JP3734240B2 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP3734240B2
JP3734240B2 JP20507599A JP20507599A JP3734240B2 JP 3734240 B2 JP3734240 B2 JP 3734240B2 JP 20507599 A JP20507599 A JP 20507599A JP 20507599 A JP20507599 A JP 20507599A JP 3734240 B2 JP3734240 B2 JP 3734240B2
Authority
JP
Japan
Prior art keywords
solar cell
sealing portion
frame material
cell sealing
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20507599A
Other languages
Japanese (ja)
Other versions
JP2000036612A (en
Inventor
昌宏 森
誠紀 糸山
一郎 片岡
総一郎 川上
勉 村上
隆弘 森
博文 一ノ瀬
浩史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP20507599A priority Critical patent/JP3734240B2/en
Publication of JP2000036612A publication Critical patent/JP2000036612A/en
Application granted granted Critical
Publication of JP3734240B2 publication Critical patent/JP3734240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【0001】
【産業上の利用分野】
本発明は、太陽電池モジュールに係わる。より詳細には、フレキシブル性を有する太陽電池モジュールに関する。
【0002】
【従来の技術】
太陽光を電気エネルギーに変換する光電変換素子である太陽電池は、電卓、腕時計など民生機器用の電源として広く使用されており、また、石油、石炭などのいわゆる化石燃料の代替用電力として実用化可能な技術として注目されている。
【0003】
太陽電池は半導体のpn接合部に発生する拡散電位を利用した技術であり、シリコンなどの半導体が太陽光を吸収し、電子と正孔の光キャリヤーが生成し、該光キャリヤーをpn接合部の拡散電位により生じた内部電界でドリフトさせ、外部に取り出すものである。太陽電池の材料としては、単結晶シリコン、多結晶シリコン、アモルファスシリコン、アモルファスシリコンゲルマニウム、アモルファスSiCなどのテトラヘドラル系のアモルファス半導体や、CdS,Cu2 SなどのII−VI族やGaAs,GaAlAsなどのIII−V族の化合物半導体等があげられる。とりわけ、アモルファス半導体を用いた薄膜太陽電池は、単結晶太陽電池に比較して大面積の膜が作製できることや、膜厚が薄くて済むこと、任意の基板材料に堆積できることなどの長所があり有望視されている。
【0004】
アモルファスシリコン太陽電池、結晶薄膜太陽電池等は、ステンレス等の可曲性のある基板上に作られた薄膜の太陽電池素子を用いることにより、薄くて軽く、さらに可曲性のある太陽電池モジュールの形で作られ、実用に供されている。また、耐候性、機械的損傷からの保護のため、被覆材で表面を被覆する。
【0005】
太陽電池は、屋内で蛍光灯の光を利用して使用される場合もあるが、特に屋外で使用される太陽電池は、高温度、低温度、高湿度、風、雨等の様々な外環境からの影響に対する十分な耐久性が要求される。そのため、例えば図8のように、太陽電池モジュールは多くの場合、大きく分けて太陽電池素子を封止した部分(以下、太陽電池封止部分と記す。)90とフレーム部分98とから構成されている。太陽電池封止部分は、太陽電池素子91及び出力配線を、受光面側とその裏面側から各々表面保護材94と接着剤93、裏面保護材95と接着剤93を用いて挟持し、熱を加えて真空封止する場合が多い。
【0006】
太陽電池の設置方法としては、地面や、建物の屋上や屋根上に架台を設け上記の太陽電池モジュールを支持したり、建物の壁面に貼付したりする方法が一般的である。建物の屋根上に設置する場合はこの方法の他に、架台を用いないで、屋根材と太陽電池を一体構造として屋根上に設置する方法がある。
【0007】
また、フレキシブル性を有する太陽電池の場合、太陽電池素子を破壊しない程度の局面等の非平面部分に設置することを可能にするため、前述の太陽電池封止部分に裏面保護部材92として例えば、ウレタン樹脂、ポリエチレン樹脂等の独立気泡のシート状の発泡材を接着した構造をとる場合が多い。
【0008】
ところで、太陽電池モジュールは、特に表面保護材にシート状の透明樹脂を用いて太陽電池素子を真空ラミネートする太陽電池モジュールにおいては、太陽電池素子よりも外側の部分で表面保護材と接着剤と裏面保護材が接着した部分を所定の外形に合わせて切断することが多い。そのため、何らかの方法でこれらの端部を処理し、外環境からの応力及び水分、湿気(水蒸気)から太陽電池封止部分の内部の太陽電池素子及び電気回路部分を保護する必要がある。
【0009】
これに対し、太陽電池封止部分の裏面保護材として例えば金属、鋼製の強固な裏打ち材を用い、フレーム材として例えばアルミニウム製の強固なフレーム材を用いた構造を有する太陽電池モジュールの場合には、太陽電池封止部分の4端辺を取り囲むフレーム材にスリット状の溝を予め設けておき、そのスリット状の溝に、太陽電池封止部分の端部をはめ込み、それらの隙間の部分には、例えばシリコンゴム等の充填材96を充填する方法が用いられている。
【0010】
一方、フレキシブル性が必要とされる従来の太陽電池モジュールにおいては、前述の強固な裏面保護材及び強固なフレーム材を用いることが不可能である。よって、前述のように裏面保護材の材質としてはフレキシブル性を有する材料を用いることになる。ここで、太陽電池封止部分の縁部の保護方法が問題となる。仮にフレーム材としてゴム製、プラスチック製、ポリカーボネート製などのフレキシブル性を有するフレーム材を用いたとする。この場合、太陽電池封止部分を効果的に保護するためには、何らかの方法で太陽電池封止部分とフレーム材を接着することが必要となる。太陽電池封止部分の裏側は材質選択の自由度が高く、フレーム材との接着が比較的容易である。しかし、太陽電池封止部分の表面側は、以下の理由で、フレーム材との接着は非常に難しい。
【0011】
例えば、ステンレス・スチール基板等の導電性基板を用いた太陽電池素子を封止した太陽電池封止部分の表面保護材としては、フッ素樹脂等が用いられることが多く、これらに対して十分な接着能力を有する接着剤・充填材は殆ど存在しない。表面保護材としてフッ素樹脂等が用いられる理由は、フッ素樹脂等の光透過性が高く、かつ外環境からの応力に対する耐久性が高いからである。さらに、表面保護材としては、表面に埃が付き難く、溌水性が良いことも要求され、フッ素樹脂はこの要求を満たすが、このことは同時に、適当な接着剤が存在しないことをも意味している。フッ素樹脂とEVAの接着が、そのままでは接着力が不十分なため、フッ素樹脂の接着面側の全面にコロナ放電処理を行い、接着力を高めている場合が多い。しかし、表面全体にコロナ放電を施すと、上述の非埃付着性や溌水性が低下してしまう。また、端部のみにコロナ放電処理を施すことは、封止作業の精度の向上が要求されるとともに、処理のコスト増加を生じる。
【0012】
以上の理由で、フレキシブル性を有する太陽電池封止部分の縁部及び端部に接着剤を塗布し、フレキシブルな材質のフレーム材と太陽電池封止部分を接着することによって端部を十分に包囲保護することは実現困難である。
【0013】
もう一つの例として、太陽電池封止部分の縁部の例えばEVA等の接着剤を融解し端部から追い出し、その部分の表面保護材(樹脂)と裏面保護材(樹脂)を熱によって圧接着する方法が考えられる。この方法が可能であれば、太陽電池封止部分は自ら端部保護機能を有することになり、フレーム材が封止部分を保護する必要は減少する。本発明者らは、試行実験として表面接着剤としてDupont社のテフゼル等を用い、裏面保護材としてナイロン等を用いて上述のような熱による圧接着を様々な温度において試みたが、いずれも十分な接着力を得るには至っていない。
【0014】
すなわち、フレキシブル性が必要とされる太陽電池モジュールにおいては、太陽電池封止部分の端部を効果的に保護することは非常に難しいのが現状である。
【0015】
【発明が解決しようとする課題】
上記欠点に鑑み、本発明の技術的課題は、太陽電池素子を少なくともシート状の樹脂及びシート状の接着剤で真空封止し、該太陽電池素子の封止部分の縁部がフレーム材のスリット部分に挿入された構造を有し、かつフレキシブル性を有する太陽電池モジュールにおいて、太陽電池封止部分の端部が外応力によって変形・破損したり、端部を通じて水蒸気が侵入し太陽電池素子に到達することを防止し、外部から侵入した水蒸気による太陽電池素子の故障、及び太陽電池モジュールの内部配線の電気的な短絡による故障を防止することである。
【0016】
【課題を解決するための手段】
本発明の太陽電池モジュールは、基板上に半導体層を形成してなる太陽電池素子を少なくともシート状樹脂及びシート状接着剤で真空封止し、該太陽電池素子の封止した部分の縁部がフレーム材のスリット部分に挿入された、フレキシブル性を有する太陽電池モジュールにおいて、前記フレーム材はスリット内部に前記縁部の一部を貫通して該縁部を狭持する柔軟性のある接合部材を有していることを特徴とする。
【0017】
【発明の実施の形態】
次に、本発明の実施の形態について説明する。
【0018】
本実施の形態に係わる太陽電池モジュールの一例を図1に示す。図1に示すように、該太陽電池モジュールは、基板上に半導体層を形成してなる太陽電池素子を少なくともシート状樹脂及びシート状接着剤で真空封止し、該太陽電池素子の封止した部分の縁部がフレーム材のスリット部分に挿入された、フレキシブル性を有する太陽電池モジュールにおいて、前記フレーム材は、スリット内部に前記縁部の一部を貫通して該縁部を挟持する接合部材を有することを特徴とする。
【0019】
このような構成の太陽電池モジュールを用いることによって、フレーム材が上記の太陽電池封止部分から脱離することを防止し、また、太陽電池封止部分の端部を通じて水蒸気が侵入し太陽電池素子に到達することを防止し、外部から侵入した水蒸気による太陽電池素子の故障、及び太陽電池モジュール内部配線の電気的な短絡による故障を防止することができる。
【0020】
図1は、非晶質太陽電池モジュールの構成を概念的に示した断面図である。図1において、11は非晶質太陽電池素子、12は発泡材製裏面保護部材、13は接着剤層、14は表面保護材、15は裏面保護材、16は充填材、17は封止部分とフレーム材18の接合部材である。フレーム材18には、接合部材と係合するスリット状の溝が形成されている。太陽光は図1の上方から入射する。
【0021】
非晶質太陽電池素子の構成を例えば図7に示す。図7では、41がステンレス・スチール基板、42がn型非晶質シリコン薄膜、43がi型非晶質シリコン薄膜、44がp型非晶質シリコン薄膜、45がn型非晶質シリコン薄膜、46がi型非晶質シリコン薄膜、47がp型非晶質シリコン薄膜、48が反射防止層、49が集電電極である。図7の非晶質太陽電池素子では、ステンレス・スチール製基板41上に基板側から順にn,i,p,n,i,p型非晶質シリコン薄膜42,43,44,45,46,47を、RFグロー放電法を用いて積層した後、透明電極として酸化インジウム・錫を蒸着し、最後にグリッド電極として銀ペーストを印刷したものを直列化したものである。
【0022】
このように、本発明の太陽電池モジュールは、太陽電池封止部分10の縁部を表裏面側から太陽電池封止部分10の一部を貫通し、封止部分10をフレーム材18の接合部材17によって挟持し、フレーム材18のスリット部分に充填材16を充填した後、太陽電池封止部分10の端部をフレーム材に挿入接着し、さらに、太陽電池封止部分10の裏面に発泡材製裏面保護部材12を接着剤によって貼着して構成されている。また、図1では、上記太陽電池素子の配線及び出力端子は省略して描いてある。スリット状の溝の寸法・形状は、太陽電池封止部分の挿入時及び長期間の経過後に太陽電池封止部端部の変形・損傷を生じさせず、かつ、溝と端部の隙間に適当な材質の充填材16を充填するのが容易であることが望ましい。
【0023】
例として、図1のように太陽電池封止部分の端部の挿入部分の長さよりも溝の奥行きが長く、その部分に充填材を充填できる寸法・形状のものが望ましいが、溝の寸法・形状はこれに限るものではない。また、溝は、太陽電池素子封止部分端部のうち、長辺及び短辺の全長にわたって途切れることなく形成されることが望ましい。
【0024】
発泡材製裏面保護部材12の材質は、外環境に対する耐久性、すなわち、耐水性、耐熱性、耐紫外線性が充分であるものが望ましい。例えば、非接着面にポリエチレンを貼着した独立気泡の発泡ウレタンがあげられるが、これに限るものではない。また、接着剤層13の材質は、例えば、EVAがあげられるが、これに限るものではない。
【0025】
表面保護材14の材質は、例えば、フッ素樹脂があげられるが、これに限るものではない。以上、シート状のフッ素樹脂を用い、真空ラミネーションによって封止を行う場合を説明したが、この他に、例えば、液体状のフッ素樹脂を用いて、これを塗布することによって、表面保護材14を形成しても良い。
【0026】
裏面保護材15の材質は、発泡材性裏面保護部材12との接着が確実に行える接着剤が存在する材質、例えば、シート状のナイロンが適するが、これに限るものではない。
【0027】
充填剤16の材質は、例えば、シリコン樹脂、ブチルゴム等があげられるが、これに限るものではない。
【0028】
【実施例】
以下に、実施例を挙げて、本発明をより詳細に説明するが、本発明がこれら実施例に限定されないことはいうまでもない。
【0029】
(実施例1)
実施例1においては、図1のように、非晶質シリコン太陽電池素子11を表面保護材14、裏面保護材15及び接着剤層13によって真空ラミネートして太陽電池モジュールを製作し、高温度高湿度状態と低温状態の繰り返しサイクル試験を実施し、フレーム材の脱離状況及び、外部からの水蒸気の侵入による太陽電池素子の故障及び太陽電池モジュール全体の電気的短絡による故障頻度を調べる実験を行った。
【0030】
実施例1で用いた非晶質太陽電池11として、ステンレス・スチール製基板上に基板側から順にn,i,p,n,i,p型非晶質シリコン薄膜を、RFグロー放電法を用いて積層した後、透明電極として酸化インジウム錫を蒸着し、最後に集電電極として銀ペーストをグリッド状に印刷して約30cm×9cmの単位としたものを13段直列化したものを用いた。図7は非晶質太陽電池11の構成を示す構造概念断面図である。
【0031】
また、接着剤層13としては、シート状のEVAを用い、表面保護材14としては、100μm厚のシート状のテフゼル(Dupont社商品名)を用い、裏面保護材15としては、アルミニウム箔を両面から白色テドラー(Dupont社商品名)で挟んだシートを用いた。
【0032】
上記の材料を、下から裏面保護材15、接着剤層13、非晶質シリコン太陽電池素子11、接着剤層13、表面保護材14の順に積層し、真空ラミネーターを用いて100℃でラミネートした。これを太陽電池素子の外形寸法よりも縦横おのおの4cm外側で矩形に切断した。
【0033】
太陽電池封止部分とフレーム材との接合部材は、図1及び図4に示す形状で比較的柔軟性のあるプラスチックを一体形成することによって作製した。まず太陽電池封止部分10の長手方向の表側には縦138cm、横1.0cm、厚さ約1mmの板状部分の一つの面に直径5.0mm、高さ1.5mmの円柱状の凸部が2cm間隔で配置された形状の物17aを作製した。太陽電池封止部分の長手方向裏側には、縦138cm、横0.5cm、厚さ約1mmの板状部分の一つの面に、上記の円柱状の凸部の場所と対応する場所に直径約5.0mm、深さ0.5mmの円柱状の凹部が2cm間隔で配置された形状の物17bを作製した。太陽電池封止部分の短手方向には、上記の一対の接合部材と同様の形状で、縦が37cmの接合部材を作製した。接合部材の長手方向端部は、45度の角度に成形した。
【0034】
次に、太陽電池封止部分の縁部のうち、上記の接合部材の長辺を封止部の最外端部に合わせたときに円柱状の凸部及び穴に対応する部分に表裏面に貫通する直径3mmの穴を開ける。接合部材には、その相対する面及び円柱状の凸部及び凹部に市販の水性接着剤を塗布し、太陽電池封止部分の縁部の穴に、接合部材の凸部が表面側から貫通した後、裏面側の接合部材の穴に挿入されるようにして圧着した後、約2日間乾燥させた。
【0035】
フレーム材18は、図1及び図4に示す形状で比較的柔軟性のあるネオプレン・ゴムを一体成形して作製した。まず、太陽電池封止部分の長手方向の表側には、縦138cm、横1.0cm、厚さ約5mmの板状部分にスリット状の溝を配置した形状の物を作製した。スリット状の溝の形状は、奥行き6.0mm、厚さ約3.0mmとした。太陽電池封止部分の短手方向には、上記と同様の形状で、縦が37cmの接合部材を作製した。
【0036】
上記のように予め用意したフレーム材のスリット状の溝のうち最も内側の部分にのみ、その全長にわたってブチルゴム製充填材を充填し、残りの部分には水性接着剤を塗布した後、太陽電池封止部分の縁部に接着した接合部材にかぶせ、圧着した後約2日間、乾燥させた。
【0037】
発泡材裏面保護部材12は、市販の厚さ3mmの独立気泡ウレタン発泡材を1.38m×0.35mの矩形に裁断したものを用いた。この発泡材製裏面保護部材12の片面及び太陽電池封止部分の裏面(すなわちテドラー面)全面に市販の水性接着剤を塗布し、両者を接着させ、約2日間乾燥させた。
【0038】
最後に太陽電池封止部分に出力端子を取り付け、それらを保護する防水用の端子箱をモジュールの表側に設置した。以上の手順で本発明の太陽電池モジュールが完成した。これを10モジュール作製した。
【0039】
(比較例1)
従来例として、太陽電池封止部分にゴム製のフレーム材を接着剤で接着した太陽電池モジュールを作製した。
【0040】
まず、太陽電池封止部分は、前述したものと同じ太陽電池素子を用い、同様の材料、手法、手順で真空封止し、同寸法にしたものを用意した。
【0041】
フレーム材は、図8に示す形状で比較的柔軟性のあるネオプレン・ゴムを一体成形することによって作製した。まず、太陽電池封止部分の長手方向の表側には、縦138cm、横1.0cm、厚さ約3mmの板状部分にスリット状の溝を配置した形状のものを作製した。スリット状の溝の形状は、奥行き6.0mm、厚さ約1.0mmとした。太陽電池封止部分の短手方向には、上記と同様の形状で、縦が37cmのフレーム材を作製した。
【0042】
上記のように予め用意したフレーム材のスリット状の溝のうち、最も内側の部分にのみ、その全長にわたってブチルゴム製充填材を充填し、残りの部分には水性接着剤を塗布した後、太陽電池封止部分の縁部にかぶせ、圧着した後約2日間、乾燥させた。
【0043】
発泡材裏面保護部材12は、前述のものと同様の市販の厚さ3mmの独立気泡ウレタン発泡材を1.38m×0.35mの矩形に裁断したものを用いた。この発泡材製裏面保護部材12の片面及び太陽電池封止部分の裏面(すなわちテドラー面)全面に市販の水性接着剤を塗布し、両者を接着させ、約2日間乾燥させた。
【0044】
最後に太陽電池封止部分に出力端子を取り付け、それらを保護する防水用の端子箱をモジュールの表側に設置した。以上の手順で従来例の太陽電池モジュールが完成した。これを10モジュール作製した。
【0045】
以上のように作製した太陽電池モジュールを用いて、フレーム材の脱離及び、太陽電池封止部分の端部の剥離や端部を通じて侵入する水蒸気の起因する太陽電池モジュールの故障発生の頻度を調べる実験を行った。
【0046】
すなわち、上記のように作製した太陽電池モジュールを各々10個ずつに対して高温度・高湿度状態と低温度状態の繰り返しサイクル試験を実施し、試験後の故障発生率を調べた。上記の環境は市販の環境試験器を用いて再現した。
【0047】
環境試験装置は、内寸法が幅1.5m、高さ1.0m、奥行き1.0mのチャンバーをもち、チャンバー内の温度は−40〜+200℃、相対湿度は0〜100%に制御可能なものである。今回は、太陽電池モジュールの屋外での使用状態を再現する意味で、UL1703に記載されているパターンに準拠して、環境試験器のチャンバー内の温度・湿度を制御した。すなわち、まず20℃から約110℃/時間の速度で−40℃まで温度を下降させた後、約40分一定に保持する。次に、約110℃/時間の速度で+85℃まで温度を上昇、85℃、相対湿度85%の状態で4時間10分一定に保持した後、約110℃/時間の速度で20℃まで温度を下降させる。これが1サイクルのパターンであり、これを60サイクル連続して実施した。
【0048】
ここで、UL1703には記載されていないが、太陽電池モジュールの屋外における実際の使用状況を再現する意味では太陽電池モジュールに光を照射することが必要である。しかし、非晶質シリコン太陽電池には光劣化することが一般に知られており、光を照射することによって、太陽電池モジュールの電気的性能が低下する。したがって、今回は、この光劣化による太陽電池モジュールへの影響と、本発明で問題としている外部からの水蒸気の侵入が太陽電池モジュールに与える影響とを区別するために、チャンバー内では太陽電池モジュールに光は照射しなかった。また、出力端子は、解放状態で、端子箱で防水した状態に保った。
【0049】
上記の環境試験装置のチャンバー内に、作製した太陽電池モジュール10個を受光面が上方を向くように、各々の間隔が約10cmでチャンバー内に水平に重ねて設置した。
【0050】
上記の試験を60サイクル実施した後、これらの太陽電池モジュールを環境試験装置から取り出し、表面に付着した水滴、水分を布で拭き取った後、フレーム材の脱離状況を調べて、さらに、市販の大型の疑似太陽光発生放置(SPIRE社、240A)を用いて、個々の太陽電池モジュールの電気性能を測定した。照射した疑似太陽光は、AM1.5GROBAL、強度100mW/cm2 であり室温で測定した。
【0051】
その結果、フレーム材の脱離が発生したもの、シャント抵抗が1/10以下に減少したもの、あるいは、電気的に短絡したものは、実施例1のモジュールでは、10個中4個、比較例1のモジュールでは10個中9個であり、本発明の効果が実証された。
【0052】
(実施例2)
実施例2では、図2、図5に示すように、太陽電池封止部分とフレーム材の接合部材の一辺にその長手方向全長にわたる段差を設け、フレーム材は接合部材の段差に対応する部分、すなわち、スリット状の溝の入口端部、に断面がL字となる凸部を設けた形状とした。そして、図1の非晶質シリコン太陽電池素子11、発泡材製裏面保護部材12、接着剤層13、表面保護材14、裏面保護材15、充填材16、太陽電池封止部分とフレーム材の接合部材17およびフレーム材18が図2の非晶質シリコン太陽電池素子21、発泡材製裏面保護部材22、接着剤層23、表面保護材24、裏面保護材25、充填材26、太陽電池封止部分とフレーム材の接合部材27およびフレーム材28にそれぞれ対応する。また、図4の太陽電池封止部分10が図5の太陽電池封止部分20に対応する。
【0053】
実施例2では、接合部材とフレーム材を図5に示す構造とした以外は、実施例1と同様にして太陽電池モジュールを10個作製した。
【0054】
太陽電池封止部分とフレーム材の接合部材27は図2、図5に示す形状で比較的柔軟性のあるプラスチックを一体成形することによって作製した。まず、太陽電池封止部分の長手方向の表側には、縦138cm、横1.0cm、厚さ約3mmの板状部分の一つの面に直径5.0mm高さ1.5mmの円柱状の凸部が2cm間隔で配置され、さらに、凸部と反対する面の一辺のみに約2mmの段差を設けた形状のもの27aを作製した。太陽電池封止部分の長手方向裏側には、縦138cm、横0.5cm、厚さ約1mmの板状部分の一つの面に、上記の円柱状の凸部の場所と対応する場所に直径約5.0mm、深さ0.5mmの円柱状の凹部が2cm間隔で配置され、さらに、凹部と反対する面の一辺のみに約2mmの段差を設けた形状のものを27b作製した。太陽電池封止部分の短手方向には、上記の一対の接合部材と同様の形状で、縦が37cmの接合部材を作製した。接合部材の長手方向端部は、45度の角度に成形した。
【0055】
次に、実施例1と同様に太陽電池封止部分の縁部のうち、上記の接合部材の長辺を封止部分の最外端部に合わせたときに円柱状の凸部及び穴に対応する部分に表裏面に貫通する直径5mmの穴を開けた。接合部材には、その相対する面及び円柱状の凸部を封止部材縁部の穴に表面側から貫通させた後、裏面側の接合部材の穴に挿入して圧着した後、約2日間乾燥させた。
【0056】
フレーム材28は、図5に示す形状で比較的柔軟性のあるネオプレン・ゴムを一体成形して作製した。まず、太陽電池封止部分の長手方向の表側には縦138cm、横1.0cm、厚さ約9mmの板状部分に図5に示すような断面を有する溝を配置した形状の物を作製した。スリット状の溝の形状は、外側部分で奥行き約2mm、厚さ約3mmであり、さらに、奥の部分で奥行き約6.0mm、厚さ約3.0mmとした。太陽電池封止部分の短手方向には、上記と同様の形状で、縦が37cmの接合部材で作製した。
【0057】
上記のように予め用意したフレーム材28のスリット状の溝のうち最も奥側の部分にのみ、その全長にわたってブチルゴム製充填材を充填し、残りの部分には水性接着剤を塗布した後、太陽電池封止部分の縁部に接着した接合部材にはめ込み、圧着した後、約2日間乾燥させた。
【0058】
発泡材裏面保護部材22は、実施例1と同様のものを用い、太陽電池封止部分の裏面に接着し、約2日間乾燥させた。最後に太陽電池封止部分に出力端子、防水用の端子箱をモジュールに設置した。
【0059】
以上のように作製した太陽電池モジュールについて、実施例1と同様な評価試験を行った。
【0060】
その結果、フレーム材の脱離が発生したもの、シャント抵抗が1/10以下に低下したもの、あるいは、電気的に短絡したものは、実施例2のモジュールでは10個中3個であり、本発明の効果が実証された。
【0061】
(実施例3)
実施例3においては、本発明における太陽電池封止部分とフレーム材の接合部材の一辺にその長手方向全長にわたる段差を設け、一方フレーム材に接合部材の段差に対応する部分、すなわち、スリット状の溝の入口端部に断面がL字となる凸部を設け、さらに、フレーム材のスリット状の溝の内面に凹部、これと対応する接合部材に凸部を設けた形状とした。
【0062】
実施例3においては、図6に示すフレーム材を用い、太陽電池モジュールの構成を図3とした以外は、実施例1と同様にして太陽電池モジュールを10個作製した。そして、図1の非晶質シリコン太陽電池素子11、発泡材製裏面保護部材12、接着剤層13、表面保護材14、裏面保護材15、充填材16、太陽電池封止部分とフレーム材の接合部材17およびフレーム材18が図3の非晶質シリコン太陽電池素子31、発泡材製裏面保護部材32、接着剤層33、表面保護材34、裏面保護材35、充填材36、太陽電池封止部分とフレーム材の接合部材37およびフレーム材38にそれぞれ対応する。また、図1の太陽電池封止部分10が図6の太陽電池封止部分30に対応する。
【0063】
太陽電池封止部分とフレーム材の接合部材は、図6に示す形状で比較的柔軟性のあるプラスチックを一体成形して作製した。まず、太陽電池封止部分の長手方向の表側には、縦138cm、横1.0cm、厚さ約3mmの板状部分の一つの面に直径5.0mm高さ1.5mmの円柱状の凸部が2cm間隔で配置され、さらに、凸部と反対する面の一辺のみに約2mmの段差を設け、また、凸部と反対する面には、図6に示すような断面が縦1mm横1mmの凸部を長手方向の全長にわたって設けた形状のもの37aを作製した。太陽電池封止部分の長手方向裏側には、縦138cm、横0.5cm、厚さ約1mmの板状部分の一つの面に、上記の円柱状の凸部の場所と対応する場所に直径約5.0mm、深さ0.5mmの円柱状の凹部が2cm間隔で配置され、さらに、凹部と反対する面の一辺のみに約2mmの段差を設け、また、凹部と反対する面には、図6に示すような断面が縦1mm横1mmの凸部を長手方向の全長にわたって設けた形状のもの37bを作製した。太陽電池封止部分の短手方向には、上記の一対の接合部材と同様の形状で、縦が37cmの接合部材を作製した。接合部材の長手方向端部は、45度の角度に成形した。
【0064】
次に、実施例1と同様に太陽電池封止部分の縁部のうち、上記の接合部材の長辺を封止部分の最外端部に合わせたときに円柱状の凸部及び穴に対応する部分に表裏面に貫通する直径3mmの穴を開けた。接合部材には、その相対する面及び円柱状の凸部及び凹部に市販の水性接着剤を塗布し、太陽電池封止部分の縁部の穴に、接合部材の凸部が表面側から貫通した後、裏面側の接合部材の穴に挿入されるようにして厚着した後、約2日間乾燥させた。
【0065】
フレーム材38は、図6に示す形状で比較的柔軟性のあるネオプレン・ゴムを一体成形することによって作製した。まず、太陽電池封止部分の長手方向の表側には縦138cm、横1.0cm、厚さ約11mmの板状部分に図6に示すような断面を有する溝を配置した形状の物を作製した。スリット状の溝の形状は、外側部分で奥行き約2mm、厚さ約3mmであり、さらに、奥の部分で奥行き約6.0mm、厚さ約3.0mmとした。さらに、スリット状の溝の内部には、前述の接続部材の凸部に対応する位置に凹部、すなわち、溝を設けた形状とした。太陽電池封止部分の短手方向には、上記と同様の形状で、縦が37cmの接合部材を作製した。
【0066】
上記のように予め用意したフレーム材のスリット状の溝のうち最も奥側の部分にのみ、その全長にわたってブチルゴム性充填材を充填し、残りの部分には、水性接着剤を塗布した後、太陽電池封止部分の縁部に接着した接合部材にはめ込み、圧着した後約2日間乾燥させた。
【0067】
以上のように作製した太陽電池モジュールについて、実施例1と同様な評価試験を行った。
【0068】
その結果、フレーム材の脱離が発生したもの、シャント抵抗が1/10以下に低下したもの、あるいは、電気的に短絡したものは、実施例3のモジュールでは10個中4個であり、本発明の効果が実証された。
【0069】
【発明の効果】
以上、説明したように、本発明により、フレーム材の太陽電池封止部分からの脱離を防止し、また、上記の太陽電池封止部分の端部を通じて水蒸気が侵入し太陽電池素子に到達することを防止し、外部から侵入した水蒸気による太陽電池素子の故障、及び太陽電池モジュールの内部配線の電気的な短絡による故障を防止することが可能な太陽電池モジュールを提供することが可能となる。
【図面の簡単な説明】
【図1】実施例1の太陽電池モジュールを示す概略断面図。
【図2】実施例2の太陽電池モジュールを示す概略断面図。
【図3】実施例3の太陽電池モジュールを示す概略断面図。
【図4】実施例1の太陽電池封止部分とフレーム材の接合部材との関係を示す概略図。
【図5】実施例2の太陽電池封止部分とフレーム材の接合部材との関係を示す概略図。
【図6】実施例3の太陽電池封止部分とフレーム材の接合部材との関係を示す概略図。
【図7】非晶質太陽電池素子の層構成を示す概略断面図。
【図8】従来のフレキシブルな太陽電池モジュールの一例を示す概略断面図。
【符号の説明】
11,21,31,91 非晶質シリコン太陽電池素子、
12,22,32,92 発泡材製裏面保護部材、
13,23,33,93 接着剤層、
14,24,34,94 表面保護材、
15,25,35,95 裏面保護材、
16,26,36,96 充填材、
17,27,37 太陽電池封止部分とフレーム材の接合部材、
18,28,38,98 フレーム材、
10,20,90 太陽電池封止部分、
41 ステンレス・スチール基板、
42 n型非晶質シリコン薄膜、
43 i型非晶質シリコン薄膜、
44 p型非晶質シリコン薄膜、
45 n型非晶質シリコン薄膜、
46 i型非晶質シリコン薄膜、
47 p型非晶質シリコン薄膜、
48 反射防止層、
49 集電電極。
[0001]
[Industrial application fields]
The present invention relates to a solar cell module. More specifically, the present invention relates to a flexible solar cell module.
[0002]
[Prior art]
Solar cells, which are photoelectric conversion elements that convert sunlight into electrical energy, are widely used as power sources for consumer devices such as calculators and watches. It is attracting attention as a possible technology.
[0003]
A solar cell is a technology that uses a diffusion potential generated at a pn junction of a semiconductor. A semiconductor such as silicon absorbs sunlight, and photocarriers of electrons and holes are generated. It is drifted by an internal electric field generated by the diffusion potential and taken out to the outside. Examples of solar cell materials include tetrahedral amorphous semiconductors such as single crystal silicon, polycrystalline silicon, amorphous silicon, amorphous silicon germanium, and amorphous SiC, CdS, and Cu. 2 Examples include II-VI group semiconductors such as S and III-V group compound semiconductors such as GaAs and GaAlAs. In particular, thin-film solar cells using amorphous semiconductors are promising because they can produce large-area films compared to single-crystal solar cells, have a thin film thickness, and can be deposited on any substrate material. Is being viewed.
[0004]
Amorphous silicon solar cells, crystalline thin-film solar cells, etc. are thin, light and more flexible solar cell modules by using thin-film solar cell elements made on a flexible substrate such as stainless steel. Made in shape and put to practical use. In addition, the surface is coated with a coating material for weather resistance and protection from mechanical damage.
[0005]
Solar cells may be used indoors by utilizing the light of fluorescent lamps, but solar cells used outdoors are particularly various environments such as high temperature, low temperature, high humidity, wind, and rain. Sufficient durability against the influence from is required. Therefore, for example, as shown in FIG. 8, the solar cell module is generally composed of a portion (hereinafter referred to as a solar cell sealing portion) 90 in which a solar cell element is roughly divided and a frame portion 98. Yes. The solar cell sealing portion sandwiches the solar cell element 91 and the output wiring from the light receiving surface side and the back surface side thereof by using the surface protection material 94 and the adhesive 93, and the back surface protection material 95 and the adhesive 93, respectively. In addition, vacuum sealing is often performed.
[0006]
As a method for installing a solar cell, a method of providing a stand on the ground, a rooftop or a roof of a building to support the above solar cell module or sticking it to a wall surface of a building is common. In addition to this method when installing on the roof of a building, there is a method of installing the roof material and the solar cell on the roof as an integrated structure without using a frame.
[0007]
In addition, in the case of a solar cell having flexibility, in order to be able to be installed in a non-planar part such as a situation where the solar cell element is not destroyed, as the back surface protection member 92 on the solar cell sealing part, for example, In many cases, it has a structure in which a closed cell sheet-like foam material such as urethane resin or polyethylene resin is bonded.
[0008]
By the way, especially in the solar cell module which vacuum laminates a solar cell element using a sheet-like transparent resin as a surface protective material, the solar cell module is a surface protective material, an adhesive, and a back surface at a portion outside the solar cell element. The part to which the protective material is bonded is often cut according to a predetermined outer shape. Therefore, it is necessary to treat these end portions by some method to protect the solar cell element and the electric circuit portion inside the solar cell sealing portion from stress, moisture, and moisture (water vapor) from the outside environment.
[0009]
On the other hand, in the case of a solar cell module having a structure in which a strong backing material made of metal or steel is used as the back surface protection material of the solar cell sealing portion and a strong frame material made of aluminum is used as the frame material, for example. Is provided with slit-shaped grooves in the frame material surrounding the four edges of the solar cell sealing portion in advance, and the end portions of the solar cell sealing portion are fitted into the slit-shaped grooves, and the gap portions thereof are inserted. For example, a method of filling a filler 96 such as silicon rubber is used.
[0010]
On the other hand, in the conventional solar cell module that requires flexibility, it is impossible to use the above-described strong back surface protective material and strong frame material. Therefore, as described above, a flexible material is used as the material for the back surface protective material. Here, the protection method of the edge part of a solar cell sealing part becomes a problem. Assume that a flexible frame material such as rubber, plastic, polycarbonate, or the like is used as the frame material. In this case, in order to effectively protect the solar cell sealing portion, it is necessary to bond the solar cell sealing portion and the frame material by some method. The back side of the solar cell sealing portion has a high degree of freedom in material selection and is relatively easy to bond to the frame material. However, the surface side of the solar cell sealing portion is very difficult to adhere to the frame material for the following reason.
[0011]
For example, as a surface protective material for a solar cell sealing portion in which a solar cell element using a conductive substrate such as a stainless steel substrate is sealed, a fluororesin is often used and sufficient adhesion to these There are few adhesives and fillers that have the ability. The reason why a fluororesin or the like is used as the surface protection material is that the fluororesin or the like has high light transmittance and high durability against stress from the external environment. Furthermore, as a surface protection material, it is required that the surface is not easily dusty and has good water repellency, and fluororesin satisfies this requirement, but this also means that there is no appropriate adhesive. ing. Since the adhesion between the fluororesin and EVA is not sufficient as it is, the corona discharge treatment is often performed on the entire adhesion surface of the fluororesin to increase the adhesion. However, when corona discharge is applied to the entire surface, the above-mentioned non-dust adhesion and hydrophobicity are lowered. Further, performing corona discharge treatment only on the end portion requires improvement in the accuracy of the sealing operation and increases the cost of the treatment.
[0012]
For the above reasons, adhesive is applied to the edge and end of the solar cell sealing portion having flexibility, and the end portion is sufficiently surrounded by bonding the frame material made of flexible material and the solar cell sealing portion. It is difficult to protect.
[0013]
As another example, the adhesive such as EVA at the edge of the solar cell sealing portion is melted and driven out from the end, and the surface protective material (resin) and the back surface protective material (resin) of that portion are pressure bonded by heat. A way to do this is possible If this method is possible, the solar cell sealing portion itself has an end portion protection function, and the need for the frame material to protect the sealing portion is reduced. As a trial experiment, the present inventors tried the pressure bonding by heat as described above at various temperatures using Dupont Tefzel as a surface adhesive and nylon as a back surface protective material. Has not yet achieved a good adhesion.
[0014]
That is, in a solar cell module that requires flexibility, it is very difficult to effectively protect the end portion of the solar cell sealing portion.
[0015]
[Problems to be solved by the invention]
In view of the above drawbacks, the technical problem of the present invention is that the solar cell element is vacuum-sealed with at least a sheet-like resin and a sheet-like adhesive, and the edge of the sealing portion of the solar cell element is a slit of the frame material. In a solar cell module that has a structure inserted into the part and has flexibility, the end of the solar cell sealing part is deformed or damaged by external stress, or water vapor enters through the end and reaches the solar cell element. It is to prevent the failure of the solar cell element due to water vapor entering from the outside and the failure due to the electrical short circuit of the internal wiring of the solar cell module.
[0016]
[Means for Solving the Problems]
In the solar cell module of the present invention, a solar cell element formed by forming a semiconductor layer on a substrate is vacuum-sealed with at least a sheet-like resin and a sheet-like adhesive, and the edge of the sealed portion of the solar cell element is In the solar cell module having flexibility, which is inserted into the slit portion of the frame material, the frame material is a flexible joining member that penetrates a part of the edge portion inside the slit and holds the edge portion. Have It is characterized by being.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described.
[0018]
An example of a solar cell module according to this embodiment is shown in FIG. As shown in FIG. 1, in the solar cell module, a solar cell element formed by forming a semiconductor layer on a substrate is vacuum-sealed with at least a sheet-like resin and a sheet-like adhesive, and the solar cell element is sealed. In a flexible solar cell module in which an edge of a portion is inserted into a slit portion of a frame material, the frame material penetrates a part of the edge portion inside the slit and sandwiches the edge portion It is characterized by having.
[0019]
By using the solar cell module having such a configuration, the frame material is prevented from detaching from the solar cell sealing portion, and the water vapor penetrates through the end portion of the solar cell sealing portion. The failure of the solar cell element due to water vapor entering from the outside and the failure due to the electrical short circuit of the solar cell module internal wiring can be prevented.
[0020]
FIG. 1 is a cross-sectional view conceptually showing the configuration of an amorphous solar cell module. In FIG. 1, 11 is an amorphous solar cell element, 12 is a foam-made back surface protection member, 13 is an adhesive layer, 14 is a surface protection material, 15 is a back surface protection material, 16 is a filler, and 17 is a sealing portion. And a joining member of the frame member 18. The frame material 18 is formed with a slit-like groove that engages with the joining member. Sunlight enters from above in FIG.
[0021]
The configuration of the amorphous solar cell element is shown, for example, in FIG. In FIG. 7, 41 is a stainless steel substrate, 42 is an n-type amorphous silicon thin film, 43 is an i-type amorphous silicon thin film, 44 is a p-type amorphous silicon thin film, and 45 is an n-type amorphous silicon thin film. , 46 is an i-type amorphous silicon thin film, 47 is a p-type amorphous silicon thin film, 48 is an antireflection layer, and 49 is a collecting electrode. In the amorphous solar cell element shown in FIG. 7, n, i, p, n, i, p-type amorphous silicon thin films 42, 43, 44, 45, 46, 47 is laminated using an RF glow discharge method, indium tin oxide is vapor-deposited as a transparent electrode, and finally silver paste is printed as a grid electrode.
[0022]
Thus, the solar cell module of the present invention penetrates the edge of the solar cell sealing portion 10 from the front and back sides through part of the solar cell sealing portion 10, and the sealing portion 10 is joined to the frame member 18. 17, the filler material 16 is filled in the slit portion of the frame material 18, the end portion of the solar cell sealing portion 10 is inserted and bonded to the frame material, and the foam material is further attached to the back surface of the solar cell sealing portion 10. The back-surface protection member 12 is made by adhering with an adhesive. In FIG. 1, the wiring and output terminals of the solar cell element are omitted. The size and shape of the slit-shaped groove does not cause deformation / damage of the end portion of the solar cell sealing portion after insertion of the solar cell sealing portion and after a long period of time, and is suitable for the gap between the groove and the end portion. It is desirable that it is easy to fill the filler 16 made of any material.
[0023]
As an example, as shown in FIG. 1, the depth of the groove is longer than the length of the insertion portion at the end of the solar cell sealing portion, and a size / shape that can be filled with the filler is desirable. The shape is not limited to this. Moreover, as for a groove | channel, it is desirable to form without interruption over the full length of a long side and a short side among solar cell element sealing part edge parts.
[0024]
The material of the back protective member 12 made of the foam material is desirably one having sufficient durability against the external environment, that is, water resistance, heat resistance, and ultraviolet resistance. For example, closed cell foamed urethane with polyethylene adhered to the non-adhesive surface is not limited thereto. The material of the adhesive layer 13 is, for example, EVA, but is not limited thereto.
[0025]
Examples of the material of the surface protective material 14 include, but are not limited to, a fluororesin. As described above, the case where sealing is performed by vacuum lamination using a sheet-like fluororesin has been described, but in addition to this, for example, by using a liquid fluororesin and applying this, the surface protection material 14 is applied. It may be formed.
[0026]
The material of the back surface protection material 15 is suitable for a material having an adhesive capable of reliably adhering to the foam material back surface protection member 12, for example, sheet-like nylon, but is not limited thereto.
[0027]
Examples of the material of the filler 16 include, but are not limited to, silicon resin and butyl rubber.
[0028]
【Example】
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but it goes without saying that the present invention is not limited to these examples.
[0029]
Example 1
In Example 1, a solar cell module is manufactured by vacuum laminating an amorphous silicon solar cell element 11 with a surface protective material 14, a back surface protective material 15 and an adhesive layer 13 as shown in FIG. Repeated cycle tests in humidity and low temperature conditions, and conducted experiments to investigate the detachment status of the frame material, the failure of solar cell elements due to water vapor entering from the outside, and the frequency of failures due to electrical shorts of the entire solar cell module It was.
[0030]
As the amorphous solar cell 11 used in Example 1, n, i, p, n, i, and p-type amorphous silicon thin films are sequentially formed on a stainless steel substrate from the substrate side by using an RF glow discharge method. Then, indium tin oxide was vapor-deposited as a transparent electrode, and finally a silver paste was printed in a grid shape as a collecting electrode to obtain a unit of about 30 cm × 9 cm, which was serially arranged in 13 stages. FIG. 7 is a structural conceptual cross-sectional view showing the configuration of the amorphous solar cell 11.
[0031]
Also, sheet-like EVA is used as the adhesive layer 13, 100 μm-thick sheet-like Tefzel (a product name of Dupont) is used as the surface protection material 14, and aluminum foil is used on both sides as the back surface protection material 15. To white tedlar (trade name of DuPont).
[0032]
The above materials were laminated from the bottom in the order of the back surface protective material 15, the adhesive layer 13, the amorphous silicon solar cell element 11, the adhesive layer 13, and the surface protective material 14, and laminated at 100 ° C. using a vacuum laminator. . This was cut into a rectangle outside the outer dimensions of the solar cell element by 4 cm outside in the vertical and horizontal directions.
[0033]
The joining member between the solar cell sealing portion and the frame member was produced by integrally forming a relatively flexible plastic having the shape shown in FIGS. First, on the front side in the longitudinal direction of the solar cell sealing portion 10, a cylindrical projection having a diameter of 5.0 mm and a height of 1.5 mm is formed on one surface of a plate-like portion having a length of 138 cm, a width of 1.0 cm, and a thickness of about 1 mm. The thing 17a of the shape by which the part was arrange | positioned by 2 cm space | interval was produced. On the back side in the longitudinal direction of the solar cell sealing portion, on one surface of a plate-like portion having a length of 138 cm, a width of 0.5 cm, and a thickness of about 1 mm, a diameter of about An object 17b having a shape in which cylindrical concave portions of 5.0 mm and a depth of 0.5 mm are arranged at intervals of 2 cm was produced. In the short direction of the solar cell sealing portion, a joining member having a shape similar to that of the pair of joining members and having a length of 37 cm was produced. The longitudinal end of the joining member was formed at an angle of 45 degrees.
[0034]
Next, on the front and back surfaces of the solar cell sealing part, the long side of the joining member is aligned with the outermost end part of the sealing part and the part corresponding to the cylindrical convex part and the hole Drill a 3mm diameter hole through. The bonding member was coated with a commercially available water-based adhesive on the opposing surface and the columnar convex portions and concave portions, and the convex portions of the bonding member penetrated from the surface side into the holes at the edge of the solar cell sealing portion. Then, after crimping so as to be inserted into the hole of the joining member on the back surface side, it was dried for about 2 days.
[0035]
The frame material 18 was manufactured by integrally molding neoprene rubber having a shape shown in FIGS. 1 and 4 and relatively flexible. First, on the front side in the longitudinal direction of the solar cell sealing portion, a product having a shape in which a slit-like groove was arranged in a plate-like portion having a length of 138 cm, a width of 1.0 cm, and a thickness of about 5 mm was prepared. The slit-shaped groove had a depth of 6.0 mm and a thickness of about 3.0 mm. In the lateral direction of the solar cell sealing portion, a joining member having a shape similar to the above and having a length of 37 cm was produced.
[0036]
As described above, only the innermost portion of the slit-like groove of the frame material prepared in advance is filled with a butyl rubber filler over the entire length, and the remaining portion is coated with a water-based adhesive, and then sealed with a solar cell. It was covered with the joining member adhered to the edge of the stop portion and dried for about 2 days after being crimped.
[0037]
As the foam material back surface protection member 12, a commercially available closed cell urethane foam material having a thickness of 3 mm was cut into a 1.38 m × 0.35 m rectangle. A commercially available water-based adhesive was applied to one surface of the back protective member 12 made of the foam material and the entire back surface (that is, the Tedlar surface) of the solar cell sealing portion, and both were adhered and dried for about 2 days.
[0038]
Finally, output terminals were attached to the solar cell sealing portion, and a waterproof terminal box for protecting them was installed on the front side of the module. The solar cell module of the present invention was completed by the above procedure. Ten modules were produced.
[0039]
(Comparative Example 1)
As a conventional example, a solar cell module was produced in which a rubber frame material was bonded to a solar cell sealing portion with an adhesive.
[0040]
First, the solar cell sealing portion was prepared by using the same solar cell element as described above, vacuum-sealing with the same material, method and procedure, and having the same dimensions.
[0041]
The frame material was produced by integrally molding a relatively flexible neoprene rubber having the shape shown in FIG. First, on the front side in the longitudinal direction of the solar cell sealing portion, a shape in which a slit-like groove was arranged in a plate-like portion having a length of 138 cm, a width of 1.0 cm, and a thickness of about 3 mm was produced. The slit-shaped groove had a depth of 6.0 mm and a thickness of about 1.0 mm. In the short direction of the solar cell sealing portion, a frame material having the same shape as above and having a length of 37 cm was produced.
[0042]
Of the slit-shaped grooves of the frame material prepared in advance as described above, only the innermost portion is filled with the butyl rubber filler over the entire length, and the remaining portion is coated with a water-based adhesive, and then the solar cell. It was covered with the edge part of the sealing part and dried for about 2 days after the pressure bonding.
[0043]
The foam back surface protective member 12 was obtained by cutting a commercially available closed cell urethane foam material having a thickness of 3 mm, similar to the above, into a 1.38 m × 0.35 m rectangle. A commercially available water-based adhesive was applied to one surface of the back protective member 12 made of the foam material and the entire back surface (that is, the Tedlar surface) of the solar cell sealing portion, and both were adhered and dried for about 2 days.
[0044]
Finally, output terminals were attached to the solar cell sealing portion, and a waterproof terminal box for protecting them was installed on the front side of the module. The solar cell module of the conventional example was completed by the above procedure. Ten modules were produced.
[0045]
Using the solar cell module manufactured as described above, the frequency of occurrence of failure of the solar cell module due to the detachment of the frame material, the peeling of the end portion of the solar cell sealing portion, and the water vapor entering through the end portion is examined. The experiment was conducted.
[0046]
That is, a repeated cycle test of a high temperature / high humidity state and a low temperature state was performed on ten solar cell modules manufactured as described above, and the failure occurrence rate after the test was examined. The above environment was reproduced using a commercially available environmental tester.
[0047]
The environmental test apparatus has a chamber with internal dimensions of 1.5 m in width, 1.0 m in height, and 1.0 m in depth, and the temperature in the chamber can be controlled to −40 to + 200 ° C. and the relative humidity can be controlled to 0 to 100%. Is. This time, the temperature / humidity in the chamber of the environmental tester was controlled in accordance with the pattern described in UL 1703 in order to reproduce the outdoor use state of the solar cell module. That is, the temperature is first lowered from 20 ° C. to −40 ° C. at a rate of about 110 ° C./hour, and then kept constant for about 40 minutes. Next, the temperature was raised to + 85 ° C. at a rate of about 110 ° C./hour, held constant at 85 ° C. and 85% relative humidity for 4 hours and 10 minutes, and then heated to 20 ° C. at a rate of about 110 ° C./hour. Is lowered. This is a one-cycle pattern, which was carried out for 60 consecutive cycles.
[0048]
Here, although not described in UL 1703, it is necessary to irradiate the solar cell module with light in the sense of reproducing the actual usage situation of the solar cell module outdoors. However, it is generally known that amorphous silicon solar cells undergo photodegradation, and the electrical performance of the solar cell module is reduced by irradiating light. Therefore, this time, in order to distinguish between the effect on the solar cell module due to this light degradation and the effect on the solar cell module due to the entry of water vapor from the outside, which is a problem in the present invention, No light was irradiated. The output terminal was kept open and waterproofed with a terminal box.
[0049]
In the chamber of the environmental test apparatus described above, 10 produced solar cell modules were horizontally stacked in the chamber with a distance of about 10 cm so that the light receiving surface faced upward.
[0050]
After carrying out the above test for 60 cycles, these solar cell modules were taken out from the environmental test apparatus, and after wiping off water droplets and moisture adhering to the surface with a cloth, the state of detachment of the frame material was examined, and further commercially available The electrical performance of each solar cell module was measured using a large-scale simulated sunlight generation stand (SPIRE, 240A). The irradiated pseudo-sunlight is AM1.5GROBAL, intensity 100mW / cm 2 And measured at room temperature.
[0051]
As a result, when the frame material is detached, the shunt resistance is reduced to 1/10 or less, or the one that is electrically short-circuited is 4 out of 10 in the module of the first embodiment. The number of modules in one module is 9 out of 10, and the effect of the present invention was demonstrated.
[0052]
(Example 2)
In Example 2, as shown in FIGS. 2 and 5, a step over the entire length in the longitudinal direction is provided on one side of the solar cell sealing portion and the joining member of the frame material, and the frame material is a portion corresponding to the step of the joining member, That is, it was set as the shape which provided the convex part which a cross section becomes L shape in the entrance edge part of a slit-shaped groove | channel. The amorphous silicon solar cell element 11, the foam-made back surface protection member 12, the adhesive layer 13, the surface protection material 14, the back surface protection material 15, the filler 16, the solar cell sealing portion and the frame material of FIG. The bonding member 17 and the frame material 18 are the amorphous silicon solar cell element 21 of FIG. 2, the foamed back surface protection member 22, the adhesive layer 23, the surface protection material 24, the back surface protection material 25, the filler 26, the solar cell seal. The stop portion corresponds to the joining member 27 and the frame material 28 of the frame material, respectively. Moreover, the solar cell sealing part 10 of FIG. 4 respond | corresponds to the solar cell sealing part 20 of FIG.
[0053]
In Example 2, ten solar cell modules were produced in the same manner as in Example 1 except that the joining member and the frame material had the structure shown in FIG.
[0054]
The solar cell sealing portion and the frame material joining member 27 were produced by integrally molding a relatively flexible plastic having the shape shown in FIGS. First, on the front side in the longitudinal direction of the solar cell sealing portion, a cylindrical protrusion having a diameter of 5.0 mm and a height of 1.5 mm is formed on one surface of a plate-like portion having a length of 138 cm, a width of 1.0 cm, and a thickness of about 3 mm. A portion 27a having a shape in which the steps were arranged at intervals of 2 cm and a step of about 2 mm was provided only on one side of the surface opposite to the convex portion was produced. On the back side in the longitudinal direction of the solar cell sealing portion, on one surface of a plate-like portion having a length of 138 cm, a width of 0.5 cm, and a thickness of about 1 mm, a diameter of about 1 mm is provided at a location corresponding to the location of the cylindrical convex portion. A columnar concave portion having a diameter of 5.0 mm and a depth of 0.5 mm was arranged at an interval of 2 cm, and 27b having a shape in which a step of about 2 mm was provided only on one side of the surface opposite to the concave portion was produced. In the short direction of the solar cell sealing portion, a joining member having the same shape as the pair of joining members and having a length of 37 cm was produced. The longitudinal end of the joining member was formed at an angle of 45 degrees.
[0055]
Next, in the same manner as in Example 1, among the edge portions of the solar cell sealing portion, when the long side of the joining member is aligned with the outermost end portion of the sealing portion, it corresponds to the cylindrical convex portion and the hole. A hole with a diameter of 5 mm penetrating the front and back surfaces was made in the part to be made. About 2 days after the opposing surface and the columnar convex part are penetrated from the front surface side to the hole of the sealing member edge, and inserted into the hole of the bonding member on the back side and crimped. Dried.
[0056]
The frame material 28 was produced by integrally molding a relatively flexible neoprene rubber having the shape shown in FIG. First, a solar cell encapsulated portion was prepared in a shape in which a groove having a cross section as shown in FIG. 5 was arranged on a plate-like portion having a length of 138 cm, a width of 1.0 cm, and a thickness of about 9 mm on the front side in the longitudinal direction. . The slit-shaped groove had a depth of about 2 mm and a thickness of about 3 mm at the outer portion, and a depth of about 6.0 mm and a thickness of about 3.0 mm at the back. In the short direction of the solar cell sealing part, it was produced with a joining member having the same shape as above and having a length of 37 cm.
[0057]
After filling the entire length of the slit-like groove of the frame material 28 prepared in advance as described above with the butyl rubber filler over the entire length, and applying the aqueous adhesive to the remaining portion, the sun After fitting into the bonding member adhered to the edge of the battery sealing portion and press-bonding, it was dried for about 2 days.
[0058]
The foamed material back surface protective member 22 was the same as in Example 1, adhered to the back surface of the solar cell sealing portion, and dried for about 2 days. Finally, an output terminal and a waterproof terminal box were installed in the module at the solar cell sealing portion.
[0059]
About the solar cell module produced as mentioned above, the same evaluation test as Example 1 was done.
[0060]
As a result, the frame material was detached, the shunt resistance was reduced to 1/10 or less, or the electrical short circuit was 3 out of 10 in the module of Example 2. The effect of the invention was demonstrated.
[0061]
Example 3
In Example 3, a step over the entire length in the longitudinal direction is provided on one side of the joining member of the solar cell sealing portion and the frame material in the present invention, while a portion corresponding to the step of the joining member on the frame material, that is, a slit-like shape is provided. A convex portion having an L-shaped cross section was provided at the inlet end of the groove, and a concave portion was formed on the inner surface of the slit-like groove of the frame material, and a convex portion was provided on the corresponding joining member.
[0062]
In Example 3, ten solar cell modules were produced in the same manner as in Example 1 except that the frame material shown in FIG. 6 was used and the configuration of the solar cell module was changed to FIG. The amorphous silicon solar cell element 11, the foam-made back surface protection member 12, the adhesive layer 13, the surface protection material 14, the back surface protection material 15, the filler 16, the solar cell sealing portion and the frame material of FIG. The joining member 17 and the frame material 18 are the amorphous silicon solar cell element 31 of FIG. 3, the foamed back surface protection member 32, the adhesive layer 33, the surface protection material 34, the back surface protection material 35, the filler 36, the solar cell seal. The stop portion corresponds to the joining member 37 and the frame member 38 of the frame member, respectively. Moreover, the solar cell sealing portion 10 in FIG. 1 corresponds to the solar cell sealing portion 30 in FIG. 6.
[0063]
The solar cell sealing portion and the frame member were formed by integrally molding a relatively flexible plastic having the shape shown in FIG. First, on the front side in the longitudinal direction of the solar cell sealing portion, a cylindrical projection having a diameter of 5.0 mm and a height of 1.5 mm is formed on one surface of a plate-like portion having a length of 138 cm, a width of 1.0 cm, and a thickness of about 3 mm. The portions are arranged at intervals of 2 cm, and further, a step of about 2 mm is provided only on one side of the surface opposite to the convex portion, and the cross section as shown in FIG. The thing 37a of the shape which provided the convex part over the full length of the longitudinal direction was produced. On the back side in the longitudinal direction of the solar cell sealing portion, on one surface of a plate-like portion having a length of 138 cm, a width of 0.5 cm, and a thickness of about 1 mm, a diameter of about 1 mm is provided at a location corresponding to the location of the cylindrical convex portion. Cylindrical recesses of 5.0 mm and a depth of 0.5 mm are arranged at an interval of 2 cm, and further, a step of about 2 mm is provided only on one side of the surface opposite to the recesses. 6 having a shape in which a convex portion having a cross section of 1 mm in length and 1 mm in width was provided over the entire length in the longitudinal direction as shown in FIG. In the short direction of the solar cell sealing portion, a joining member having a shape similar to that of the pair of joining members and having a length of 37 cm was produced. The longitudinal end of the joining member was formed at an angle of 45 degrees.
[0064]
Next, in the same manner as in Example 1, among the edge portions of the solar cell sealing portion, when the long side of the joining member is aligned with the outermost end portion of the sealing portion, it corresponds to the cylindrical convex portion and the hole. A hole with a diameter of 3 mm penetrating the front and back surfaces was made in the part to be made. The bonding member was coated with a commercially available water-based adhesive on the opposing surface and the columnar convex portions and concave portions, and the convex portions of the bonding member penetrated from the surface side into the holes at the edge of the solar cell sealing portion. Then, after being thickly attached so as to be inserted into the hole of the joining member on the back surface side, it was dried for about 2 days.
[0065]
The frame member 38 was manufactured by integrally molding a relatively flexible neoprene rubber having the shape shown in FIG. First, a solar cell encapsulated portion was prepared in a shape in which a groove having a cross section as shown in FIG. 6 was arranged on a plate-like portion having a length of 138 cm, a width of 1.0 cm, and a thickness of about 11 mm on the front side in the longitudinal direction. . The slit-shaped groove had a depth of about 2 mm and a thickness of about 3 mm at the outer portion, and a depth of about 6.0 mm and a thickness of about 3.0 mm at the back. Further, the slit-like groove has a shape in which a concave portion, that is, a groove is provided at a position corresponding to the convex portion of the connecting member. In the lateral direction of the solar cell sealing portion, a joining member having a shape similar to the above and having a length of 37 cm was produced.
[0066]
As described above, only the innermost part of the slit-shaped groove of the frame material prepared in advance is filled with a butyl rubber filler over the entire length, and the remaining part is coated with a water-based adhesive, and then the sun. It was inserted into the bonding member adhered to the edge of the battery sealing portion, and after pressure bonding, dried for about 2 days.
[0067]
About the solar cell module produced as mentioned above, the same evaluation test as Example 1 was done.
[0068]
As a result, in the module of Example 3, 4 out of 10 cases where the frame material was detached, the shunt resistance was reduced to 1/10 or less, or the short circuited electrically were used. The effect of the invention was demonstrated.
[0069]
【The invention's effect】
As described above, according to the present invention, the detachment of the frame material from the solar cell sealing portion is prevented, and water vapor enters through the end of the solar cell sealing portion and reaches the solar cell element. Thus, it is possible to provide a solar cell module capable of preventing the failure of the solar cell element due to water vapor entering from the outside and the failure due to the electrical short circuit of the internal wiring of the solar cell module.
[Brief description of the drawings]
1 is a schematic cross-sectional view showing a solar cell module of Example 1. FIG.
2 is a schematic cross-sectional view showing a solar cell module of Example 2. FIG.
3 is a schematic cross-sectional view showing a solar cell module of Example 3. FIG.
4 is a schematic view showing a relationship between a solar cell sealing portion of Example 1 and a joining member of a frame material. FIG.
5 is a schematic view showing the relationship between a solar cell sealing portion of Example 2 and a joining member of a frame material. FIG.
6 is a schematic view showing the relationship between a solar cell sealing portion of Example 3 and a joining member of a frame material. FIG.
FIG. 7 is a schematic cross-sectional view showing a layer structure of an amorphous solar cell element.
FIG. 8 is a schematic cross-sectional view showing an example of a conventional flexible solar cell module.
[Explanation of symbols]
11, 21, 31, 91 Amorphous silicon solar cell element,
12, 22, 32, 92 Foam back protection member,
13, 23, 33, 93 adhesive layer,
14, 24, 34, 94 Surface protective material,
15, 25, 35, 95 Back surface protective material,
16, 26, 36, 96 filler,
17, 27, 37 Joining member of solar cell sealing portion and frame material,
18, 28, 38, 98 Frame material,
10, 20, 90 solar cell sealing part,
41 stainless steel substrate,
42 n-type amorphous silicon thin film,
43 i-type amorphous silicon thin film,
44 p-type amorphous silicon thin film,
45 n-type amorphous silicon thin film,
46 i-type amorphous silicon thin film,
47 p-type amorphous silicon thin film,
48 antireflection layer,
49 Current collecting electrode.

Claims (2)

基板上に半導体層を形成してなる太陽電池素子を少なくともシート状樹脂及びシート状接着剤で真空封止し、該太陽電池素子の封止した部分の縁部がフレーム材のスリット部分に挿入された、フレキシブル性を有する太陽電池モジュールにおいて、前記フレーム材はスリット内部に前記縁部の一部を貫通して該縁部を狭持する柔軟性のある接合部材を有していることを特徴とする太陽電池モジュール。A solar cell element formed by forming a semiconductor layer on a substrate is vacuum-sealed with at least a sheet-like resin and a sheet-like adhesive, and the edge of the sealed portion of the solar cell element is inserted into a slit portion of the frame material and, said the in a solar cell module having flexibility, the frame material having a joining member having the flexibility to holding the said edge portion through a portion of the edge within the slit Solar cell module. 前記接合部材にはその表面に段差部が設けられており、前記フレーム材には前記接合部材の段差部に嵌合する段差部が設けられていることを特徴とする請求項1に記載の太陽電池モジュール。2. The sun according to claim 1, wherein a step portion is provided on a surface of the joining member, and a step portion that is fitted to the step portion of the joining member is provided on the frame material. Battery module.
JP20507599A 1999-07-19 1999-07-19 Solar cell module Expired - Fee Related JP3734240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20507599A JP3734240B2 (en) 1999-07-19 1999-07-19 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20507599A JP3734240B2 (en) 1999-07-19 1999-07-19 Solar cell module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04361497A Division JP3078936B2 (en) 1992-12-28 1992-12-28 Solar cell

Publications (2)

Publication Number Publication Date
JP2000036612A JP2000036612A (en) 2000-02-02
JP3734240B2 true JP3734240B2 (en) 2006-01-11

Family

ID=16501019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20507599A Expired - Fee Related JP3734240B2 (en) 1999-07-19 1999-07-19 Solar cell module

Country Status (1)

Country Link
JP (1) JP3734240B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100909813B1 (en) 2008-11-20 2009-07-29 키스코홀딩스주식회사 Photovoltaic module comprising correction unit
KR101262481B1 (en) * 2011-04-05 2013-05-08 엘지이노텍 주식회사 Solar cell apparatus
CN105577094A (en) * 2015-12-31 2016-05-11 徐秀萍 Photovoltaic module
JP7449342B2 (en) 2022-03-24 2024-03-13 積水化学工業株式会社 Installation structure of solar power generation sheet

Also Published As

Publication number Publication date
JP2000036612A (en) 2000-02-02

Similar Documents

Publication Publication Date Title
US5252141A (en) Modular solar cell with protective member
EP2462623B1 (en) Module level solutions to prevent solar cell polarization
AU2005234458B2 (en) Photovoltaic module with an electric device
US5660646A (en) Solar battery module
US20120318318A1 (en) Cigs based thin film solar cells having shared bypass diodes
US20120152327A1 (en) Method of manufacturing solar modules
US20100147364A1 (en) Thin film photovoltaic module manufacturing methods and structures
US20050126622A1 (en) Solar cell module and method of producing the same
US20070012352A1 (en) Photovoltaic Modules Having Improved Back Sheet
US20120318319A1 (en) Methods of interconnecting thin film solar cells
US20110308563A1 (en) Flexible photovoltaic modules in a continuous roll
US20120031465A1 (en) Solar module in an insulating glass composite method for production and use
JPH0582820A (en) Modularized solar cell
US20120152325A1 (en) Junction box attachment to solar module laminate
JP5905475B2 (en) Solar cell module with connecting element
WO2012044596A2 (en) Thin film photovoltaic modules with structural bonds
WO2012002422A1 (en) Method for manufacturing solar cell module, and solar cell module manufactured by the method
SG194514A1 (en) Solar cell module structure and fabrication method for preventingpolarization
CA2850314A1 (en) Photovoltaic cell interconnect
US20130153004A1 (en) Junction box with a support member for thin film photovoltaic devices and their methods of manufacture
US20140182651A1 (en) Integrated junction insulation for photovoltaic module
EP3304602A1 (en) Solar junction box for solar panel
US20120024349A1 (en) Intra-laminate disk layer for thin film photovoltaic devices and their methods of manufacture
JP3734240B2 (en) Solar cell module
US20140318603A1 (en) All Plastic Solar Panel

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees