JP3735604B2 - Superconducting element manufacturing method - Google Patents

Superconducting element manufacturing method Download PDF

Info

Publication number
JP3735604B2
JP3735604B2 JP2002381221A JP2002381221A JP3735604B2 JP 3735604 B2 JP3735604 B2 JP 3735604B2 JP 2002381221 A JP2002381221 A JP 2002381221A JP 2002381221 A JP2002381221 A JP 2002381221A JP 3735604 B2 JP3735604 B2 JP 3735604B2
Authority
JP
Japan
Prior art keywords
thin film
electrode layer
layer
lower electrode
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002381221A
Other languages
Japanese (ja)
Other versions
JP2004214367A (en
Inventor
弘 勝野
二朗 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
International Superconductivity Technology Center
Original Assignee
Toshiba Corp
International Superconductivity Technology Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, International Superconductivity Technology Center filed Critical Toshiba Corp
Priority to JP2002381221A priority Critical patent/JP3735604B2/en
Publication of JP2004214367A publication Critical patent/JP2004214367A/en
Application granted granted Critical
Publication of JP3735604B2 publication Critical patent/JP3735604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超電導素子の製造方法に関する。
【0002】
【従来の技術】
超電導体を用いたデジタル情報処理デバイスは超高速動作、超低消費電力などの優れた特性を備えている。単一磁束量子素子は、複雑な処理を行える集積回路を実現できることが、半導体以外で唯一実証されている素子である。将来予想される電力需要増加の点からも、サーバ、メインフレーム、ルータ、通信基地局用フィルタなど、超電導への代替が要求されている機器は幅広い。特に、高温超電導体は低温超電導体と比較して冷却コストの面から優位に立っている。ただ、高温超電導体は接合特性のばらつきが悪く、このばらつきを押さえることが至上命題となっている。ここ最近の研究結果から、試料表面の粗さや組成がずれることにより析出した異相析出物の量などで表される試料の表面性が、接合特性のばらつきに顕著な影響を及ぼしていることがわかってきた(たとえば非特許文献1参照)。
【0003】
この解決方法として以下のような方法が実施されている。たとえば、表面処理方法として、粒径0.03μmのアルミナを用いた機械研磨によって試料表面を削る方法(たとえば非特許文献2参照)や、試料を所望の膜厚よりも厚く積層してイオンミリングによって試料表面を削る方法などが実施されている。また、異相の析出を抑制することが可能な固溶系物質を用いることによって、析出物密度を減少させる方法も広く採用され始めた。
【0004】
現在、高温超電導体で主流となっている接合は、イオンミリング処理によってランプエッジ形状を加工した際に生成される主に希土類元素から構成されるアモルファス層をバリア層として用いる界面改質型接合である(たとえば非特許文献3参照)。基板上に超電導薄膜(下部電極層)および絶縁性酸化物薄膜を積層した試料に対してイオンミリング処理を施した後、その上に超電導薄膜(上部電極層)を積層することによって作製する。素子や各超電導薄膜の特性の設計値は、磁束量子が満たすべき式Φ0=LIc、超電導配線のインダクタンスの下限、回路動作温度(30K〜40K)における熱雑音などの制約から決定される。高速動作や回路動作マージンを得るには各電極層のインダクタンスLを小さくする必要があるため、各超電導薄膜はc軸配向成長させている。c軸配向膜は成膜基板温度が高い温度領域で得られるが、回路動作に適した接合特性は低温領域でしか得られない。そのため、低温領域におけるa軸混入率の抑制が回路作製には重要な要素となり、a軸混入率の抑制が求められていた。
【0005】
【非特許文献1】
H. Katsuno, S. Inoue, T. Nagano, and J. Yoshida, "Characteristics of interface-engineered Josephson junctions using a YbBa2Cu3Oy counterelectrode layer," Appl. Phys. Lett., vol. 79, pp. 4189-4191, December 2001.
【0006】
【非特許文献2】
T. Hato, Y. Ishimaru, H. Aso, A. Yoshida, and N. Yokoyama, "Leveling Technique for High Tc Superconducting Films and Circuits," Advances in Superconductivity, pp. 1008-1010, 1999. [Proceedings of the 12th International Symposium on Superconductivity 1999]
【0007】
【非特許文献3】
B. H. Moeckly, and K. Char, "Properties of interface-engineered high Tc Josephson junctions," Appl. Phys. Lett. vol. 71, pp. 2526-2528, October 1997.
【0008】
【発明が解決しようとする課題】
本発明の目的は、低温領域におけるa軸の混入を抑制し、良好な特性を有する超電導素子の製造できる方法を提供する。
【0009】
【課題を解決するための手段】
本発明の一態様に係る超電導素子の製造方法は、酸化物超電導薄膜で形成された下部電極層と絶縁性酸化物薄膜とを積層する工程と、前記下部電極層と絶縁性酸化物薄膜との積層膜を、希ガスを用いたイオンミリングにより加工するとともに、下部電極層の加工端面にアモルファス層を形成する工程と、前記加工した積層膜をハロゲン系ガスまたは還元ガスの活性種の雰囲気にさらし、前記絶縁性酸化物薄膜の表面を清浄化する工程と、前記積層膜を酸素雰囲気中で加熱することにより、前記下部電極層の加工端面のアモルファス層を結晶化させてバリア層を形成する工程と、前記積層膜上に酸化物超電導薄膜で形成された上部電極層を積層する工程とを有する。
【0010】
【発明の実施の形態】
以下、本発明の実施形態を説明する。
本発明の実施形態に係る方法により製造される超電導素子は界面改質型接合を有し、酸化物超電導薄膜(下部電極層)と絶縁性酸化物薄膜の積層膜を、希ガスを用いたイオンミリングにより加工するとともに下部電極層の加工端面にアモルファス層を形成する工程と、下部電極層の加工端面のアモルファス層を結晶化させてバリア層を形成する工程と、積層膜上に酸化物超電導薄膜(上部電極層)を形成する工程を含む方法により製造される。
【0011】
したがって、この超電導素子は下部電極層/バリア層および絶縁性酸化物薄膜/上部電極層という3層構造を含む。接合構造は、ランプエッジ型でも積層接合型でもよい。基板上にグランドプレーンとなる酸化物超電導薄膜および絶縁性酸化物薄膜を積層した後、上述した下部電極層/バリア層および絶縁性酸化物薄膜/上部電極層の3層構造を形成してもよい。上部電極層上に、絶縁性酸化物薄膜や酸化物超電導薄膜を積層してもよい。また、上記の各層の間にバッファー層を設けてもよい。
【0012】
本発明者らは、イオンミリング処理を施した試料に積層された上部電極層は、イオンミリング処理を施していない試料に上部電極層と比較して、a軸混入率が1桁〜2桁増加していることがわかった。この原因を調べるために、イオンミリング処理を施したCaSnO3絶縁性酸化物薄膜の表面に対してXPSおよびRHEEDによって表面解析を行った。すると、表面にはCaO系アモルファス酸化物が生成されていることがわかった。このアモルファス酸化物をイオンミリングや機械研磨で取り除くことはできない。これは、バリア層がイオンミリング条件や水に対して極めて敏感なためである。
【0013】
この問題に対して、本発明者らは、ハロゲン系ガスまたは還元ガスの活性種の雰囲気にさらすことによって、下部電極層の加工端面に形成されている主に希土類元素から構成されるアモルファス層(バリア層)に影響を与えることなく、上記のアモルファス酸化物を選択的に除去でき絶縁性酸化物薄膜の表面を清浄化できることを見出し、本発明を完成させた。
【0014】
次に、本発明の実施形態に係る方法において用いられる材料および条件について説明する。
【0015】
酸化物超電導薄膜の材料としては、下記一般式
(L1(1-x)L2x)AE23y
(ここで、L1、L2はYおよびランタノイド金属からなる群より選ばれる少なくとも1種の金属を示し、AEはCa、BaおよびSrからなる群より選ばれる少なくとも1種の金属を示し、Mは80%以上のモル比でCuを含む金属を示し、yは6.0≦y≦7.5に示す関係を満足する)
で表されるものが用いられる。代表的な酸化物超電導体は、YBa2Cu3y、YbBa2Cu3yなどである。
【0016】
絶縁性酸化物薄膜の材料としては、下記一般式
AESnOyまたはAETiOy
(AEはアルカリ土類からなる群より選ばれる少なくとも1種の金属)
で表されるペロブスカイト型の酸化物が用いられる。代表的な絶縁性酸化物は、CaSnO3などである。
【0017】
酸化物超電導薄膜で形成された下部電極層と絶縁性酸化物薄膜との積層膜をイオンミリングにより加工する際には、Arなどの希ガスが用いられる。この工程により、下部電極層の加工端面に主に酸化物超電導薄膜の構成元素である希土類元素を含むアモルファス層(接合のバリア層として用いられる)が形成され、同時に絶縁性酸化物薄膜の表面に絶縁性酸化物薄膜の構成元素を含むアモルファス酸化物が形成される。また、基板の表面が加工されると、基板表面には基板の構成成分を含むアモルファス酸化物が形成される。
【0018】
本発明の実施形態に係る方法では、ハロゲン系ガスまたは還元ガスの活性種を用いて、イオンミリングにより加工された下部電極層と絶縁性酸化物薄膜の積層体の表面処理を行う。
【0019】
ハロゲン系ガスとしては、CF4,F2,CHxy,SF6,NF3,BF3,CBrF3,XeF2,SiF4,Cxy(F/C<4),CClxy,C2Clxy,CHxCly,SiCl4,PCl3,BCl3,Cl2,HClなどが用いられるが、これらに限定されない。ハロゲンは電気陰性度が高いため、反応の際にクーロン力が働き、反応物を薄膜表面から剥離させることができる。このため、アモルファス酸化物を効率よく除去することができる。酸化物超電導薄膜およびその加工端面のアモルファス膜は、ハロゲン系ガスの影響をほとんど受けない。
【0020】
還元ガスとしては、Bx2x+2、Bxx+4、Bxx+6、Cx2x-2、Cx2x、Cx2x+2、Nxx+2、Six2x+2、PH3、AsH3、Gex2x+2、H2S、HCN、CsH、HI、NHR1R2(R1、R2=Cxy)などが用いられるが、これらに限定されない。これらの還元ガスは、水素を効率よく発生するため、高い還元効率を示す。なお、還元ガスの使用により抜けた酸素は、最終工程の長時間アニールによって回復させることが可能である。
【0021】
反応性ガス(ハロゲン系ガスまたは還元ガス)を活性化させて活性種を発生させるには、2.45GHzの高周波によるプラズマ、13.56MHzを用いた誘導結合型プラズマ、ヘリコンプラズマ、通常のRFなどによるプラズマのエネルギーを用いることができる。また、光子エネルギー、熱エネルギーなどを用いて反応性ガスを活性化させてもよい。試料の温度は、室温から800℃の範囲で設定することができる。
【0022】
下部電極層の加工端面のアモルファス層を結晶化させてバリア層を形成するための、酸素雰囲気中でのアニールは600〜900℃の範囲で行われる。
【0023】
【実施例】
以下、図面を参照しながら、本発明の実施例を説明する。
図1は、以下の実施例において使用したECR型イオンエッチング装置の概略構成を示す断面図である。この装置は活性化室11と試料室12を有する。活性化室11には反応性ガスを活性化させるためのECRプラズマ源13が収納されている。試料室12には、試料(被処理体)20が固定される試料台14と、試料20を加熱するためのヒータ15が収納されている。このヒータ15により試料20は室温から900℃まで加熱されうる。活性化室11にはガス導入口16が、試料室12にはガス排気口17がそれぞれ設置されており、試料室12内を10-8Torr台まで真空排気することができる。たとえば活性化室11の真空度を10-3Torr、試料室12の真空度を10-4Torrに調整することによって、活性化された反応性ガスを比較的高圧の活性化室11から比較的低圧の試料室12へと供給することができる。
【0024】
(実施例1)
図2(a)〜(d)を参照して、ランプエッジ型接合を有する超電導素子の製造方法の一例を説明する。
まず、SrTiO3基板21上に、厚さ200nmのYBa2Cu3y下部電極層22および厚さ500nmのCaSnO3絶縁層23を積層する。CaSnO3絶縁層23上にフォトレジスト24のパターンを形成する。フォトレジスト24をマスクとしてArイオンを斜めに入射してイオンミリングを行い、CaSnO3絶縁層23を加工する(図2(a))。
【0025】
次に、フォトレジスト24を除去した後、Arイオンを垂直に入射してイオンミリングを行い、CaSnO3絶縁層23およびYBa2Cu3y下部電極層22を加工する。この工程により、下部電極層22の加工端面に主に酸化物超電導薄膜の構成元素である希土類元素を含むアモルファス層25が形成される。また、CaSnO3絶縁層23および基板21の表面に、CaO系またはSrO系のアモルファス酸化物26が形成される(図2(b))。
【0026】
この試料を図1に示した装置の試料台14上に設置する。ガス導入口16からCF4を導入し、ECRプラズマ源13に2.45GHzの高周波を印加すると、活性化室11内にプラズマが発生してCF4が活性化される。生成したCF4の活性種を試料室12内に導入して反応性エッチングを行い、アモルファス酸化物26を除去する(図2(c))。
【0027】
次いで、表面処理を行った試料に、酸素雰囲気中において680℃でアニール処理を施し、下部電極層22の表面に形成されたアモルファス層25を結晶化させてバリア層25’を形成する。最後に、YbBa2Cu3y上部電極層27を積層した後、パターニングする(図2(d))。
【0028】
上記の方法において、上部電極層27の成膜時に基板温度を様々に変化させ、上部電極層27のa軸混入率を調べた。その結果、回路動作に適した接合特性が得られる比較的低温領域(約650℃)では、a軸混入率1%以下のc軸配向膜が得られた。これは、下部電極層22と絶縁性酸化物層23との積層体にArイオンミリング処理を施していない場合と同様な結果であった。
【0029】
また、基板温度650℃で作製した100接合の電気特性を4.2Kにおいて調べた。図3に代表的な電気特性を示す。図3に示されるように、Ic=0.9mA、変調率90%以上、Ic値のばらつきが10%であり、良好な接合特性を示した。また、TcおよびJcは、下部電極層が80K、1×107A/cm2、上部電極層が85K、2×107A/cm2であり、いずれも良好な値を示した。
【0030】
次に、図2(b)および(c)のプロセス条件をいくつか変化させて、CaSnO3絶縁層の表面をXPSで観察した。具体的には、成膜したまま(as−depo)、成膜後に400WでArイオンを垂直入射してイオンミリングした場合、成膜後に800WでArイオンを垂直入射してイオンミリングした場合、成膜後に800WでArイオンを垂直入射してイオンミリングし、さらにCF4で表面処理した場合について、CaSnO3絶縁層表面のCa/Sn比を調べた。その結果を図4に示す。
【0031】
図4から以下のことがわかる。成膜したまま(as−depo)ではCa/Sn比が1であり、CaSnO3が観測されている。しかし、Arイオンミリングを施しただけでは、Ca/Sn比が1より大きくなり(Caリッチ)、CaOが生成していることがわかる。これに対して、Arイオンミリング後にCF4で表面処理した場合にはCa/Sn比が1に戻り、CaOが除去されて再びCaSnO3が観測されることがわかる。
【0032】
(実施例2)
図5(a)〜(d)に、下部電極層の下にグランドプレーンと絶縁層を形成したランプエッジ型接合を有する超電導素子の製造方法を示す。
まず、SrTiO3基板21上に、YBa2Cu3yグランドプレーン31およびCaSnO3絶縁層32を積層する。その後は、実施例1と全く同様な工程を行う。すなわち、下部電極層22、絶縁層23、フォトレジスト24を形成し、Arイオンミリングにより絶縁層23を加工する(図5(a))。フォトレジスト24を除去した後、Arイオンミリングを行い、絶縁層23および下部電極層22を加工する。このとき、下部電極層22の加工端面にアモルファス層25が、絶縁層(CaSnO3)表面にアモルファス酸化物26が形成される(図5(b))。CF4の活性種による反応性エッチングを行い、絶縁層23表面のアモルファス酸化物26を除去する(図5(c))。酸素雰囲気中においてアニール処理を施し、アモルファス層25を結晶化させてバリア層25’を形成し、上部電極層27を積層した後、パターニングする(図5(d))。この場合にも実施例1と同様の効果が得られる。
【0033】
(実施例3)
図6(a)〜(d)に、積層型接合を有する超電導素子の製造方法を示す。
まず、SrTiO3基板21上に、下部電極層22、絶縁層23、フォトレジスト24を形成し、Arイオンミリングによりフォトレジスト24に囲まれた領域の絶縁層23を加工する(図6(a))。フォトレジスト24を除去した後、Arイオンミリングを行い、絶縁層23を下部電極層22が露出するまで加工する。このとき、下部電極層22の露出面にアモルファス層25が、絶縁層23表面にアモルファス酸化物26が形成される(図6(b))。CF4の活性種による反応性エッチングを行い、絶縁層23表面のアモルファス酸化物26を除去する(図6(c))。酸素雰囲気中においてアニール処理を施し、アモルファス層25を結晶化させてバリア層25’を形成し、上部電極層27を積層した後、パターニングして積層型接合を形成する(図6(d))。この場合にも実施例1と同様の効果が得られる。
【0034】
【発明の効果】
以上詳述したように本発明によれば、界面改質型接合のバリア層となる主に希土類元素から構成されるアモルファス層に影響を与えることなく、希ガスを用いたイオンミリングにより加工された絶縁性酸化物薄膜の表面に生成したアモルファス酸化物を選択的に除去でき、良好な特性を有する超電導素子を製造できる。
【図面の簡単な説明】
【図1】ECR型イオンエッチング装置の概略構成を示す断面図。
【図2】実施例1におけるランプエッジ型接合を有する超電導素子の製造方法を示す断面図。
【図3】実施例1において製造された超電導素子の電気特性を示す図。
【図4】CaSnO3絶縁層表面のCa/Sn組成比のプロセス条件依存性を示す図。
【図5】実施例2におけるランプエッジ型接合を有する超電導素子の製造方法を示す断面図。
【図6】実施例3における積層型接合を有する超電導素子の製造方法を示す断面図。
【符号の説明】
11…活性化室、12…試料室、13…ECRプラズマ源、14…試料台、
15…ヒータ、16…ガス導入口、17…ガス排気口、20…試料、
21…SrTiO3基板、22…下部電極層、23…絶縁層、
24…フォトレジスト、25…アモルファス層、25’…バリア層、
26…アモルファス酸化物、27…上部電極層、
31…グランドプレーン、32…絶縁層。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a superconducting element.
[0002]
[Prior art]
Digital information processing devices using superconductors have excellent characteristics such as ultra-high-speed operation and ultra-low power consumption. The single flux quantum device is the only device other than a semiconductor that has been proved to be capable of realizing an integrated circuit capable of performing complicated processing. In view of the expected increase in power demand in the future, there are a wide range of devices that are required to replace superconductivity, such as servers, mainframes, routers, and filters for communication base stations. In particular, the high temperature superconductor is superior from the low temperature superconductor in terms of cooling cost. However, high-temperature superconductors have a poor variation in bonding characteristics, and it is extremely important to suppress this variation. From recent research results, it has been found that the surface properties of samples expressed by the amount of heterogeneous precipitates deposited due to deviations in the roughness and composition of the sample surface have a significant effect on the dispersion of bonding characteristics. (For example, see Non-Patent Document 1).
[0003]
As a solution to this problem, the following method has been implemented. For example, as a surface treatment method, a method of scraping the surface of a sample by mechanical polishing using alumina having a particle size of 0.03 μm (for example, refer to Non-Patent Document 2), or by stacking a sample thicker than a desired film thickness by ion milling A method of shaving the sample surface has been implemented. In addition, a method of reducing the density of precipitates by using a solid solution material capable of suppressing the precipitation of foreign phases has begun to be widely adopted.
[0004]
Currently, the mainstream bonding of high-temperature superconductors is an interface-modified bonding that uses an amorphous layer mainly composed of rare earth elements produced as a barrier layer when the lamp edge shape is processed by ion milling. Yes (see Non-Patent Document 3, for example). An ion milling process is performed on a sample in which a superconducting thin film (lower electrode layer) and an insulating oxide thin film are laminated on a substrate, and then a superconducting thin film (upper electrode layer) is laminated thereon. The design value of the characteristics of the element and each superconducting thin film is determined from constraints such as the formula Φ 0 = LI c to be satisfied by the magnetic flux quantum, the lower limit of the inductance of the superconducting wiring, and thermal noise at the circuit operating temperature (30K to 40K). Since it is necessary to reduce the inductance L of each electrode layer in order to obtain high-speed operation and circuit operation margin, each superconducting thin film is grown in c-axis orientation. The c-axis alignment film can be obtained in a temperature region where the deposition substrate temperature is high, but the junction characteristics suitable for circuit operation can be obtained only in the low temperature region. For this reason, the suppression of the a-axis mixing rate in the low temperature region is an important factor for circuit fabrication, and the suppression of the a-axis mixing rate has been demanded.
[0005]
[Non-Patent Document 1]
H. Katsuno, S. Inoue, T. Nagano, and J. Yoshida, "Characteristics of interface-engineered Josephson junctions using a YbBa 2 Cu 3 O y counterelectrode layer," Appl. Phys. Lett., Vol. 79, pp. 4189-4191, December 2001.
[0006]
[Non-Patent Document 2]
T. Hato, Y. Ishimaru, H. Aso, A. Yoshida, and N. Yokoyama, "Leveling Technique for High Tc Superconducting Films and Circuits," Advances in Superconductivity, pp. 1008-1010, 1999. [Proceedings of the 12th International Symposium on Superconductivity 1999]
[0007]
[Non-Patent Document 3]
BH Moeckly, and K. Char, "Properties of interface-engineered high Tc Josephson junctions," Appl. Phys. Lett. Vol. 71, pp. 2526-2528, October 1997.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a method capable of manufacturing a superconducting element having good characteristics by suppressing the mixing of the a-axis in a low temperature region.
[0009]
[Means for Solving the Problems]
A method of manufacturing a superconducting element according to an aspect of the present invention includes a step of laminating a lower electrode layer formed of an oxide superconducting thin film and an insulating oxide thin film, and the lower electrode layer and the insulating oxide thin film. The laminated film is processed by ion milling using a rare gas, an amorphous layer is formed on the processed end face of the lower electrode layer, and the processed laminated film is exposed to an atmosphere of an active species of a halogen-based gas or a reducing gas. The step of cleaning the surface of the insulating oxide thin film, and the step of crystallizing the amorphous layer on the processed end face of the lower electrode layer by heating the laminated film in an oxygen atmosphere to form a barrier layer And a step of laminating an upper electrode layer formed of an oxide superconducting thin film on the laminated film.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
A superconducting element manufactured by a method according to an embodiment of the present invention has an interface-modified junction, and a laminated film of an oxide superconducting thin film (lower electrode layer) and an insulating oxide thin film is ionized using a rare gas. Processing by milling and forming an amorphous layer on the processed end face of the lower electrode layer, crystallizing the amorphous layer on the processed end face of the lower electrode layer to form a barrier layer, and an oxide superconducting thin film on the laminated film It is manufactured by a method including a step of forming (upper electrode layer).
[0011]
Therefore, this superconducting element includes a three-layer structure of lower electrode layer / barrier layer and insulating oxide thin film / upper electrode layer. The junction structure may be a lamp edge type or a laminated junction type. After the oxide superconducting thin film and the insulating oxide thin film to be the ground plane are laminated on the substrate, the above-described three-layer structure of the lower electrode layer / barrier layer and the insulating oxide thin film / upper electrode layer may be formed. . An insulating oxide thin film or an oxide superconducting thin film may be laminated on the upper electrode layer. Further, a buffer layer may be provided between the above layers.
[0012]
The inventors of the present invention have found that the upper electrode layer laminated on the sample that has been subjected to the ion milling treatment has an a-axis mixing ratio increased by one to two digits compared to the upper electrode layer on the sample that has not been subjected to the ion milling treatment. I found out. In order to investigate this cause, surface analysis was performed by XPS and RHEED on the surface of the CaSnO 3 insulating oxide thin film subjected to ion milling. Then, it was found that CaO-based amorphous oxide was generated on the surface. This amorphous oxide cannot be removed by ion milling or mechanical polishing. This is because the barrier layer is extremely sensitive to ion milling conditions and water.
[0013]
In response to this problem, the present inventors are exposed to an atmosphere of an active species of a halogen-based gas or a reducing gas, thereby forming an amorphous layer (mainly composed of rare earth elements) formed on the processed end face of the lower electrode layer ( The present invention has been completed by finding that the amorphous oxide can be selectively removed and the surface of the insulating oxide thin film can be cleaned without affecting the barrier layer.
[0014]
Next, materials and conditions used in the method according to the embodiment of the present invention will be described.
[0015]
As a material of the oxide superconducting thin film, the following general formula (L1 (1-x) L2 x ) AE 2 M 3 O y
(Here, L1 and L2 represent at least one metal selected from the group consisting of Y and lanthanoid metals, AE represents at least one metal selected from the group consisting of Ca, Ba and Sr, and M represents 80 % Represents a metal containing Cu at a molar ratio of at least%, and y satisfies the relationship shown in 6.0 ≦ y ≦ 7.5)
Is used. Typical oxide superconductors are YBa 2 Cu 3 O y , YbBa 2 Cu 3 O y and the like.
[0016]
As a material of the insulating oxide thin film, the following general formula AESnO y or AETiO y
(AE is at least one metal selected from the group consisting of alkaline earths)
A perovskite oxide represented by the following formula is used. A typical insulating oxide is CaSnO 3 or the like.
[0017]
When processing a laminated film of the lower electrode layer formed of the oxide superconducting thin film and the insulating oxide thin film by ion milling, a rare gas such as Ar is used. This process forms an amorphous layer (used as a barrier layer for bonding) containing rare earth elements, which are constituent elements of the oxide superconducting thin film, on the processed end face of the lower electrode layer, and at the same time on the surface of the insulating oxide thin film. An amorphous oxide containing the constituent elements of the insulating oxide thin film is formed. Further, when the surface of the substrate is processed, an amorphous oxide containing the constituent components of the substrate is formed on the substrate surface.
[0018]
In the method according to the embodiment of the present invention, a surface treatment is performed on a stacked body of a lower electrode layer and an insulating oxide thin film processed by ion milling using an active species of a halogen-based gas or a reducing gas.
[0019]
Examples of the halogen-based gas include CF 4 , F 2 , CH x F y , SF 6 , NF 3 , BF 3 , CBrF 3 , XeF 2 , SiF 4 , C x F y (F / C <4), and CCl x F. y, C 2 Cl x F y , CH x Cl y, SiCl 4, PCl 3, BCl 3, Cl 2, although HCl or the like is used, without limitation. Since halogen has a high electronegativity, a Coulomb force acts during the reaction, and the reactant can be peeled off from the thin film surface. For this reason, an amorphous oxide can be removed efficiently. The oxide superconducting thin film and the amorphous film on the processed end face are hardly affected by the halogen-based gas.
[0020]
As the reducing gas, B x C 2 H x + 2, B x H x + 4, B x H x + 6, C x H 2x-2, C x H 2x, C x H 2x + 2, N x H x + 2, Si x H 2x + 2, PH 3, AsH 3, Ge x H 2x + 2, H 2 S, HCN, CsH, but HI, NHR1R2 (R1, R2 = C x H y) and the like can be used However, it is not limited to these. Since these reducing gases generate hydrogen efficiently, they show high reduction efficiency. Note that oxygen released by the use of the reducing gas can be recovered by long-term annealing in the final process.
[0021]
In order to activate reactive gas (halogen-based gas or reducing gas) to generate active species, plasma with high frequency of 2.45 GHz, inductively coupled plasma using 13.56 MHz, helicon plasma, normal RF, etc. The plasma energy can be used. Further, the reactive gas may be activated using photon energy, thermal energy, or the like. The temperature of the sample can be set in the range of room temperature to 800 ° C.
[0022]
Annealing in an oxygen atmosphere for forming the barrier layer by crystallizing the amorphous layer on the processed end face of the lower electrode layer is performed in the range of 600 to 900 ° C.
[0023]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing a schematic configuration of an ECR type ion etching apparatus used in the following examples. This apparatus has an activation chamber 11 and a sample chamber 12. The activation chamber 11 contains an ECR plasma source 13 for activating the reactive gas. In the sample chamber 12, a sample table 14 on which a sample (object to be processed) 20 is fixed and a heater 15 for heating the sample 20 are housed. The sample 20 can be heated from room temperature to 900 ° C. by the heater 15. A gas introduction port 16 is installed in the activation chamber 11 and a gas exhaust port 17 is installed in the sample chamber 12, respectively, and the inside of the sample chamber 12 can be evacuated to the 10 −8 Torr level. For example, by adjusting the degree of vacuum of the activation chamber 11 to 10 −3 Torr and the degree of vacuum of the sample chamber 12 to 10 −4 Torr, the activated reactive gas is relatively discharged from the activation chamber 11 having a relatively high pressure. The sample can be supplied to the low-pressure sample chamber 12.
[0024]
Example 1
With reference to FIGS. 2A to 2D, an example of a method of manufacturing a superconducting element having a lamp edge type junction will be described.
First, a YBa 2 Cu 3 O y lower electrode layer 22 having a thickness of 200 nm and a CaSnO 3 insulating layer 23 having a thickness of 500 nm are stacked on the SrTiO 3 substrate 21. A pattern of a photoresist 24 is formed on the CaSnO 3 insulating layer 23. Using the photoresist 24 as a mask, Ar ions are incident obliquely and ion milling is performed to process the CaSnO 3 insulating layer 23 (FIG. 2A).
[0025]
Next, after removing the photoresist 24, Ar ions are vertically incident to perform ion milling, and the CaSnO 3 insulating layer 23 and the YBa 2 Cu 3 O y lower electrode layer 22 are processed. By this step, an amorphous layer 25 containing a rare earth element which is a constituent element of the oxide superconducting thin film is mainly formed on the processed end face of the lower electrode layer 22. Further, a CaO-based or SrO-based amorphous oxide 26 is formed on the surfaces of the CaSnO 3 insulating layer 23 and the substrate 21 (FIG. 2B).
[0026]
This sample is placed on the sample stage 14 of the apparatus shown in FIG. When CF 4 is introduced from the gas inlet 16 and a high frequency of 2.45 GHz is applied to the ECR plasma source 13, plasma is generated in the activation chamber 11 and CF 4 is activated. The generated CF 4 active species are introduced into the sample chamber 12 and reactive etching is performed to remove the amorphous oxide 26 (FIG. 2C).
[0027]
Next, the surface-treated sample is annealed at 680 ° C. in an oxygen atmosphere, and the amorphous layer 25 formed on the surface of the lower electrode layer 22 is crystallized to form a barrier layer 25 ′. Finally, the YbBa 2 Cu 3 O y upper electrode layer 27 is stacked and then patterned (FIG. 2D).
[0028]
In the above method, the substrate temperature was variously changed when the upper electrode layer 27 was formed, and the a-axis mixing rate of the upper electrode layer 27 was examined. As a result, a c-axis alignment film having an a-axis mixing ratio of 1% or less was obtained in a relatively low temperature region (about 650 ° C.) in which bonding characteristics suitable for circuit operation were obtained. This was the same result as when the laminated body of the lower electrode layer 22 and the insulating oxide layer 23 was not subjected to Ar ion milling.
[0029]
In addition, the electrical characteristics of 100 junctions manufactured at a substrate temperature of 650 ° C. were examined at 4.2K. FIG. 3 shows typical electrical characteristics. As shown in FIG. 3, Ic = 0.9 mA, the modulation rate was 90% or more, and the variation of the Ic value was 10%, indicating good bonding characteristics. Tc and Jc were 80K for the lower electrode layer, 1 × 10 7 A / cm 2 , 85K for the upper electrode layer, and 2 × 10 7 A / cm 2 , and both showed good values.
[0030]
Next, the surface of the CaSnO 3 insulating layer was observed by XPS by changing some of the process conditions of FIGS. 2B and 2C. Specifically, when film formation (as-depo) is performed and Ar ions are vertically incident at 400 W after film formation, and ion milling is performed at 800 W after film formation and Ar ions are vertically incident. and normal incidence the Ar ions in 800W and ion milling after film, further the case of surface treatment with CF4, was examined Ca / Sn ratio of CaSnO 3 insulating layer surface. The result is shown in FIG.
[0031]
The following can be seen from FIG. When the film is formed (as-depo), the Ca / Sn ratio is 1, and CaSnO 3 is observed. However, it can be seen that the Ca / Sn ratio is greater than 1 (Ca rich) and CaO is generated only by performing Ar ion milling. In contrast, when the surface treatment with CF 4 is performed after Ar ion milling, the Ca / Sn ratio returns to 1, and CaO is removed and CaSnO 3 is observed again.
[0032]
(Example 2)
5A to 5D show a method of manufacturing a superconducting element having a lamp edge type junction in which a ground plane and an insulating layer are formed under the lower electrode layer.
First, a YBa 2 Cu 3 O y ground plane 31 and a CaSnO 3 insulating layer 32 are stacked on the SrTiO 3 substrate 21. Thereafter, the same process as in Example 1 is performed. That is, the lower electrode layer 22, the insulating layer 23, and the photoresist 24 are formed, and the insulating layer 23 is processed by Ar ion milling (FIG. 5A). After the photoresist 24 is removed, Ar ion milling is performed to process the insulating layer 23 and the lower electrode layer 22. At this time, an amorphous layer 25 is formed on the processed end face of the lower electrode layer 22, and an amorphous oxide 26 is formed on the surface of the insulating layer (CaSnO 3 ) (FIG. 5B). Reactive etching with activated CF 4 species is performed to remove the amorphous oxide 26 on the surface of the insulating layer 23 (FIG. 5C). Annealing treatment is performed in an oxygen atmosphere, the amorphous layer 25 is crystallized to form a barrier layer 25 ′, an upper electrode layer 27 is laminated, and then patterned (FIG. 5D). In this case, the same effect as in the first embodiment can be obtained.
[0033]
Example 3
6A to 6D show a method for manufacturing a superconducting element having a laminated junction.
First, the lower electrode layer 22, the insulating layer 23, and the photoresist 24 are formed on the SrTiO 3 substrate 21, and the insulating layer 23 in the region surrounded by the photoresist 24 is processed by Ar ion milling (FIG. 6A). ). After removing the photoresist 24, Ar ion milling is performed to process the insulating layer 23 until the lower electrode layer 22 is exposed. At this time, an amorphous layer 25 is formed on the exposed surface of the lower electrode layer 22, and an amorphous oxide 26 is formed on the surface of the insulating layer 23 (FIG. 6B). Reactive etching with activated CF 4 species is performed to remove the amorphous oxide 26 on the surface of the insulating layer 23 (FIG. 6C). Annealing treatment is performed in an oxygen atmosphere, the amorphous layer 25 is crystallized to form a barrier layer 25 ′, an upper electrode layer 27 is laminated, and then patterned to form a laminated junction (FIG. 6D). . In this case, the same effect as in the first embodiment can be obtained.
[0034]
【The invention's effect】
As described above in detail, according to the present invention, it is processed by ion milling using a rare gas without affecting the amorphous layer mainly composed of rare earth elements which becomes the barrier layer of the interface-modified bonding. Amorphous oxide generated on the surface of the insulating oxide thin film can be selectively removed, and a superconducting element having good characteristics can be manufactured.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a schematic configuration of an ECR type ion etching apparatus.
2 is a cross-sectional view showing a method for manufacturing a superconducting element having a lamp edge type junction in Example 1. FIG.
3 is a graph showing electrical characteristics of the superconducting element manufactured in Example 1. FIG.
FIG. 4 is a diagram showing the process condition dependency of the Ca / Sn composition ratio on the surface of the CaSnO 3 insulating layer.
5 is a cross-sectional view showing a method of manufacturing a superconducting element having a lamp edge type junction in Example 2. FIG.
6 is a cross-sectional view showing a method for manufacturing a superconducting element having a laminated junction in Example 3. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Activation chamber, 12 ... Sample chamber, 13 ... ECR plasma source, 14 ... Sample stand,
15 ... heater, 16 ... gas inlet, 17 ... gas exhaust, 20 ... sample,
21 ... SrTiO 3 substrate, 22 ... Lower electrode layer, 23 ... Insulating layer,
24 ... Photoresist, 25 ... Amorphous layer, 25 '... Barrier layer,
26 ... amorphous oxide, 27 ... upper electrode layer,
31 ... Ground plane, 32 ... Insulating layer.

Claims (2)

酸化物超電導薄膜で形成された下部電極層と絶縁性酸化物薄膜とを積層する工程と、
前記下部電極層と絶縁性酸化物薄膜との積層膜を、希ガスを用いたイオンミリングにより加工するとともに、下部電極層の加工端面にアモルファス層を形成する工程と、
前記加工した積層膜をハロゲン系ガスまたは還元ガスの活性種の雰囲気にさらし、前記絶縁性酸化物薄膜の表面を清浄化する工程と、
前記積層膜を酸素雰囲気中で加熱することにより、前記下部電極層の加工端面のアモルファス層を結晶化させてバリア層を形成する工程と、
前記積層膜上に酸化物超電導薄膜で形成された上部電極層を積層する工程と
を有することを特徴とする超電導素子の製造方法。
A step of laminating a lower electrode layer formed of an oxide superconducting thin film and an insulating oxide thin film;
Processing the laminated film of the lower electrode layer and the insulating oxide thin film by ion milling using a rare gas, and forming an amorphous layer on the processed end face of the lower electrode layer;
Exposing the processed laminated film to an atmosphere of an active species of a halogen-based gas or a reducing gas, and cleaning the surface of the insulating oxide thin film;
Heating the laminated film in an oxygen atmosphere to crystallize the amorphous layer on the processed end face of the lower electrode layer to form a barrier layer;
And a step of laminating an upper electrode layer formed of an oxide superconducting thin film on the laminated film.
基板上に酸化物超電導薄膜で形成されたグランドプレーンと絶縁性酸化物薄膜とを積層した後、前記各工程を実施することを特徴とする請求項1記載の超電導素子の製造方法。2. The method of manufacturing a superconducting element according to claim 1, wherein each of the steps is carried out after a ground plane formed of an oxide superconducting thin film and an insulating oxide thin film are laminated on a substrate.
JP2002381221A 2002-12-27 2002-12-27 Superconducting element manufacturing method Expired - Fee Related JP3735604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002381221A JP3735604B2 (en) 2002-12-27 2002-12-27 Superconducting element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002381221A JP3735604B2 (en) 2002-12-27 2002-12-27 Superconducting element manufacturing method

Publications (2)

Publication Number Publication Date
JP2004214367A JP2004214367A (en) 2004-07-29
JP3735604B2 true JP3735604B2 (en) 2006-01-18

Family

ID=32817213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002381221A Expired - Fee Related JP3735604B2 (en) 2002-12-27 2002-12-27 Superconducting element manufacturing method

Country Status (1)

Country Link
JP (1) JP3735604B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110198985A1 (en) * 2009-05-25 2011-08-18 Osamu Inoue Crystalline compound, manufacturing method therefor and plasma display panel
JP6425317B2 (en) * 2017-07-21 2018-11-21 須賀 唯知 Bonding method of substrate having metal region

Also Published As

Publication number Publication date
JP2004214367A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
CN88101032A (en) Superconductive device
JP3735604B2 (en) Superconducting element manufacturing method
JP3160961B2 (en) Dry etching method
US4980338A (en) Method of producing superconducting ceramic patterns by etching
CN115458673B (en) Superconducting quantum chip first layer structure and preparation method thereof
JPH05304320A (en) Superconducting thin film transistor and fabrication thereof
JP3425422B2 (en) Superconducting element manufacturing method
JP4022620B2 (en) Strontium titanate thin film laminate and method for producing the same
CN115835768B (en) Protective layer for preparing superconducting quantum chip and superconducting quantum chip
CN116013961B (en) Preparation method of gallium nitride spin injection junction with self-oxidized surface
JP2773453B2 (en) Method of laminating oxide superconducting thin film
US5607900A (en) Process for cleaning a surface of thin film of oxide superconductor
JP4310430B2 (en) Strontium titanate thin film laminate
JP2579335B2 (en) Superconductor element manufacturing method
JP2544390B2 (en) Oxide superconducting integrated circuit
JP2773454B2 (en) Method of laminating oxide superconducting thin film
JPH0284732A (en) Manufacture of superconductor element
JP2647278B2 (en) Manufacturing method of laminated film
JP4362581B2 (en) Manufacturing method of parallel plate capacitor
JPH04284632A (en) Formation of superconductor line
JP3230329B2 (en) Method for cleaning surface of substrate for superconducting device
JP2710870B2 (en) Method of laminating thin films of different materials on oxide superconducting thin film
JP2883464B2 (en) Method of laminating thin films of different materials on oxide superconducting thin film
JP2647280B2 (en) Manufacturing method of laminated film
JP2647279B2 (en) Manufacturing method of laminated film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees