棒先端部32が水分を含ませた状態で挿入されて取り付け可能な構成となっている。これらの回転軸28、各軸受部材29および偏心カム30でたたき機構部6が構成されており、偏心した状態で回転軸28に取り付けられた偏心カム30の回転によって、その遠心力で偏心カム30と共に外壁部材21およびパルス伝達導子7を連結部材24を境として刺激プローブ9の先端部を振り回して、パルス伝達導子7に取り付けられた綿棒先端部32で皮下の筋肉などに対してたたき刺激を与えるように構成されている。
【0030】
上記構成により、以下、その作用を説明する。
【0031】
40才台の人で歳を感じる体の部分は目元のシワやたるみというのが多く、そのシワやたるみの原因は皮下の筋肉が衰えることである。ここでは、目元周りの筋肉である眼輪筋やこの眼輪筋を引き上げる額の前頭筋に対して、電気的低周波刺激処理と機械的刺激処理とを行って筋肉の強化とその新陳代謝の向上を図ることで目元のシワやたるみを予防する場合について説明する。
【0032】
まず、図4(a)の刺激プローブ9の両パルス伝達導子7における取付穴31内にそれぞれ、水分を含ませた綿棒先端部32をそれぞれ挿入してセットする。このように、刺激子10としての綿棒先端部32に水分を含ませるのは、両パルス伝達導子7に出力される刺激パルスa1を綿棒先端部32を介して生体に伝えるためである。
【0033】
次に、陽極と陰極の綿棒先端部32を目元の皮膚に押し当てて、両綿棒先端部32を介して電気的低周波刺激処理と機械的刺激処理とを行うことになる。
【0034】
図5は、図4(a)の刺激プローブ9で目元の筋肉に電気的刺激および機械的刺激を与える刺激ポイントの一例を示す図であり、これらの刺激ポイント(●が陰極位置で○が陽極位置)が、筋肉を効率的に動かすことができるモータポイントと呼ばれる刺激位置である。
【0035】
図5のX(1)に示す目元の皮膚位置に、まず、各綿棒先端部32を押し当てて装置本体8の操作手段5のスタートキーを押下すると共に、その操作手段5で低周波電気的刺激の強度を徐々に上げて適度の刺激強度のところにセットする。その後、適当な時間毎に図5のX(1)〜X(6)に示す目元の皮膚位置に、各綿棒先端部32を押し当てて低周波の刺激パルスa1による電気的刺激によって目元の筋肉を収縮させ、その後の筋肉の弛緩期間に、皮膚に押し当てた各綿棒先端部32を介した叩き動作を行なわせて皮下の筋肉をほぐす機械的刺激を、繰り返して実施する。
【0036】
このとき、刺激制御手段2は操作手段5からの刺激強度などの操作内容に基づいて、刺激信号発生手段4に対して所定周波数(本実施形態では5Hz)の低周波パルスを発生させ、水分を含んだ各綿棒先端部32を介して所定位置の目元部の皮下の筋肉に収縮運動を強制的に起こさせる。この筋肉収縮運動の後の筋肉弛緩運動が始まる時点、ここでは、低周波の刺激パルスa1の出力時点から50msec後に、刺激制御手段2はモータ26への駆動パルスb1を出力する。この駆動パルスb1によってモータ26の回転軸25が回転して偏心分銅である偏心カム30が回転することになる。このたたき機構部6を構成する偏心カム30の重心の偏った回転による遠心力で刺激プローブ9の弾性体よりなる連結部材24を境にして、それよりも刺激プローブ9の先端部が振り回されて揺動する。この揺動で、各綿棒先端部32を介して所定位置の目元部の皮膚に叩き動作が為されて皮下組織および筋肉がほぐされて血行などがよくなる。
【0037】
このように、刺激信号発生手段4から低周波の刺激パルスa1が出力され、そのパルス出力より50msec後にモータ26への駆動パルスb1の供給を行うようになっており、低周波の刺激パルスa1がパルス伝達導子7さらに綿棒先端部32を介して、各綿棒先端部32を押し当てている間の皮下の筋肉に電気的低周波刺激を与えて筋肉収縮を起こさせ、その後の50msec後の筋肉弛緩が始まる期間中に、モータ26に電力供給が為されてその回転駆動による偏心カム30の遠心力によって、刺激プローブ9の先端部が揺動して皮膚を各綿棒先端部32が叩くことで、筋肉がほぐされて筋肉の弛緩が促進される。この場合、モータ26への電力供給タイミングが、刺激信号発生手段4からの低周波の刺激パルスa1による筋肉収縮が弛緩を始めているタイミングであるため、その各綿棒先端部32による実際の皮膚への叩き動作はさらに遅れるが筋肉弛緩期間中に行われることになって、筋肉収縮期間中は確実にこの叩き動作は行われない。
【0038】
これによって、低周波の刺激パルスa1がパルス伝達導子7さらに綿棒先端部32を介して、各綿棒先端部32を押し当てている間の皮膚下の筋肉に電気的低周波刺激が与えられて筋肉収縮が起こり、その後の50msec後の筋肉弛緩が始まっているときに、モータ7への電力供給が為されてその回転駆動による偏心カム30の遠心力によって、刺激プローブ9の先端部が揺動して皮膚を各綿棒先端部32が叩くことで筋肉がほぐされて血行がよくなると共に筋肉の弛緩が促進される。
【0039】
したがって、刺激制御手段2は、刺激信号発生手段4さらにパルス伝達導子7から供給される刺激パルスa1による電気的低周波刺激の筋肉収縮中には回転駆動手段3への駆動パルスb1を出力せず、その後の筋肉弛緩期間中に回転駆動手段3への駆動パルスb1を出力して、たたき機構部6による機械的刺激を皮下の筋肉に与えるように制御するため、従来のように、電気的低周波刺激による筋肉運動の収縮期間中に機械的刺激によるほぐし効果で弛緩作用を筋肉に与えて筋肉の収縮運動を阻害させるようなことはなく、筋肉運動による筋肉の強化を効果的に行うことができると共に、筋肉弛緩期間中の機械的刺激の叩き動作による筋肉のほぐし効果によって、皮下組織や筋肉の血行をよくしてその新陳代謝を効果的に行うことができ、かつ筋肉の弛緩作用を効果的に行うことができる。
【0040】
(実施形態2)
筋肉が収縮と弛緩する期間は少なくとも約100msec以上は必要である。この期間では、刺激パルスの周波数は10Hzになるが、上記実施形態1では刺激パルスa1の周波数が10Hz以下の5Hzの低頻度刺激の場合を例にとって説明したが、本実施形態2では、刺激パルスの周波数が20Hz以上の高頻度刺激の場合を例にとって説明する。
【0041】
図6(a)および図6(b)は、本発明の実施形態2の生体刺激装置における電気的低周波刺激の刺激パルスa2および機械的刺激の駆動パルスb2の出力タイミングの一例を示すタイムチャートであり、図1〜図4の実施形態1の生体刺激装置における各部材と同一の作用効果を奏する部材には同一の符号を付けてその説明を省略する。
【0042】
図6(a)および図6(b)に示すように、電気的低周波刺激における刺激パルスは、その周波数が20Hzの刺激パルス群a2の出力期間と、パルス出力されない期間とが交互に1sec毎に繰り返されて存在している。また、モータ26への駆動パルスb2は、電気的低周波刺激の刺激パルスが出力されない期間内に出力されるようになっており、その立ち上り時点は刺激パルス群a2の立ち下がり時点から50msec後であり、また、その立ち下がり時点と次の刺激パルス群a2の立ち上り時点との間には、電気的低周波刺激と機械的刺激とが時間的に重ならないように、モータ26に駆動パルスb2が入力されて偏心カム30が回転して各綿棒先端部32を介して皮膚を軽く叩くのに要する時間だけ少なくとも必要である。
【0043】
また、刺激パルスの周波数が20Hz以上の刺激パルス群a2による高頻度刺激の場合には、その電気的刺激を受けた皮下の筋肉は、刺激パルス群a2の最初の刺激パルスで電気的刺激を受けて収縮することになるが、その筋肉が弛緩する前に次の刺激パルスによる電気的刺激がその筋肉に与えられるため、その筋肉はさらに収縮する。このため、筋肉はより強く収縮することになって刺激パルス群a2の期間、この筋肉収縮の状態となる。このように、刺激パルス群a2による強い電気的刺激によって強い筋肉収縮となるため、この強い筋肉収縮後の筋肉弛緩には1パルスの刺激パルスによる筋肉収縮後の筋肉弛緩に要する時間よりも長い時間を要することになる。したがって、図6に示すように、周波数が20Hzの刺激パルス群a2が出力されない期間をより長くとっている。ここでは、1sec毎に刺激パルス群a2のパルス出力をオン、オフさせることによって、筋肉の収縮と弛緩を繰り返させて強制的な筋肉運動を行うようにしている。
【0044】
なお、上記実施形態2では、周波数20Hzの刺激パルス群a2による高頻度刺激の場合について説明したが、図7において、周波数80Hzの刺激パルス群、周波数100Hzの刺激パルス群、さらには周波数120Hzの刺激パルス群のように、刺激パルス群を構成する刺激パルスの周波数が高くなるほど筋肉の収縮強度は強くなると共に、筋肉の収縮に要する時間も短くなる。このように、筋肉の収縮強度が強くなるほど、筋肉収縮後の筋肉弛緩に要する時間よりも長い時間を要することになる。
【0045】
また、上記実施形態1,2では、パルス伝達導子7と刺激体10とを一体的に構成し、この刺激体10を介して電気的低周波刺激と機械的刺激が生体に付与可能に構成したが、パルス伝達導子7と刺激体10とが別々に独立して構成されていてもよい。
【0046】
さらに、上記実施形態1,2では、陰極用のパルス伝達導子7と陽極用のパルス伝達導子7の1組だけ設けたが、陽極と陰極の各パルス伝達導子7を2組以上設けてもよく、陰極用のパルス伝達導子7、陽極用のパルス伝達導子7さらに陰極用のパルス伝達導子7を並べたパルス伝達導子群を1組または2組以上設けてもよい。
【0047】
【発明の効果】
以上のように請求項1,2によれば、低周波の刺激信号による電気的刺激の筋肉収縮中には機械的刺激の叩き動作や振動動作などを与えないため、筋肉の収縮中に機械的刺激による弛緩作用を与えることなく、筋肉運動による筋肉の強化を効果的に行うことができる。また、機械的刺激の叩き動作による筋肉のほぐし効果によって、皮下組織や筋肉の血行をよくするため、新陳代謝を効果的に行うことができて筋肉疲労を抑えることができる。
【0048】
また、請求項3によれば、筋肉弛緩期間中に生体に機械的刺激を与え始めるため、皮下組織や筋肉の血行をよくすると共に筋肉の弛緩作用を効果的に行うことができて、筋肉運動をよりスピーディに行う共に筋肉疲労を抑えることができる。
【0049】
さらに、請求項4,5によれば、刺激信号の周波数が高くなるほど筋肉の収縮強度が強くなって筋肉の運動効率を向上させることができる。
【0050】
さらに、請求項6によれば、刺激信号伝達導子と刺激体の一体構成で、電気的低周波刺激と機械的刺激が同一部材から皮下の筋肉などに付与されるため、その構成が簡単であり、扱いやすく管理も容易である。
【0051】
さらに、請求項7によれば、刺激信号伝達導子が少なくとも陽極と陰極の1組あれば、それらの陽極と陰極間のモータポイント毎に刺激信号を与えて電気的低周波刺激による筋肉運動を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施形態1の生体刺激装置の制御構成を示すブロック図である。
【図2】刺激パルスに対する筋肉の収縮と弛緩を収縮強度曲線で示した場合の図である。
【図3】(a)および(b)は、図2の生体刺激装置における電気的刺激パルスa1および機械的刺激パルスb1の出力タイミングの一例を示すタイムチャートである。
【図4】図1の刺激プローブの構成を示す縦断面図である。
【図5】図1の刺激プローブで目元の筋肉に刺激を与える刺激ポイントの一例を示す図である。
【図6】(a)および(b)は、本発明の実施形態2の生体刺激装置における電気的低周波刺激の刺激パルスa2および機械的刺激の駆動パルスb2の出力タイミングの一例を示すタイムチャートである。
【図7】刺激パルスの周波数をパラメータとした場合の筋肉の収縮強度曲線を示す図である。
【符号の説明】
1 電源手段
2 刺激制御手段
3 回転駆動手段
4 刺激信号発生手段
5 操作手段
6 たたき機構部
7 パルス伝達導子
8 装置本体
9 刺激プローブ
10 刺激体
11 4芯ケーブル
21,23 外壁部材
22 グリップ部
24 連結部材
25 モータ回転軸
26 モータ
27 連結部材
28 回転軸
29 軸受部材
30 偏心カム
31 取付穴
32 綿棒先端部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biostimulation apparatus that is used in, for example, a beauty device, particularly a facial device, and forcibly exercises muscles by applying electrical low-frequency stimulation to a living body such as a human face.
[0002]
[Prior art]
Conventionally, this type of biostimulation device forcibly moves the subcutaneous muscles by applying electrical low-frequency stimulation to a living body such as a human face with a stimulation pulse of a predetermined voltage, thereby strengthening the subcutaneous muscles In order to maintain its soundness and maintain the water retention ability of the subcutaneous tissue and muscles, it has been used to provide a firm and elastic skin. In addition to this electrical low-frequency stimulation, mechanical stimulation that strikes and vibrates the skin is applied to the subcutaneous tissue and muscles to loosen the subcutaneous tissue and muscles and improve blood circulation, and muscle exercise by electrical low-frequency stimulation I was relieved of the fatigue.
[0003]
For example, JP-A-4-31472 and JP-A-62-232973 disclose a pulse transmission conductor for applying electrical stimulation to a living body with a low-frequency stimulation pulse for the purpose of treating shoulder stiffness and beauty, There has been proposed a biostimulator provided with a stimulator for applying mechanical stimulation separately.
[0004]
These biostimulators strengthen muscles by forced muscle exercise with electrical low-frequency stimulation, improve blood circulation to the subcutaneous tissue and muscles, and promote metabolism to activate the epidermis. Electrical stimulation effects that improve the health of the subcutaneous tissue and muscles, improve the water retention capacity of the subcutaneous tissues and muscles, and increase the elasticity, and mechanical stimulation that strikes and vibrates the skin Both of the stimulating effects were realized at the same time with the mechanical stimulating effect to loosen the muscles and improve the blood circulation of the muscles by massage exercise.
[0005]
[Problems to be solved by the invention]
However, in the above-described conventional configuration, when a relaxation action is applied to a muscle by a loosening effect by mechanical stimulation during a contraction period of muscle movement by electrical low-frequency stimulation, muscle contraction movement is inhibited, There is a problem that the muscles cannot be effectively strengthened by the subcutaneous muscle exercise by the low frequency stimulation. Thus, the effect obtained even if electrical low-frequency stimulation is performed in the past has been suppressed. Especially in beauty equipment, how to efficiently exercise muscles in a short time to strengthen muscles under the skin. The important point was to make the skin elastic and firm.
[0006]
The present invention solves the above-described conventional problems, and an object thereof is to provide a biostimulator capable of effectively strengthening a muscle by muscle exercise and its metabolism.
[0007]
[Means for Solving the Problems]
The biostimulator according to the present invention is characterized in that no mechanical stimulation is given during the period of muscle contraction by electrical low-frequency stimulation.
[0008]
In this biostimulator, as a biostimulator that applies electrical low-frequency stimulation to the living body to forcibly move the muscle and mechanically stimulates the living body to loosen the muscle, During the muscle relaxation period after the muscle contraction period by the electrical low frequency stimulation It has a stimulus control means for controlling so as to give a mechanical stimulus to a living body. Specifically, the living body stimulation apparatus of the present invention is preferably connected to a stimulation signal generating means for generating a stimulation signal at a low frequency and the stimulation signal generating means, and outputs the stimulation signal to the living body to the living body. A stimulus signal transmission conductor that provides electrical low-frequency stimulation is provided, and a stimulator that provides mechanical stimulation to the living body and a vibration mechanism that vibrates the stimulator are provided.
[0009]
With this configuration, the mechanical stimulation tapping and vibration operations are not applied during electrical contraction muscle contraction due to low-frequency stimulation signals. It does not impede the contraction of the muscles by giving a relaxing action to the muscles due to the unraveling effect by mechanical stimulation, and the muscles can be strengthened effectively by the muscle movement. In addition, since the muscles are loosened by mechanical stimulation and the like, the circulation of the subcutaneous tissue and muscles is improved, so that the metabolism can be effectively performed and the muscle fatigue can be suppressed.
[0010]
Preferably, the stimulus control means in the living body stimulating device of the present invention controls to start applying mechanical stimulation to the living body during the muscle relaxation period after the muscle contraction period by electrical low frequency stimulation.
[0011]
With this configuration, mechanical stimulation begins to be applied to the living body during the period of muscle relaxation, improving the circulation of the subcutaneous tissue and muscles and effectively relaxing the muscles. Can be suppressed.
[0012]
Further preferably, in the living body stimulation apparatus of the present invention, the stimulation signal for applying electrical low frequency stimulation to the living body may be one pulse, or may be a pulse group composed of a plurality of stimulation pulses. In this case, the stimulation signal is adapted to contract and relax muscles for each pulse or pulse group.
[0013]
With this configuration, the higher the frequency of the stimulation signal, the stronger the muscle contraction strength and the higher the muscle exercise efficiency.
[0014]
Preferably, the stimulation signal transmission conductor and the stimulation body in the biological stimulation device of the present invention are integrally configured, and an electrical low-frequency stimulation and a mechanical stimulation can be applied to the living body via the stimulation body. Yes.
[0015]
With this configuration, an electrical low-frequency stimulus and a mechanical stimulus are applied from the same member to the subcutaneous muscle, etc., in an integrated configuration of the stimulus signal transmission conductor and the stimulator, so that the configuration is simple and handled. Easy to manage.
[0016]
Further, preferably, the stimulation signal transmission conductor in the living body stimulation apparatus of the present invention is provided with at least one set of an anode and a cathode.
[0017]
With this configuration, if at least one pair of stimulation signal transmission conductors is an anode and a cathode, it is possible to give a stimulation signal to each motor point between the anode and the cathode and perform muscle movement by electrical low frequency stimulation. Become.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the biological stimulation device according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments described below.
[0019]
(Embodiment 1)
FIG. 1 is a block diagram showing a control configuration of the biological stimulation device according to the first embodiment of the present invention, and FIG. 2 is a diagram showing muscle contraction and relaxation with respect to a stimulation pulse as seen from a contraction intensity curve. FIGS. 3A and 3B are time charts showing an example of the output timing of the stimulation pulse a1 for electrical stimulation and the driving pulse b1 for mechanical stimulation in the biological stimulation device of FIG.
[0020]
In FIG. 1, a power source means 1 such as a battery includes a stimulus control means 2 that controls each part, a rotation drive means 3 such as a motor, and a stimulus signal generation means 4 that generates a low-frequency stimulus pulse a1 shown in FIG. And DC power is supplied to them. Further, the stimulus control means 2 to which the operation means 5 is connected includes a rotation drive means 3 for driving the tapping mechanism section 6 and a stimulus signal generation means 4 connected to a set of pulse transmission conductors 7 for the anode and the cathode, respectively. And a low-frequency stimulation pulse a1 having a predetermined pulse width with a predetermined voltage is generated from the stimulation signal generating means 4 and output to a set of pulse transmission conductors 7 for electrical low-frequency stimulation to a living body. The muscle is forced to exercise and the striking mechanism 6 is driven by the rotational driving force of the rotational driving means 3 to mechanically stimulate the living body to loosen the subcutaneous muscle. The operation means 5 includes a power on / off key, a start key, an intensity setting key for electrical low frequency stimulation, an intensity setting key for mechanical stimulation, various drive program keys, and the like. The stimulus control means 2 is controlled by operation. Further, a stimulator 10 is detachably configured on the pulse transmission conductor 7, and the stimulator 10 is attached to the pulse transmission conductor 7 to be integrated, and electrical low frequency stimulation is performed via the stimulator 10. And mechanical stimulation can be applied to the living body.
[0021]
At this time, for example, the intensity control of the electrical low frequency stimulation is controlled by the stimulation control means 2 by varying the pulse width of the stimulation pulse a1 from the stimulation signal generation means 4 or the voltage value and current value of the stimulation pulse a1. Yes. In short, control is performed by limiting the maximum current to 1 mA so that there is no discomfort such as painful electrical stimulation. The limitation of 1 mA is performed by both a constant current diode (not shown) and an output stop circuit (not shown) that stops the pulse output when 1 mA is exceeded. When the intensity of the electrical low frequency stimulation is controlled by varying the voltage value or current value of the stimulation pulse a1, the pulse width of the low frequency stimulation pulse a1 is 0.4 msec, but from 0.1 msec to It may be 0.4 msec. The voltage value or current value of the stimulation pulse a is varied by amplifying the reference pulse by changing the gain of an operational amplifier (not shown). Further, the pulse width of the stimulation pulse a can be varied by a microcomputer. If the pulse width of the stimulation pulse a1 is smaller than 0.1 msec, sufficient stimulation cannot be given to the subcutaneous muscle. That is, it takes about 0.1 msec for the muscle to contract. In addition, if the pulse width of the stimulation pulse a1 exceeds 0.4 msec, depending on the user and the state of use, the stimulation to the subcutaneous muscles may become strong and feel painful or uncomfortable. . The stimulus control means 2 controls the stimulus signal generation means 4 to generate a low-frequency stimulus pulse a1, but the frequency of the stimulus pulse a1 is selected by a selection operation from the operation means 5. It is controlled or variably controlled.
[0022]
The mechanical stimulation is performed by supplying power to the rotation driving means 3 by the drive pulse b1, but the stimulation is performed by a hitting mechanism section such as an eccentric cam, which will be described later, by the rotation driving of the rotation driving means 3 such as a motor. The tip of the probe 9 swings and is struck through a stimulator 10 that presses against the skin, so that the subcutaneous tissue and muscles are loosened to promote blood circulation and muscle relaxation. In this case, the pulse width of the drive pulse b1 for supplying power to the rotation drive means 3 is set to a pulse width that causes an eccentric cam (described later) to rotate at least approximately one time via the motor rotation shaft of the rotation drive means 3 or the like. The stimulator 10 is configured to tap the skin only once to loosen the subcutaneous muscles. In this embodiment, this hitting operation is performed once after muscle relaxation, but may be performed a plurality of times continuously until the next low-frequency stimulation pulse a1 is output from the stimulation signal generating means 4. Further, the hitting operation may be a vibration operation that has an effect of relaxing muscles with a smaller amplitude and a higher frequency. Further, the intensity control of the mechanical stimulus can be controlled by varying the rotational speed of the rotation driving means 3 in the case of an eccentric cam described later.
[0023]
The power supply means 1, the stimulus control means 2, the stimulus signal generating means 4 and the operation means 5 are disposed in the apparatus main body 8, and the rotation driving means 3, the hitting mechanism portion 6 and a set of pulses of the anode and the cathode. The transmission conductor 7 is disposed on the stimulation probe 9, and the apparatus main body 8 and the stimulation probe 9 are connected by a four-core cable 11. This four-core cable 11 is configured in a spiral shape that can be expanded and contracted. The device main body 8 is placed on a desk or the like, and a grip portion (to be described later) of the stimulation probe 9 is gripped by hand to form a set of pulse transmission conductors 7. For example, by applying a stimulation pulse a1 between a set of pulse transmission conductors 7 by pressing on the target skin such as the eyes, electrical low-frequency stimulation is applied to the skin tissue and muscles for muscle movement and metabolism. It is supposed to be done.
[0024]
Here, the power supply timing to the rotation driving means 3 for driving the hitting mechanism unit 6 with respect to the timing of the muscular motion by the electrical low frequency stimulation will be described in detail below.
[0025]
In the muscle movement by the electrical low frequency stimulation of the stimulation pulse a1, as shown in FIG. 2, the muscle contraction intensity curve indicating the contraction and relaxation state of the muscle is obtained when one pulse of the stimulation pulse a1 is applied to the muscle. The muscle begins to contract by delaying by a predetermined time. The muscle contraction intensity reaches a peak by a time of about 50 msec after the stimulation pulse a1 is applied to the muscle, and then the muscle starts to relax. In addition, the relaxation of the muscle is completed in about 120 msec after the stimulation pulse a1 is given to the muscle. In this case, the muscle contraction period is a period of about 50 msec after the stimulation pulse a1 is given to the muscle, and the muscle relaxation period is a period of about 70 msec that follows. In this way, every time a continuous low-frequency stimulation pulse a1 is applied to the muscle, the muscle contraction and relaxation reactions are repeated. On the other hand, when a mechanical stimulus, such as a tapping stimulus or a vibration stimulus, is given to the living body, the subcutaneous muscles improve blood circulation and are loosened, and also have a relaxing action.
[0026]
Therefore, if the muscles are relaxed by mechanical relaxation during the contraction period of the muscle movement by electrical low-frequency stimulation, the muscle contraction movement is inhibited and the muscle strengthening effect is suppressed. The control means 2 sets the power supply timing to the rotation driving means 3 for driving the hitting mechanism section 6 after the timing when the muscle starts to relax after the muscle contraction by the stimulation pulse a1 output from the stimulation signal generating means 4 ends. It is designed to control as much as possible. Specifically, in the present embodiment, as shown in FIG. 3, driving for supplying power to the rotational driving means 3 such as a motor 50 msec after the low-frequency stimulation pulse a <b> 1 is output from the stimulation signal generating means 4. The pulse b1 is output. If it is 50 msec after the stimulation pulse a1 is output, as shown in FIG. 2, it is during the muscle relaxation period after the muscle contraction period by the stimulation pulse a1. In the present embodiment, both the stimulation pulse a1 and the drive pulse b1 are one pulse.
[0027]
4A is a longitudinal sectional view showing the configuration of the stimulation probe 9 in the biological stimulation apparatus of FIG. 1, and FIG. 4B is a sectional view taken along line AA in FIG.
[0028]
In FIG. 4A, the stimulation probe 9 of this living body stimulation apparatus also serves as the grip portion 22 with an outer wall member 21 that is an upper plastic cover member and a substantially elliptical cross section that is a lower plastic cover member. The outer wall member 23 is connected so as to be swingable with a connecting member 24 made of an elastic body such as rubber. These outer wall members 21 and 23 are each configured in a housing shape that is divided so as to open in the vertical direction, and these divided housing-like outer wall members 21 pass through through holes 21a and are not shown screws and nuts. It can be fixed from both sides. Similarly, these divided housing-like outer wall members 23 are configured to be fixed from both sides with screws and nuts (not shown) through the through holes 23a. Of course, these screws and nuts (not shown) enter the recesses of the outer wall members 21 and 23 and do not come out of the outer wall surfaces of the outer wall members 21 and 23. Moreover, the connection member 24 is comprised by the cylinder shape which has a through-hole up and down in the center part, and the external shape is a cross-sectional substantially ellipse shape similar to the outer wall members 21 and 23. As shown in FIG. Further, on the outer peripheral portion of the connecting member 24, groove portions 24a and 24b are formed in the upper and lower positions, respectively, so that the flange portions 21b and 23b of the outer wall members 21 and 23 can be fitted over the outer periphery.
[0029]
In this lower outer wall member 23, a four-core cable 11 of a driving pulse b <b> 1 for mechanical stimulation and a stimulation pulse a <b> 1 for electrical stimulation is drawn from the lower end thereof, and the four-core cable 11. And a motor 26 as a rotational drive means 3 for rotating the motor rotating shaft 25 extending upward. Further, in the upper outer wall member 21, a rotating shaft 28 connected via a connecting member 27 made of an elastic body that transmits the rotating force of the rotating shaft 25 of the motor 26, and the rotating shaft 28 are rotatable. The bearing members 29 that are pivotally supported at two locations, and the rotating shafts 28 between these bearing members 29 are attached so as to pass through in an eccentric state as shown in FIG. Are connected to an eccentric cam 30 that is an eccentric weight that swings the pulse transmission conductor 7 together with the outer wall member 21 by the centrifugal force generated by the rotation, and the remaining two lead wires for stimulation pulses of the four-core cable 11. A pair of an anode and a cathode, which is disposed so as to protrude outside at two positions with a predetermined interval in the longitudinal direction of the probe 9 and in which a mounting hole 31 for a stimulator having an open protruding tip is formed. The pulse transmission conductor 7 is disposed. In this embodiment, the tip end portion 32 of the cotton swab is inserted into the attachment hole 31 of the pulse transmission conductor 7 in a state of containing moisture, and can be attached. The tapping mechanism 6 is constituted by the rotating shaft 28, each bearing member 29 and the eccentric cam 30, and the eccentric cam 30 is caused by the centrifugal force by the rotation of the eccentric cam 30 attached to the rotating shaft 28 in an eccentric state. At the same time, the outer wall member 21 and the pulse transmission conductor 7 are swung around the distal end portion of the stimulation probe 9 with the connecting member 24 as a boundary, and a cotton swab distal end portion 32 attached to the pulse transmission conductor 7 is struck against a subcutaneous muscle or the like. Is configured to give.
[0030]
The operation of the above configuration will be described below.
[0031]
Many people in their 40s who feel old are wrinkles and sagging in their eyes, and the cause of the wrinkles and sagging is that the muscles under the skin weaken. Here, the muscles around the eyes and the frontal muscle of the forehead that lifts the eyelid muscles are subjected to electrical low-frequency stimulation treatment and mechanical stimulation treatment to strengthen the muscles and improve their metabolism. The case where wrinkles and sagging in the eyes are prevented by aiming at the above will be described.
[0032]
First, the tip end portions 32 of water swabs are respectively inserted and set in the mounting holes 31 of the two pulse transmission conductors 7 of the stimulation probe 9 in FIG. As described above, the water is contained in the tip end portion 32 of the cotton swab as the stimulator 10 in order to transmit the stimulation pulse a1 output to both pulse transmission conductors 7 to the living body through the tip end portion 32 of the cotton swab.
[0033]
Next, the anode and cathode swab tip portions 32 are pressed against the skin of the eyes, and electrical low-frequency stimulation processing and mechanical stimulation processing are performed via the both swab tip portions 32.
[0034]
FIG. 5 is a diagram showing an example of stimulation points for applying electrical stimulation and mechanical stimulation to the muscle of the eye with the stimulation probe 9 in FIG. 4A. These stimulation points (● is a cathode position and ○ is an anode). Position) is a stimulation position called a motor point that can move the muscles efficiently.
[0035]
First, each cotton swab tip 32 is pressed against the skin position of the eye shown in X (1) of FIG. 5 and the start key of the operating means 5 of the apparatus body 8 is pressed. Gradually increase the intensity of the stimulus and set it at a moderate stimulus intensity. Thereafter, each appropriate swab tip 32 is pressed against the skin position of the eye shown in X (1) to X (6) of FIG. 5 at appropriate intervals, and the muscles of the eye are electrically stimulated by the low-frequency stimulation pulse a1. In the subsequent period of muscle relaxation, mechanical stimulation is repeatedly performed to loosen the subcutaneous muscles by performing a tapping operation through the tip 32 of each swab pressed against the skin.
[0036]
At this time, the stimulus control means 2 generates a low frequency pulse of a predetermined frequency (5 Hz in the present embodiment) to the stimulus signal generation means 4 based on the operation content such as the stimulus intensity from the operation means 5, and moisture is supplied. The contraction motion is forcibly caused to occur in the subcutaneous muscle of the eye portion at a predetermined position through each of the included swab tip portions 32. The stimulus control means 2 outputs the drive pulse b1 to the motor 26 when the muscle relaxation exercise after the muscle contraction exercise starts, here, 50 msec after the output time of the low frequency stimulus pulse a1. The rotation shaft 25 of the motor 26 is rotated by the drive pulse b1, and the eccentric cam 30 that is an eccentric weight rotates. The distal end portion of the stimulation probe 9 is swung around the connecting member 24 made of an elastic body of the stimulation probe 9 by the centrifugal force due to the eccentric rotation of the center of gravity of the eccentric cam 30 constituting the hitting mechanism portion 6. Swing. By this swinging, a hitting operation is performed on the skin of the eye portion at a predetermined position via each tip end portion 32 of each cotton swab to loosen the subcutaneous tissue and muscles and improve blood circulation.
[0037]
Thus, the low-frequency stimulation pulse a1 is output from the stimulation signal generating means 4, and the drive pulse b1 is supplied to the motor 26 after 50 msec from the pulse output. The pulse transmission conductor 7 and the cotton swab tips 32 are used to apply electrical low-frequency stimulation to the subcutaneous muscles while the cotton swab tips 32 are pressed against each other to cause muscle contraction, and the muscles after 50 msec. During the period when the relaxation starts, power is supplied to the motor 26, and the distal end portion of the stimulation probe 9 is swung by the centrifugal force of the eccentric cam 30 by the rotational drive, and the tip portion 32 of each cotton swab strikes the skin. , Muscles are relaxed and muscle relaxation is promoted. In this case, since the power supply timing to the motor 26 is the timing when the muscle contraction due to the low frequency stimulation pulse a1 from the stimulation signal generating means 4 starts to relax, the tip of each swab tip 32 applies to the actual skin. Although the tapping operation is further delayed, it is performed during the muscle relaxation period, and this tapping operation is not reliably performed during the muscle contraction period.
[0038]
As a result, electrical low frequency stimulation is applied to the muscles under the skin while the low frequency stimulation pulse a1 is pressing each cotton swab tip 32 through the pulse transmission conductor 7 and the cotton swab tip 32. When muscle contraction occurs and muscle relaxation after 50 msec has started, power is supplied to the motor 7 and the distal end of the stimulation probe 9 swings due to the centrifugal force of the eccentric cam 30 driven by the rotation. When the tip of each swab 32 hits the skin, the muscles are loosened to improve blood circulation and promote relaxation of the muscles.
[0039]
Accordingly, the stimulus control means 2 outputs the drive pulse b1 to the rotation drive means 3 during the muscle contraction of the electrical low frequency stimulation by the stimulus pulse a1 supplied from the stimulus signal generating means 4 and the pulse transmission conductor 7. First, during the subsequent muscle relaxation period, the drive pulse b1 to the rotation driving means 3 is output and the mechanical stimulation by the hitting mechanism unit 6 is controlled to be applied to the subcutaneous muscle. During muscle contraction during low-frequency stimulation, the muscles are not relaxed due to the relaxation effect of mechanical stimulation and the muscle contraction is not inhibited. In addition to being able to improve the circulation of the subcutaneous tissue and muscles and effectively metabolize the muscles by the mechanical relaxation effect of the mechanical stimulation during the muscle relaxation period, It is possible to perform the relaxation of muscles effectively.
[0040]
(Embodiment 2)
The period during which the muscle contracts and relaxes must be at least about 100 msec. In this period, the frequency of the stimulation pulse is 10 Hz. In the first embodiment, the case where the frequency of the stimulation pulse a1 is a low frequency stimulation of 5 Hz, which is 10 Hz or less, is described as an example. A case of high frequency stimulation with a frequency of 20 Hz or more will be described as an example.
[0041]
FIGS. 6A and 6B are time charts showing an example of output timings of the stimulation pulse a2 for electrical low frequency stimulation and the driving pulse b2 for mechanical stimulation in the biological stimulation apparatus according to the second embodiment of the present invention. The members having the same functions and effects as those of the members of the biological stimulation device according to the first embodiment of FIGS. 1 to 4 are denoted by the same reference numerals, and the description thereof is omitted.
[0042]
As shown in FIG. 6A and FIG. 6B, the stimulation pulse in the electrical low-frequency stimulation has an output period of the stimulation pulse group a2 whose frequency is 20 Hz and a period in which no pulse is output alternately every 1 sec. It is repeated to exist. Further, the drive pulse b2 to the motor 26 is output within a period in which the stimulation pulse for electrical low frequency stimulation is not output, and the rising time point is 50 msec after the falling time point of the stimulation pulse group a2. In addition, the drive pulse b2 is applied to the motor 26 so that the electrical low-frequency stimulus and the mechanical stimulus do not overlap in time between the falling point and the rising point of the next stimulation pulse group a2. It is necessary at least for the time required for the eccentric cam 30 to rotate and tap the skin through each swab tip 32 as input.
[0043]
In the case of high-frequency stimulation with the stimulation pulse group a2 having a stimulation pulse frequency of 20 Hz or more, the subcutaneous muscle that has received the electrical stimulation receives electrical stimulation with the first stimulation pulse of the stimulation pulse group a2. However, before the muscle relaxes, the muscle is further contracted because the electrical stimulation by the next stimulation pulse is applied to the muscle. For this reason, the muscle contracts more strongly, and this muscle contraction state is maintained during the stimulation pulse group a2. As described above, strong muscle contraction is caused by the strong electrical stimulation by the stimulation pulse group a2, so that the muscle relaxation after the strong muscle contraction is longer than the time required for the muscle relaxation after the muscle contraction by the one pulse stimulation pulse. Will be required. Therefore, as shown in FIG. 6, the period during which the stimulation pulse group a2 having a frequency of 20 Hz is not output is set longer. Here, by forcing the pulse output of the stimulation pulse group a2 on and off every 1 sec, the muscle contraction and relaxation are repeated to perform forced muscle exercise.
[0044]
In the second embodiment, the case of high-frequency stimulation using the stimulation pulse group a2 having a frequency of 20 Hz has been described. In FIG. 7, a stimulation pulse group having a frequency of 80 Hz, a stimulation pulse group having a frequency of 100 Hz, and a stimulation having a frequency of 120 Hz are illustrated. Like the pulse group, the higher the frequency of the stimulation pulse constituting the stimulation pulse group, the stronger the muscle contraction strength and the shorter the time required for muscle contraction. Thus, the stronger the muscle contraction strength, the longer the time required for muscle relaxation after muscle contraction.
[0045]
In the first and second embodiments, the pulse transmission conductor 7 and the stimulator 10 are integrally configured, and an electrical low-frequency stimulus and a mechanical stimulus can be applied to the living body via the stimulator 10. However, the pulse transmission conductor 7 and the stimulator 10 may be configured separately and independently.
[0046]
Further, in the first and second embodiments, only one set of the pulse transmission conductor 7 for the cathode and the pulse transmission conductor 7 for the anode is provided, but two or more sets of each of the pulse transmission conductors 7 for the anode and the cathode are provided. Alternatively, one set or two or more sets of pulse transmission conductors in which the pulse transmission conductor 7 for the cathode, the pulse transmission conductor 7 for the anode, and the pulse transmission conductor 7 for the cathode are arranged may be provided.
[0047]
【The invention's effect】
As described above, according to the first and second aspects, the mechanical stimulation tapping operation and the vibration operation are not given during the electrical contraction muscle contraction by the low frequency stimulation signal. It is possible to effectively strengthen muscles by muscular exercise without giving a relaxing action by stimulation. In addition, the muscle loosening effect of the mechanical stimulation beating action improves the circulation of the subcutaneous tissue and muscle, so that metabolism can be effectively performed and muscle fatigue can be suppressed.
[0048]
According to claim 3, since mechanical stimulation is started to be given to the living body during the muscle relaxation period, the blood circulation of the subcutaneous tissue and muscles can be improved and the muscle relaxation action can be effectively performed. Can be performed more speedily and muscle fatigue can be suppressed.
[0049]
Furthermore, according to the fourth and fifth aspects, the higher the frequency of the stimulation signal, the stronger the muscle contraction strength and the higher the muscle exercise efficiency.
[0050]
Further, according to the sixth aspect, since the electrical low frequency stimulation and the mechanical stimulation are applied to the subcutaneous muscle from the same member by the integrated configuration of the stimulation signal transmission conductor and the stimulation body, the configuration is simple. Yes, it is easy to handle and manage.
[0051]
Further, according to claim 7, if at least one pair of stimulation signal transmission conductors is an anode and a cathode, a stimulation signal is given to each motor point between the anode and the cathode to perform muscle movement by electrical low frequency stimulation. It can be carried out.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a control configuration of a biological stimulation apparatus according to a first embodiment of the present invention.
FIG. 2 is a diagram showing muscle contraction and relaxation with respect to a stimulation pulse as a contraction intensity curve.
FIGS. 3A and 3B are time charts showing examples of output timings of an electrical stimulation pulse a1 and a mechanical stimulation pulse b1 in the biological stimulation apparatus of FIG.
4 is a longitudinal sectional view showing the configuration of the stimulation probe of FIG. 1. FIG.
FIG. 5 is a diagram illustrating an example of stimulation points for stimulating muscles of the eyes with the stimulation probe of FIG. 1;
FIGS. 6A and 6B are time charts showing examples of output timings of a stimulation pulse a2 for electrical low frequency stimulation and a driving pulse b2 for mechanical stimulation in the biological stimulation apparatus according to the second embodiment of the present invention. It is.
FIG. 7 is a diagram showing a muscle contraction intensity curve when the frequency of a stimulation pulse is used as a parameter.
[Explanation of symbols]
1 Power supply means
2 Stimulation control means
3 Rotation drive means
4 Stimulus signal generation means
5 Operating means
6 Tapping mechanism
7 Pulse transmission conductor
8 Device body
9 Stimulation probe
10 Stimulator
11 4-core cable
21, 23 Outer wall member
22 Grip part
24 connecting member
25 Motor rotating shaft
26 Motor
27 Connecting member
28 Rotating shaft
29 Bearing member
30 Eccentric cam
31 Mounting hole
32 Cotton swab tip

Claims (7)

生体に電気的低周波刺激を与える電気的低周波刺激処理と、生体に機械的刺激を与える機械的刺激処理とを行う生体刺激装置において、
前記電気的低周波刺激による筋肉収縮期間後の筋肉弛緩期間中に生体に機械的刺激を与えるように制御する刺激制御手段を有することを特徴とする生体刺激装置。
In a biological stimulation apparatus that performs electrical low-frequency stimulation processing that gives electrical low-frequency stimulation to a living body and mechanical stimulation processing that gives mechanical stimulation to a living body,
A biostimulation apparatus, comprising: a stimulation control unit that performs control so as to apply mechanical stimulation to a living body during a muscle relaxation period after a muscle contraction period by the electrical low-frequency stimulation .
刺激信号を低周波で発生させる刺激信号発生手段と、この刺激信号発生手段に接続され、前記刺激信号を生体に出力して生体に電気的低周波刺激を与える刺激信号伝達導子とが設けられていると共に、
生体に機械的刺激を与える刺激体と、この刺激体を振動させる振動機構部とが設けられたことを特徴とする請求項1記載の生体刺激装置。
There is provided a stimulation signal generating means for generating a stimulation signal at a low frequency, and a stimulation signal transmitting conductor connected to the stimulation signal generating means and outputting the stimulation signal to a living body to give an electrical low frequency stimulation to the living body. And
The living body stimulation apparatus according to claim 1, further comprising a stimulating body that gives mechanical stimulation to the living body and a vibration mechanism unit that vibrates the stimulating body.
前記刺激制御手段は、前記電気的低周波刺激による筋肉収縮期間後の筋肉弛緩期間中に生体に機械的刺激を与え始めるように制御することを特徴とする請求項1または2に記載の生体刺激装置。  The biostimulation according to claim 1 or 2, wherein the stimulation control means performs control so that mechanical stimulation is started to be applied to the living body during a muscle relaxation period after a muscle contraction period by the electrical low frequency stimulation. apparatus. 前記電気的低周波刺激を生体に与える刺激信号は、1パルス毎に筋肉収縮および弛緩させる構成であることを特徴とする請求項1〜3の何れかに記載の生体刺激装置。  The biostimulation apparatus according to any one of claims 1 to 3, wherein the stimulation signal that gives the electrical low-frequency stimulation to the living body is configured to contract and relax muscles for each pulse. 前記電気的低周波刺激を生体に与える刺激信号は、複数の刺激パルスよりなるパルス群毎に筋肉収縮および弛緩させる構成であることを特徴とする請求項1〜3の何れかに記載の生体刺激装置。  The biostimulation according to any one of claims 1 to 3, wherein the stimulation signal that gives the electrical low-frequency stimulation to the living body is configured to contract and relax muscles for each pulse group including a plurality of stimulation pulses. apparatus. 前記刺激信号伝達導子と刺激体とが一体的に構成され、この刺激体を介して電気的低周波刺激と機械的刺激が生体に付与可能に構成されていることを特徴とする請求項2に記載の生体刺激装置。  3. The stimulation signal transmission conductor and a stimulator are integrally configured, and an electrical low-frequency stimulus and a mechanical stimulus are configured to be applied to a living body via the stimulator. The biostimulator according to 1. 前記刺激信号伝達導子は少なくとも陽極と陰極の1組設けられていることを特徴とする請求項2に記載の生体刺激装置。  The living body stimulation apparatus according to claim 2, wherein the stimulation signal transmission conductor is provided with at least one set of an anode and a cathode.
JP10500197A 1997-04-22 1997-04-22 Biological stimulator Expired - Fee Related JP3736023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10500197A JP3736023B2 (en) 1997-04-22 1997-04-22 Biological stimulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10500197A JP3736023B2 (en) 1997-04-22 1997-04-22 Biological stimulator

Publications (2)

Publication Number Publication Date
JPH10295835A JPH10295835A (en) 1998-11-10
JP3736023B2 true JP3736023B2 (en) 2006-01-18

Family

ID=14395857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10500197A Expired - Fee Related JP3736023B2 (en) 1997-04-22 1997-04-22 Biological stimulator

Country Status (1)

Country Link
JP (1) JP3736023B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013116271A (en) * 2011-12-05 2013-06-13 Star Avenue:Kk Facial instrument
JP2013180152A (en) * 2012-03-05 2013-09-12 Hitachi Maxell Ltd Beauty appliance
JP2013183891A (en) * 2012-03-08 2013-09-19 Hitachi Maxell Ltd Beauty appliance
JP2013198552A (en) * 2012-03-23 2013-10-03 Hitachi Maxell Ltd Cosmetic instrument
JPWO2019155631A1 (en) * 2018-02-09 2021-01-07 正弘 内池 Beauty Equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013116271A (en) * 2011-12-05 2013-06-13 Star Avenue:Kk Facial instrument
JP2013180152A (en) * 2012-03-05 2013-09-12 Hitachi Maxell Ltd Beauty appliance
JP2013183891A (en) * 2012-03-08 2013-09-19 Hitachi Maxell Ltd Beauty appliance
JP2013198552A (en) * 2012-03-23 2013-10-03 Hitachi Maxell Ltd Cosmetic instrument
JPWO2019155631A1 (en) * 2018-02-09 2021-01-07 正弘 内池 Beauty Equipment

Also Published As

Publication number Publication date
JPH10295835A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
US10406065B2 (en) Device for delivery of resonant frequencies to treated muscles
US5707346A (en) System and method for performing soft tissue massage therapy
US8914123B2 (en) Apparatus for electro-inhibition of facial muscles
JP5916362B2 (en) Facial massager
US7909785B2 (en) Method and apparatus for improving local blood and lymph circulation using low and high frequency vibration sweeps
JP2009517176A (en) Power stimulator
JP2009538173A (en) Method and device for increasing blood flow
KR20130095146A (en) Fes using visible light and vibration stimulation
JP3736023B2 (en) Biological stimulator
EP2298267A1 (en) Device for preventing skin sag and wrinkles
CN210078267U (en) Handheld deep muscle vibration stimulation instrument
JP2005245585A (en) Electric stimulation apparatus for facial massage
CN210078268U (en) Deep muscle vibration stimulation instrument
RU195780U1 (en) BIOMECHANICAL STIMULANT
CN206473530U (en) Massage care device
JPH10295834A (en) Living body stimulation system
Murphy Electrical Physical Therapy in Treating TMJ Patients: Basic Theories
JPH10295826A (en) Living body stimulation system
KR20090001456U (en) Multiple Purpose Laser comb
JPH1189945A (en) Organism stimulating device
JPH10295832A (en) Living body stimulation system and living body stimulation method
JP2001340415A (en) Health and beauty promoting apparatus
KR100406085B1 (en) Handy skin massager
US9616217B1 (en) Method of applying electrotherapy to facial muscles
CN109620679A (en) A kind of vibromassage formula yoga column

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees