JP3733879B2 - Control device for fuel cell vehicle - Google Patents

Control device for fuel cell vehicle Download PDF

Info

Publication number
JP3733879B2
JP3733879B2 JP2001202342A JP2001202342A JP3733879B2 JP 3733879 B2 JP3733879 B2 JP 3733879B2 JP 2001202342 A JP2001202342 A JP 2001202342A JP 2001202342 A JP2001202342 A JP 2001202342A JP 3733879 B2 JP3733879 B2 JP 3733879B2
Authority
JP
Japan
Prior art keywords
power
fuel cell
vehicle
consumption
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001202342A
Other languages
Japanese (ja)
Other versions
JP2003018709A (en
Inventor
勇 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001202342A priority Critical patent/JP3733879B2/en
Publication of JP2003018709A publication Critical patent/JP2003018709A/en
Application granted granted Critical
Publication of JP3733879B2 publication Critical patent/JP3733879B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Charge By Means Of Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、制動時の運動エネルギーを電力に回生する回生機能を備えた燃料電池車両における制御装置に関する。
【0002】
【従来の技術】
近年、環境問題に対応して燃料電池を主要な電源とする電気自動車である燃料電池車両の開発が盛んになってきている。
図6に燃料電池システム1の概略を示す。燃料電池本体101は、高分子電解質膜102によって燃料である水素が供給される水素極と酸化体である空気を供給する空気極とに別れている。燃料電池の発電は以下のプロセスで行われる。まず水素極で水素が電子(e-)と水素イオン(H+)とに電離する。電子は外部回路(負荷)を通って水素極から空気極に達し、水素イオンは高分子電解質膜を通過して水素極から空気極に達する。空気極では、電子と水素イオンと酸素とが結合して水(H2O)を生成する。
【0003】
燃料電池の空気極へ空気を供給するには、コンプレッサ110にて外気を取り込み、圧縮された空気を配管103を介して燃料電池本体101の空気極へ供給する。コンプレッサ110はモータ111で駆動される。104は空気極の排気用の配管で、流路には圧力調整弁112が備えられ、圧力調整弁112の開度を調節して燃料電池の空気極を所定の圧力に制御する。
【0004】
105は水素を燃料電池の水素極へ供給する配管で、高圧水素タンクなどに貯蔵されている水素を圧力制御弁108が調圧し、燃料電池本体101の水素極の圧力を所定の圧力に制御する。106は水素極の排気用の配管で、下流にシャット弁109が設置され、通常はここは閉じられている。燃料電池の水つまり等によるセル電圧の低下が検知されると、シャット弁109が開けられ、水素とともに水分を排出して水つまりを解消する。シャット弁109の上流には水素の還流用の配管107が接続され、水素極出口から排出された水素が再び圧力制御弁108の下流に導かれる。これは、セル電圧安定化のために水素のストイキ比(供給流量/消費流量)を1以上にするために、消費しきれなかった水素を再び燃料電池本体101の水素極に供給する。
【0005】
図7に燃料電池の取り出し電力(電流)と水素極圧力の一例を示す。一般的に燃料電池からの取り出し電力が小さい時は、水素極圧力も小さくてすみ、取り出し電力を大きくするには、水素極圧力も大きくする必要がある。
【0006】
また、燃料電池本体101の空気極と水素極とのガス圧力差が過大となると、高分子電解質膜102が機能低下する恐れがあるので、両者の圧力差が所定値以下となるように制御しなければならない。
【0007】
燃料電池からの取り出し電力が小さい時でも、水素極の圧力を大きくした状態で、運転は可能であるが、前述の圧力差を所定値以下とするために空気極も圧力を大きくしておく必要がある。空気極の圧力が大きい状態は、コンプレッサ110を駆動するモータ111にとって負荷が大きい状態であり、その分電力を消費する。このために、高圧力での小電力取り出しという状態は、燃料電池システムとしては効率が悪くなるため、速やかにガス圧力を低下させることが好ましい。
【0008】
ここで、図8の線Aのように燃料電池に対する要求電力が大電力(例えば70kW)→小電力(例えば10kW)に急変し、それに従って燃料電池取り出し電力も線Aのように変化した場合を考える。図6に示したように燃料電池の水素極は閉鎖系となっており、発電電力を取り出さない限り水素極の水素は消費されず水素圧力も低下しない。このため、水素極圧力は図8のA´のように緩やかにしか下がらず、水素極圧力に対する差圧を所定内に維持するために、空気極の圧力もこれと同じくなるようにコンプレッサ110も駆動するので、T1の間は燃料電池システムとしては効率の悪い高圧力での小電力取り出しという状態が継続することになる。
【0009】
さらに、実際には圧力調整弁108の応答遅れや、従来例で指摘のように改質器への供給済み燃料が改質され、水素として燃料電池へ供給され続けることから、場合によっては線A″のように一旦水素極圧力が上昇することも考えられる。これを避けるために、シャット弁109を開け、水素極内の水素をパージする手段があるが、水素が電力に変換されず捨てられることになるので、これも燃料電池システムの効率としては悪くなることになる。
【0010】
このような余剰水素対策の従来技術として、例えば、特開2000−348746号公報記載の技術が知られている。この従来技術によれば、燃料電池電気自動車における負荷安定時には、2次電池に充電許容領域を確保しておき、燃料電池電気自動車における過渡時に発生する残水素(余剰水素)によって発電される余剰電力を2次電池に充電する。また、充電しきれなかった余剰電力によって、エアコンプレッサなどの補機を駆動するために用いる。
【0011】
すなわち、2次電池の充電容量を残水素回収用に空けておき、図8の線Bのように、要求電力が大電力から小電力へ変化した過渡時には車両の要求電力より多くの発電を行い、発電量と車両要求電力の差分を2次電池に充電する。その結果、水素極の圧力も線B´,B″のように、線Aで電力を取り出した時(A´またはA″)よりも早く下がることになり、燃料電池システムとして効率の悪い高圧力での小電力取り出しという状態を少なくしている。また、2次電池に充電しきれない分は、補機への電力とすることにしている。
【0012】
【発明が解決しようとする課題】
しかしながら、燃料電池に対する要求電力が大電力から小電力へ低下する場合というのは、ドライバーがアクセルを戻し、車両にとっては減速となる場合が多い。そのような場合は通常、車両の運転性の観点から所定の減速度が要求され、駆動モータからの回生電力が発生する。従来例では、このような駆動モータからの回生電力が考慮されていないために、残水素消費のための余剰発電分による充電だけで、いっぱいとなっている2次電池に、さらに回生電力による充電が行われるため、過充電となり、2次電池を劣化させるという問題点があった。
【0013】
以上の問題点に鑑み、本発明の目的は、車両制動時に回生ブレーキによる制動性能を確保した上で、2次電池へ過充電を行うことなく、余剰水素による発電電力を2次電池へ充電することができる燃料電池車両の制御装置を提供することである。
【0014】
【課題を解決するための手段】
請求項1記載の発明は、上記目的を達成するため、燃料電池と、2次電池と、車両を駆動する一方、車両減速時に運動エネルギーを回生電力に変換することができる車両駆動用モータと、前記燃料電池から前記2次電池または前記車両駆動用モータに電力を供給する電力制御手段と、を備えた燃料電池車両の制御装置であって、前記電力制御手段は、前記燃料電池からの電力取出し要求が大から小へ変化して余剰水素が発生する過渡時には、前記車両駆動用モータからの回生電力を優先して、該車両駆動用モータからの回生電力と前記余剰水素による燃料電池の発電電力とを燃料電池車両の補機及び2次電池に供給することを要旨とする。
【0015】
請求項2記載の発明は、上記目的を達成するため、請求項1に記載の燃料電池車両の制御装置において、前記車両駆動用モータの要求消費・回生電力(tPdrv)を演算する要求消費・回生電力演算手段と、燃料電池車両の補機消費電力(tPaux)を演算する補機消費電力演算手段と、前記2次電池の充電状態に基づいて2次電池入力可能電力(Pbchg)を演算する2次電池入力可能電力演算手段と、を備え、前記要求消費・回生電力(tPdrv)と補機消費電力(tPaux)と2次電池入力可能電力(Pbchg)とに基づいて燃料電池の最大発電電力制限値(tPmax)を演算し、余剰水素が発生している場合に、燃料電池の発電電力を前記最大発電電力制限値(tPmax)に制御することにより、前記車両駆動用モータからの回生電力を優先し、該車両駆動用モータからの回生電力と前記余剰水素による発電電力を前記2次電池に充電することを要旨とする。
【0016】
請求項3記載の発明は、上記目的を達成するため、請求項2に記載の燃料電池車両の制御装置において、前記要求消費・回生電力(tPdrv)は前記車両駆動用モータが電力を回生している場合は負の値をとり、前記要求消費・回生電力(tPdrv)と前記補機消費電力(tPaux)と前記2次電池入力可能電力(Pbchg)の合計を燃料電池の最大発電電力制限値(tPmax)として演算することを要旨とする。
【0017】
請求項4記載の発明は、上記目的を達成するため、請求項2に記載の燃料電池車両の制御装置において、車両が減速する場合に、前記最大発電電力制限値(tPmax)が補機消費電力(tPaux)を下回らないようにモータの要求消費・回生電力(tPdrv)を制御することを要旨とする。
【0018】
請求項5記載の発明は、上記目的を達成するため、請求項2に記載の燃料電池車両の制御装置において、燃料電池の水素極圧力を検出する水素極圧力検出手段と、燃料電池の負荷に適した目標圧力を演算する目標圧力演算手段と、を備え、前記車両駆動用モータの要求消費・回生電力(tPdrv)と補機消費電力(tPaux)から車両に要求される車両要求消費電力(tPvcl0)を演算し、前記検出された水素極圧力が目標圧力以下になる場合には、余剰水素が発生していない状態であると判断し、燃料電池の発電電力を、前記車両駆動用モータの電力回生が生じていない時は車両要求消費電力(tPvcl0)の値に、前記車両駆動用モータの電力回生が生じている時は補機消費電力(tPaux)を下回らない値に制限することを要旨とする。
【0019】
【発明の効果】
請求項1記載の発明によれば、燃料電池と、2次電池と、車両を駆動する一方、車両減速時に運動エネルギーを回生電力に変換することができる車両駆動用モータと、前記燃料電池から前記2次電池または前記車両駆動用モータに電力を供給する電力制御手段と、を備えた燃料電池車両の制御装置であって、前記電力制御手段は、前記燃料電池からの電力取出し要求が大から小へ変化して余剰水素が発生する過渡時には、前記車両駆動用モータからの回生電力を優先して、該車両駆動用モータからの回生電力と前記余剰水素による燃料電池の発電電力とを燃料電池車両の補機及び2次電池に供給するようにしたので、余剰水素が発生した場合に電力回生を優先して、回生ブレーキによる十分な減速度を確保した上で、余剰水素を2次電池の電力として回収し、燃費効率を向上させるという効果がある。
【0020】
請求項2記載の発明によれば、請求項1に記載の発明の効果に加えて、前記車両駆動用モータの要求消費・回生電力(tPdrv)を演算する要求消費・回生電力演算手段と、燃料電池車両の補機消費電力(tPaux)を演算する補機消費電力演算手段と、前記2次電池の充電状態に基づいて2次電池入力可能電力(Pbchg)を演算する2次電池入力可能電力演算手段と、を備え、前記要求消費・回生電力(tPdrv)と補機消費電力(tPaux)と2次電池入力可能電力(Pbchg)とに基づいて燃料電池の最大発電電力制限値(tPmax)を演算し、余剰水素が発生している場合に、燃料電池の発電電力を前記最大発電電力制限値(tPmax)に制御することにより、前記車両駆動用モータからの回生電力を優先し、該車両駆動用モータからの回生電力と前記余剰水素による発電電力を前記2次電池に充電するようにしたので、補機消費電力相当分を上積みした回生電力による更なる減速性能を確保した上で、余剰水素による発電電力を2次電池へ回収することができるという効果がある。
【0021】
請求項3記載の発明によれば、請求項2に記載の発明の効果に加えて、前記要求消費・回生電力(tPdrv)は前記車両駆動用モータが電力を回生している場合は負の値をとり、前記要求消費・回生電力(tPdrv)と前記補機消費電力(tPaux)と前記2次電池入力可能電力(Pbchg)の合計を燃料電池の最大発電電力制限値(tPmax)として演算するようにしたので、余剰水素が発生した場合に、2次電池入力可能電力よりも大きい車両駆動用モータの電力回生要求がある場合には2次電池入力可能電力を全て使って減速できるため十分減速が得られ、車両駆動用モータの電力回生がない場合には余剰水素による発電を2次電池入力可能電力に全て使ってできるため、水素極圧力及び空気極圧力を早く低下させ補機消費電力を早く低減させることができる。2次電池入力可能電力よりも小さい車両駆動用モータの電力回生要求がある場合には、車両駆動用モータの電力回生を優先して充電すると共に、余剰水素による発電電力を2次電池に充電できる。
【0022】
請求項4記載の発明によれば、請求項2に記載の発明の効果に加えて、車両が減速する場合に、前記最大発電電力制限値(tPmax)が補機消費電力(tPaux)を下回らないようにモータの要求消費・回生電力(tPdrv)を制御するようにしたので、補機消費電力で、余剰水素を消費できる。また、燃料電池には充電することができないので、燃料電池の最大発電電力制限値(tPmax)が負の値にならないようにする必要があるが、最大発電電力(tPmax)が補機消費電力(tPaux)を下回らないように車両駆動用モータの要求消費・回生電力(tPdrv)を制御することで、(補機消費電力は0よりも少し大きい正の値なので)車両駆動用モータの回生電力を制限でき、2次電池が過充電となるのを防止できる。
【0023】
請求項5記載の発明によれば、請求項2に記載の発明の効果に加えて、燃料電池の水素極圧力を検出する水素極圧力検出手段と、燃料電池の負荷に適した目標圧力を演算する目標圧力演算手段と、を備え、前記車両駆動用モータの要求消費・回生電力(tPdrv)と補機消費電力(tPaux)から車両に要求される車両要求消費電力(tPvcl0)を演算し、前記検出された水素極圧力が目標圧力以下になる場合には、余剰水素が発生していない状態であると判断し、燃料電池の発電電力を、前記車両駆動用モータの電力回生が生じていない時は車両要求消費電力(tPvcl0)の値に、前記車両駆動用モータの電力回生が生じているときは補機消費電力(tPaux)を下回らない値に制限するようにしたので、余剰水素の有無およびその量を正確に判断することができ、余剰水素が発生していない場合は、余剰水素による発電を行なわないようにできると同時に、車両の電力回生が生じている場合は補機駆動用の電力のみを燃料電池で発電した状態で車両駆動用モータによる電力回生が行えるという効果がある。なお、余剰水素は発生していない状態で、実際に補機で消費する電力を車両駆動用モータの回生電力で補おうとする場合には補機消費電力の値はゼロとすればよい。
【0024】
【発明の実施の形態】
図1は、本発明に係る燃料電池車両の制御装置を含む燃料電池車両の実施形態を説明するシステム構成図である。図1において、燃料電池システム(以下、単に燃料電池と呼ぶ)1は、例えば図6に示した構成の燃料電池システムであり、以下の説明では、図6を援用する。燃料電池車両の制御装置であるコントローラ6は、燃料電池システム1の水素と空気の圧力、流量などを圧力調整弁108,112、コンプレッサ110で制御することにより、その発電量を制御する。
【0025】
電力制御装置2は、燃料電池1より電力を取り出し、電圧、電流等を接続されている車両駆動用モータ4、補機5、2次電池3にあわせて供給する。2次電池3は、車両駆動用モータ4と補機5で消費される電力が、電力制御装置2から供給される電力より大きければ放電され、逆の場合は、充電する。
【0026】
車両駆動用モータ4は、いわゆるモータ・ジェネレータであり、走行時にはモータとして車両を駆動する一方、車両減速時又は制動時には、ジュネレータとして車両の運動エネルギーを回生電力に変換するものである。
【0027】
コントローラ6は、アクセル操作量や、車速などの車両状態、2次電池3の蓄電量(SOC)などの情報に基づいて、燃料電池の目標発電量を演算し、燃料電池1や、電力制御装置2に指令を与え、電力を供給する。同時に、車両駆動用モータ4に指令を与え、駆動力を制御する。
【0028】
さらにコントローラ6は、車両駆動用モータ4の要求消費・回生電力(tPdrv)を演算する要求消費・回生電力演算部7と、燃料電池車両の補機消費電力(tPaux)を演算する補機消費電力演算部8と、2次電池3の充電状態に基づいて2次電池入力可能電力(Pbchg)を演算する2次電池入力可能電力演算部9と、を備えている。そして、コントローラ6は、電力制御装置2へ指令を発して、燃料電池1からの電力取出し要求が大から小へ変化して余剰水素が発生する過渡時には、車両駆動用モータ4からの回生電力を優先して、車両駆動用モータ4からの回生電力と余剰水素による燃料電池1の発電電力とを2次電池3に充電するように制御するものである。
【0029】
図2、図3は、本実施形態におけるコントローラ6の動作を説明する制御フローチャートであり、以下本発明をこのフローチャートに沿って説明する。
【0030】
まず。ステップ1(以下、ステップをSと略す)では、2次電池の温度、電圧、電流などの2次電池状態を検出する。S2では検出した2次電池の温度、電圧、電流などに基づいて2次電池の蓄電状態(SOC)を演算する。この演算には、予め、温度、電圧、電流等の2次電池状態に対応するSOCをマップとして記憶しておき、このマップを参照して演算してもよいし、充電電流、放電電流の値に所定の係数(例えば、充電効率など)を乗じて時間積分した値をSOCとしてもよい。S3ではS2で演算したSOCや温度などをもとに、図4のようなマップを参照して、2次電池の入力可能電力Pbchgを演算する。
【0031】
図4は、一般的な2次電池におけるSOCに対する入出力可能電力特性例を示すグラフである。図4において、破線で示した入力(充電)可能電力は、SOCが0のとき最大となり、SOCの増加に連れて緩やかに低下する。そして、2次電池の種類により異なるがSOCが約80%程度を超えると、急激に入力可能電力が小さくなり、SOCが100%では、入力可能電力は0となる。
【0032】
次いで、S4ではアクセル操作量、車速などを検出する。S5では検出されたアクセル操作量、車速、セレクタのレンジ信号などをもとにマップなどから、ドライバーが要求する駆動トルクを演算し、演算した駆動トルクに車速及び係数を乗じて要求駆動・回生パワーを演算する。
【0033】
S6では、車両駆動用モータの効率特性などからS5で演算した要求駆動パワーを補正し、要求駆動・回生パワーを出力するのに必要な電力(または回生電力)である要求消費・回生電力tPdrvを演算する。tPdrvは、車両駆動用モータ4が車両を駆動しているときは正の値となり、車両を制動してエネルギー回生しているときは負の値となる。S7では、補機類のON/OFF状態、または図示しないDC/DCコンバータなどの電流、電圧を直接検知して、補機消費電力tPauxを演算する。S8では、今まで演算した値をもとに車両の要求消費電力tPvcl0を以下の式(1)で演算する。
【0034】
【数1】
tPvcl0=tPdrv+tPaux …(1)
この車両の要求消費電力tPvcl0は、これから消費される車両の全消費・回生電力を表すことになる。S9では最大発電電力制限値tPmaxを以下の式(2)で演算する。
【0035】
【数2】
tPmax=Pbchg+tPvcl0 …(2)
このtPmaxは、車両の全消費・回生電力と2次電池の充電可能電力を加算したものであるので、この値を超えて燃料電池より電力を取り出すと、2次電池が過充電となる値である。S10ではtPvcl0とtPauxとを比較し、その大きい方を燃料電池の目標発電電力tPgenとする。tPvcl0は車両の全消費・回生電力であるので、正負(正の時消費、負の時回生)があるが、燃料電池の発電電力としては、最低、補機消費分は発電しておくことになる。S11ではtPgenを元に、例えば図7に示したような特性から目標ガス圧力tPrsを演算する。S12では、燃料電池の空気極および水素極の各配管に取り付けられた各圧力センサから、空気極圧力値rPair、水素極圧力値rPh2を読み込む。
【0036】
S13では、S12で読み込んだrPairとrPh2との差圧が所定値以下としながら、両者が目標ガス圧力tPrsとなるように、空気圧力制御弁112とコンプレッサ110の操作量、および水素圧力制御弁108の操作量を演算し、それらを制御する。
【0037】
なお、車両の要求電力が小さくなるときは、それに応じて、水素圧力制御弁108が閉じる方向に制御するが、車両の要求電力が急に小さくなったときに、水素圧力制御弁108を全閉にしても、シャット弁109は閉じたままなので、還流用配管107内の水素は急に減少できない。したがって、小さくなった電力要求分の水素が徐々に消費されるので、rPh2はゆっくり低下し、すぐには目標ガス圧力tPrsとはならない。
【0038】
S14では水素極圧力検出値rPh2が目標ガス圧力tPrsより大きいかどうかを判定する。rPh2>tPrsと判定されると、S15で残水素回収可能電力tPplsを以下の式(3)で演算する。
【0039】
【数3】
tPpls=tPmax−tPgen …(3)
一方、S14でrPh2<=tPrsと判定されれば、S16で残水素回収可能電力tPplsは0とする。S17では、電力制御装置指令値tPpmを以下の式(4)で演算し、tPpmの電力を燃料電池で発電する。
【0040】
【数4】
tPpm=tPgen+tPpls …(4)
演算されたtPpmが電力制御装置2に指示され、その電力が燃料電池1より取り出される。
【0041】
次に、図5を参照して本発明の効果を説明する。図5は、各部の電力及び水素極圧力の時間変化を示すタイムチャートである。このタイムチャートは、T1が一定のアクセル開度が継続した状態、T2がアクセルを徐々に戻す状態、T3及びT4が回生ブレーキによる車両制動状態を示すものである。
【0042】
T1の間は、目標ガス圧力tPrsと水素極圧力検出値rPh2が等しい、いわゆる定常状態であるため、目標発電電力tPgenと電力制御装置2の指令値tPpmは同じ値となる。また、燃料電池1からの取り出し電力tPpmと車両の要求消費電力tPvcl0は等しいために、2次電池3への充電は行われない。
【0043】
T2になると車両の要求消費電力tPvcl0が減少しはじめ、それに伴い目標発電電力tPgenも減少し、目標ガス圧力tPrsも減少する。しかし水素ガス供給を絞っても直ぐに水素ガス圧力は低下しないので、水素極圧力検出値rPh2>目標ガス圧力tPrsとなり、tPpmはtPgenに残水素回収可能電力tPplsが加算され、燃料電池1より取り出される。この時、tPplsと2次電池充電可能電力Pbchgは等しいので、2次電池3の充電余裕は、すべて残水素回収に用いられ、2次電池3は充電可能電力と同じ値で充電される。
【0044】
T3になると、車両駆動用モータの回生電力(負の値)が補機消費電力よりも大きくなるため、tPvcl0が負になる、すなわち車両全体として回生要求が発生している。その結果、tPplsは回生要求の増加に伴いPbchgから0へと変化する。この間は2次電池3にはT2と同様、充電可能電力と同じ値で充電されるが、そのうちの残水素回収電力の占める値がPbchgから0へと変化する。このため、rPh2の減少速度も次第に緩やかになる。tPplsが0になったところで、tPgenとtPpmは等しくなり、2次電池に充電される電力は完全に回生による電力となる。
【0045】
T4では残水素は電力として回収していない(補機駆動の発電のみに残水素を消費している)ので、残水素回収分の電力は無く、2次電池には充電されないが、rPh2は、tPrsより大きい状態であるので、rPh2との差圧を無くするために空気極の圧力をrPh2に維持しなければならず、コンプレッサも負荷の高い運転をしなければならない。そのため、燃料電池から取り出される電力(補機消費電力tPaux)は、目標ガス圧で運転したときよりも大きな値とすることができ、その分を残水素による発電で消費することで、rPh2は速く減少できる。
【0046】
なお、減速時に発生する残水素が全て消費された場合には、燃料電池で残水素を消費する必要がないので、燃料電池から取り出す補機消費電力はゼロとして、回生電力から補機消費電力を賄うようにしてもよい。
【図面の簡単な説明】
【図1】本発明に係る燃料電池車両の制御装置の実施形態を説明するシステム構成図である。
【図2】実施形態の動作を説明するフローチャートである。
【図3】実施形態の動作を説明するフローチャートである。
【図4】2次電池におけるSOCに対する入出力電力の特性例を示す図である。
【図5】本発明の効果を説明するタイムチャートである。
【図6】燃料電池システムの一例を示す構成図である。
【図7】燃料電池の取り出し電力に対する水素極圧力特性の一例を示す図である。
【図8】従来技術の問題点を説明する図である。
【符号の説明】
1 燃料電池システム
2 電力制御装置
3 2次電池
4 車両駆動用モータ
5 車両補機
6 コントローラ
7 要求消費・回生電力演算部
8 補機消費電力演算部
9 2次電池入力可能電力演算部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device in a fuel cell vehicle having a regeneration function for regenerating kinetic energy during braking into electric power.
[0002]
[Prior art]
In recent years, development of a fuel cell vehicle, which is an electric vehicle using a fuel cell as a main power source in response to environmental problems, has become active.
FIG. 6 shows an outline of the fuel cell system 1. The fuel cell main body 101 is divided into a hydrogen electrode supplied with hydrogen as a fuel and an air electrode supplied with air as an oxidant by a polymer electrolyte membrane 102. The power generation of the fuel cell is performed by the following process. First, hydrogen is ionized into electrons (e ) and hydrogen ions (H + ) at the hydrogen electrode. Electrons pass from the hydrogen electrode to the air electrode through an external circuit (load), and hydrogen ions pass from the hydrogen electrode to the air electrode through the polymer electrolyte membrane. At the air electrode, electrons, hydrogen ions, and oxygen are combined to produce water (H 2 O).
[0003]
In order to supply air to the air electrode of the fuel cell, outside air is taken in by the compressor 110 and the compressed air is supplied to the air electrode of the fuel cell main body 101 via the pipe 103. The compressor 110 is driven by a motor 111. 104 is a pipe for exhausting the air electrode, and a pressure adjusting valve 112 is provided in the flow path. The opening of the pressure adjusting valve 112 is adjusted to control the air electrode of the fuel cell to a predetermined pressure.
[0004]
A pipe 105 supplies hydrogen to the hydrogen electrode of the fuel cell. The pressure control valve 108 regulates the hydrogen stored in the high-pressure hydrogen tank and controls the pressure of the hydrogen electrode of the fuel cell body 101 to a predetermined pressure. . 106 is a piping for exhausting the hydrogen electrode, and a shut valve 109 is installed downstream, which is normally closed. When a drop in the cell voltage due to fuel cell water or the like is detected, the shut valve 109 is opened, and water is discharged together with hydrogen to eliminate water clogging. A hydrogen recirculation pipe 107 is connected upstream of the shut valve 109, and hydrogen discharged from the hydrogen electrode outlet is again led downstream of the pressure control valve 108. In order to stabilize the cell voltage, the hydrogen stoichiometric ratio (supply flow rate / consumption flow rate) is set to 1 or more, and hydrogen that cannot be consumed is supplied again to the hydrogen electrode of the fuel cell main body 101.
[0005]
FIG. 7 shows an example of fuel cell extraction power (current) and hydrogen electrode pressure. Generally, when the electric power taken out from the fuel cell is small, the hydrogen electrode pressure can be reduced. To increase the electric power taken out, the hydrogen electrode pressure needs to be increased.
[0006]
In addition, if the gas pressure difference between the air electrode and the hydrogen electrode of the fuel cell body 101 becomes excessive, the function of the polymer electrolyte membrane 102 may be deteriorated. Therefore, the pressure difference between the two is controlled to be a predetermined value or less. There must be.
[0007]
Even when the power taken out from the fuel cell is small, operation is possible with the hydrogen electrode pressure increased, but the air electrode must also be increased in order to keep the above pressure difference below a predetermined value. There is. The state where the pressure of the air electrode is large is a state where the load is large for the motor 111 driving the compressor 110, and power is consumed accordingly. For this reason, since the state of taking out small electric power at a high pressure becomes inefficient as a fuel cell system, it is preferable to quickly reduce the gas pressure.
[0008]
Here, a case where the required power for the fuel cell suddenly changes from a large power (for example, 70 kW) to a small power (for example, 10 kW) as shown by the line A in FIG. Think. As shown in FIG. 6, the hydrogen electrode of the fuel cell is a closed system, and unless the generated power is taken out, the hydrogen at the hydrogen electrode is not consumed and the hydrogen pressure is not lowered. For this reason, the hydrogen electrode pressure decreases only slowly as shown by A 'in FIG. 8, and in order to maintain the differential pressure with respect to the hydrogen electrode pressure within a predetermined range, the compressor 110 also has the same pressure as the air electrode. Since it is driven, the state of taking out small electric power at high pressure, which is inefficient as the fuel cell system, continues during T1.
[0009]
Further, in practice, since the response delay of the pressure regulating valve 108 or the fuel already supplied to the reformer is reformed and continuously supplied as hydrogen to the fuel cell as pointed out in the conventional example, depending on the case, the line A It is also conceivable that the hydrogen electrode pressure rises once as in the case of "". To avoid this, there is a means to open the shut valve 109 and purge the hydrogen in the hydrogen electrode, but the hydrogen is discarded without being converted into electric power. As a result, this also deteriorates the efficiency of the fuel cell system.
[0010]
For example, a technique described in Japanese Patent Application Laid-Open No. 2000-348746 is known as a conventional technique for countermeasures against such surplus hydrogen. According to this prior art, surplus power generated by remaining hydrogen (surplus hydrogen) generated during a transient in a fuel cell electric vehicle by securing a chargeable area in the secondary battery when the load in the fuel cell electric vehicle is stable. Is charged to the secondary battery. Further, it is used to drive an auxiliary machine such as an air compressor by surplus power that could not be charged.
[0011]
That is, the rechargeable battery has a charge capacity for recovering the residual hydrogen, and as shown in line B in FIG. 8, when the required power changes from high power to low power, power is generated more than the required power of the vehicle. The secondary battery is charged with the difference between the power generation amount and the required vehicle power. As a result, the pressure of the hydrogen electrode also drops faster than when power is taken out from the line A (A ′ or A ″) as shown by the lines B ′ and B ″. The state of taking out a small electric power at is reduced. In addition, the amount that cannot be fully charged in the secondary battery is used as power to the auxiliary machine.
[0012]
[Problems to be solved by the invention]
However, when the required power for the fuel cell decreases from high power to low power, the driver often returns the accelerator, and the vehicle often decelerates. In such a case, a predetermined deceleration is usually required from the viewpoint of vehicle drivability, and regenerative power is generated from the drive motor. In the conventional example, since the regenerative power from such a drive motor is not taken into consideration, the rechargeable battery is further charged to the full secondary battery only by charging by surplus power generation for residual hydrogen consumption. Therefore, there is a problem that the battery is overcharged and the secondary battery is deteriorated.
[0013]
In view of the above problems, an object of the present invention is to charge the generated power by surplus hydrogen to the secondary battery without overcharging the secondary battery, while ensuring the braking performance by the regenerative brake during vehicle braking. The present invention provides a control device for a fuel cell vehicle.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a first aspect of the present invention provides a fuel cell, a secondary battery, a vehicle driving motor that drives a vehicle, and that can convert kinetic energy into regenerative power during vehicle deceleration, And a power control means for supplying power from the fuel cell to the secondary battery or the vehicle drive motor, wherein the power control means takes out power from the fuel cell. At the time when the demand changes from large to small and surplus hydrogen is generated, the regenerative power from the vehicle drive motor is given priority, and the regenerative power from the vehicle drive motor and the generated power of the fuel cell by the surplus hydrogen Is supplied to an auxiliary machine and a secondary battery of a fuel cell vehicle .
[0015]
According to a second aspect of the present invention, in order to achieve the above object, in the fuel cell vehicle control device according to the first aspect, the required consumption / regeneration for calculating the required consumption / regenerative power (tPdrv) of the motor for driving the vehicle. Power calculation means, auxiliary machine power consumption calculation means for calculating the auxiliary machine power consumption (tPaux) of the fuel cell vehicle, and secondary battery input possible power (Pbchg) based on the charge state of the secondary battery 2 A secondary battery input power calculation means, and a maximum power generation limit of the fuel cell based on the required consumption / regenerative power (tPdrv), auxiliary machine power consumption (tPaux), and secondary battery input power (Pbchg) Priority is given to regenerative power from the vehicle drive motor by calculating the value (tPmax) and controlling the generated power of the fuel cell to the maximum generated power limit value (tPmax) when surplus hydrogen is generated From the motor for driving the vehicle. The gist is to charge the secondary battery with raw power and power generated by the surplus hydrogen.
[0016]
In order to achieve the above object, according to a third aspect of the present invention, in the control apparatus for a fuel cell vehicle according to the second aspect, the required consumption / regenerative power (tPdrv) is generated by the vehicle driving motor regenerating power. If it is, take a negative value, and add the required consumption / regenerative power (tPdrv), the auxiliary machine power consumption (tPaux), and the secondary battery input power (Pbchg) to the maximum generated power limit value of the fuel cell ( The gist is to calculate as tPmax).
[0017]
In order to achieve the above object, according to a fourth aspect of the present invention, in the control apparatus for a fuel cell vehicle according to the second aspect, when the vehicle decelerates, the maximum generated power limit value (tPmax) is the auxiliary power consumption. The gist is to control the required consumption / regenerative power (tPdrv) of the motor so that it does not fall below (tPaux).
[0018]
According to a fifth aspect of the present invention, in order to achieve the above object, in the control apparatus for a fuel cell vehicle according to the second aspect, a hydrogen electrode pressure detecting means for detecting a hydrogen electrode pressure of the fuel cell and a load of the fuel cell are provided. Target pressure calculation means for calculating a suitable target pressure, and required vehicle power consumption (tPvcl0) required for the vehicle from the required power consumption / regenerative power (tPdrv) and auxiliary machine power consumption (tPaux) of the vehicle drive motor ), And when the detected hydrogen pole pressure is equal to or lower than the target pressure, it is determined that surplus hydrogen is not generated, and the generated power of the fuel cell is used as the power of the vehicle drive motor. When the regeneration is not occurring, the value of the vehicle required power consumption (tPvcl0) is limited to the value, and when the power regeneration of the vehicle drive motor is occurring, the auxiliary power consumption (tPaux) is limited to a value that is not lower. To do.
[0019]
【The invention's effect】
According to the first aspect of the present invention, the fuel cell, the secondary battery, the vehicle driving motor that drives the vehicle, and that can convert kinetic energy into regenerative power during vehicle deceleration, and the fuel cell And a power control means for supplying power to a secondary battery or the vehicle drive motor, wherein the power control means has a large or small power take-out request from the fuel cell. At the time of transition in which surplus hydrogen is generated due to a change to the fuel cell vehicle , priority is given to the regenerative power from the vehicle drive motor, and the regenerative power from the vehicle drive motor and the power generated by the fuel cell by the surplus hydrogen are used. because of the to be supplied to the auxiliary and the secondary battery, by giving priority to power regeneration when a surplus of hydrogen is generated, while ensuring a sufficient deceleration by regenerative braking, electric secondary battery excess hydrogen It recovered as an effect of improving the fuel efficiency.
[0020]
According to the second aspect of the present invention, in addition to the effect of the first aspect, the required consumption / regenerative power calculating means for calculating the required consumption / regenerative power (tPdrv) of the vehicle drive motor; Auxiliary power consumption calculating means for calculating the auxiliary power consumption (tPaux) of the battery vehicle, and a secondary battery input possible power calculation for calculating the secondary battery input possible power (Pbchg) based on the charging state of the secondary battery. And calculating a maximum generated power limit value (tPmax) of the fuel cell based on the required consumption / regenerative power (tPdrv), auxiliary machine power consumption (tPaux), and secondary battery input power (Pbchg) When surplus hydrogen is generated, the regenerative power from the vehicle drive motor is given priority by controlling the power generated by the fuel cell to the maximum power generation limit value (tPmax). Electricity generated by regenerative power from the motor and surplus hydrogen Since the secondary battery is charged with electric power, it is possible to recover the power generated by surplus hydrogen to the secondary battery while ensuring further deceleration performance by the regenerative electric power corresponding to the auxiliary machine power consumption. There is an effect that can be done.
[0021]
According to the invention of claim 3, in addition to the effect of the invention of claim 2, the required consumption / regenerative power (tPdrv) is a negative value when the vehicle driving motor is regenerating power. And the sum of the required consumption / regenerative power (tPdrv), the auxiliary machine power consumption (tPaux) and the secondary battery input power (Pbchg) is calculated as the maximum generated power limit value (tPmax) of the fuel cell. Therefore, when surplus hydrogen is generated, if there is a power regeneration request for the vehicle drive motor that is larger than the input power of the secondary battery, it can be decelerated using all of the input power of the secondary battery, so that sufficient deceleration is achieved. As a result, when there is no power regeneration of the motor for driving the vehicle, power generation by surplus hydrogen can be used for all the power that can be input to the secondary battery. Can be reduced. When there is a power regeneration request for the vehicle driving motor that is smaller than the power that can be input to the secondary battery, the power regeneration of the vehicle driving motor is preferentially charged and the secondary battery can be charged with the power generated by surplus hydrogen. .
[0022]
According to the invention of claim 4, in addition to the effect of the invention of claim 2, when the vehicle decelerates, the maximum generated power limit value (tPmax) does not fall below the auxiliary machine power consumption (tPaux). As described above, since the required consumption / regenerative power (tPdrv) of the motor is controlled, surplus hydrogen can be consumed with the power consumption of the auxiliary equipment. In addition, since the fuel cell cannot be charged, it is necessary to prevent the maximum generated power limit value (tPmax) of the fuel cell from becoming a negative value, but the maximum generated power (tPmax) is the auxiliary power consumption ( By controlling the required consumption / regenerative power (tPdrv) of the vehicle drive motor so that it does not fall below tPaux), the regenerative power of the vehicle drive motor is reduced (since the auxiliary machine power consumption is a positive value slightly larger than 0). It can restrict | limit and can prevent that a secondary battery becomes overcharged.
[0023]
According to the invention described in claim 5, in addition to the effect of the invention described in claim 2, the hydrogen electrode pressure detecting means for detecting the hydrogen electrode pressure of the fuel cell and the target pressure suitable for the load of the fuel cell are calculated. Target pressure calculating means for calculating vehicle required power consumption (tPvcl0) required for the vehicle from required consumption / regenerative power (tPdrv) and auxiliary machine power consumption (tPaux) of the vehicle drive motor, When the detected hydrogen electrode pressure is equal to or lower than the target pressure, it is determined that surplus hydrogen is not generated, and the generated power of the fuel cell is used as the power regeneration of the vehicle drive motor is not generated. Is limited to the value of the vehicle required power consumption (tPvcl0), and when the power regeneration of the vehicle drive motor is occurring, it is limited to a value that does not fall below the auxiliary machine power consumption (tPaux). The amount can be accurately determined When surplus hydrogen is not generated, power generation by surplus hydrogen can be prevented. At the same time, when power regeneration of the vehicle occurs, the vehicle is driven with only the power for driving auxiliary equipment generated by the fuel cell. There is an effect that power regeneration can be performed by the motor for use. In the state where surplus hydrogen is not generated, when it is intended to supplement the electric power actually consumed by the auxiliary machine with the regenerative electric power of the vehicle driving motor, the value of the auxiliary machine electric power consumption may be zero.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a system configuration diagram illustrating an embodiment of a fuel cell vehicle including a control device for a fuel cell vehicle according to the present invention. In FIG. 1, a fuel cell system (hereinafter simply referred to as a fuel cell) 1 is a fuel cell system having the configuration shown in FIG. 6, for example, and FIG. 6 is used in the following description. The controller 6, which is a control device for the fuel cell vehicle, controls the amount of power generated by controlling the pressure and flow rate of hydrogen and air in the fuel cell system 1 with the pressure regulating valves 108 and 112 and the compressor 110.
[0025]
The electric power control device 2 takes out electric power from the fuel cell 1 and supplies the electric power, voltage, current and the like to the vehicle driving motor 4, the auxiliary machine 5, and the secondary battery 3 connected thereto. The secondary battery 3 is discharged if the electric power consumed by the vehicle driving motor 4 and the auxiliary machine 5 is larger than the electric power supplied from the electric power control device 2, and charged in the opposite case.
[0026]
The vehicle drive motor 4 is a so-called motor / generator, which drives the vehicle as a motor during traveling, and converts the kinetic energy of the vehicle into regenerative power as a generator during vehicle deceleration or braking.
[0027]
The controller 6 calculates the target power generation amount of the fuel cell based on information such as the accelerator operation amount, the vehicle state such as the vehicle speed, and the storage amount (SOC) of the secondary battery 3, and the fuel cell 1 and the power control device A command is given to 2 to supply power. At the same time, a command is given to the vehicle driving motor 4 to control the driving force.
[0028]
The controller 6 further includes a required consumption / regenerative power calculation unit 7 for calculating the required consumption / regenerative power (tPdrv) of the vehicle drive motor 4 and an auxiliary machine power consumption for calculating the auxiliary machine power consumption (tPaux) of the fuel cell vehicle. A calculation unit 8 and a secondary battery input possible power calculation unit 9 that calculates secondary battery input possible power (Pbchg) based on the state of charge of the secondary battery 3 are provided. Then, the controller 6 issues a command to the power control device 2, and at the time of a transient in which surplus hydrogen is generated due to a change in the power extraction request from the fuel cell 1 from large to small, the regenerative power from the vehicle drive motor 4 is generated. The secondary battery 3 is preferentially controlled so that the regenerative power from the vehicle drive motor 4 and the generated power of the fuel cell 1 by surplus hydrogen are charged.
[0029]
2 and 3 are control flowcharts for explaining the operation of the controller 6 in the present embodiment. Hereinafter, the present invention will be described with reference to this flowchart.
[0030]
First. In step 1 (hereinafter, step is abbreviated as S), the secondary battery state such as the temperature, voltage, and current of the secondary battery is detected. In S2, the state of charge (SOC) of the secondary battery is calculated based on the detected temperature, voltage, current, etc. of the secondary battery. In this calculation, the SOC corresponding to the secondary battery state such as temperature, voltage, and current may be stored in advance as a map, and the calculation may be performed with reference to this map. The SOC may be a value obtained by multiplying a predetermined coefficient (for example, charging efficiency) and time integration. In S3, the input power Pbchg of the secondary battery is calculated based on the SOC and temperature calculated in S2 with reference to a map as shown in FIG.
[0031]
FIG. 4 is a graph showing an example of an input / output possible power characteristic with respect to SOC in a general secondary battery. In FIG. 4, the power that can be input (charged) indicated by a broken line becomes maximum when the SOC is 0, and gradually decreases as the SOC increases. Depending on the type of the secondary battery, when the SOC exceeds about 80%, the input power is drastically reduced. When the SOC is 100%, the input power is 0.
[0032]
Next, in S4, the accelerator operation amount, the vehicle speed, and the like are detected. In S5, the driving torque required by the driver is calculated from a map based on the detected accelerator operation amount, vehicle speed, selector range signal, etc., and the calculated driving torque is multiplied by the vehicle speed and coefficient to obtain the required driving / regenerative power. Is calculated.
[0033]
In S6, the required drive power calculated in S5 is corrected from the efficiency characteristics of the vehicle drive motor, etc., and the required consumption / regenerative power tPdrv that is the power (or regenerative power) required to output the required drive / regenerative power is obtained. Calculate. tPdrv has a positive value when the vehicle driving motor 4 is driving the vehicle, and has a negative value when the vehicle is braked to regenerate energy. In S7, the auxiliary machine power consumption tPaux is calculated by directly detecting the ON / OFF state of the auxiliary equipment or the current and voltage of a DC / DC converter (not shown). In S8, the required power consumption tPvcl0 of the vehicle is calculated by the following equation (1) based on the values calculated so far.
[0034]
[Expression 1]
tPvcl0 = tPdrv + tPaux (1)
The required power consumption tPvcl0 of this vehicle represents the total consumption / regenerative power of the vehicle that will be consumed in the future. In S9, the maximum generated power limit value tPmax is calculated by the following equation (2).
[0035]
[Expression 2]
tPmax = Pbchg + tPvcl0 (2)
Since this tPmax is the sum of the vehicle's total consumption / regenerative power and the rechargeable power of the secondary battery, if the power is extracted from the fuel cell exceeding this value, the secondary battery will be overcharged. is there. In S10, tPvcl0 and tPaux are compared, and the larger one is set as the target generated power tPgen of the fuel cell. Since tPvcl0 is the total consumption / regenerative power of the vehicle, there are positive and negative (consumption when positive, regenerative when negative), but the minimum amount of power generated by the fuel cell is to generate power for auxiliary equipment. Become. In S11, based on tPgen, for example, the target gas pressure tPrs is calculated from the characteristics as shown in FIG. In S12, the air electrode pressure value rPair and the hydrogen electrode pressure value rPh2 are read from the pressure sensors attached to the air electrode and hydrogen electrode pipes of the fuel cell.
[0036]
In S13, the operating pressures of the air pressure control valve 112 and the compressor 110, and the hydrogen pressure control valve 108 are set so that the differential pressure between rPair and rPh2 read in S12 is equal to or less than a predetermined value, and the two become the target gas pressure tPrs. The operation amount is calculated and controlled.
[0037]
When the required power of the vehicle decreases, the hydrogen pressure control valve 108 is controlled to close accordingly. However, when the required power of the vehicle suddenly decreases, the hydrogen pressure control valve 108 is fully closed. Even so, since the shut valve 109 remains closed, the hydrogen in the reflux pipe 107 cannot be suddenly reduced. Therefore, since the reduced hydrogen demand is consumed gradually, rPh2 slowly decreases and does not immediately reach the target gas pressure tPrs.
[0038]
In S14, it is determined whether the hydrogen electrode pressure detection value rPh2 is larger than the target gas pressure tPrs. If it is determined that rPh2> tPrs, the remaining hydrogen recoverable power tPpls is calculated by the following equation (3) in S15.
[0039]
[Equation 3]
tPpls = tPmax−tPgen (3)
On the other hand, if it is determined in S14 that rPh2 <= tPrs, the remaining hydrogen recoverable power tPpls is set to 0 in S16. In S17, the power control device command value tPpm is calculated by the following equation (4), and the power of tPpm is generated by the fuel cell.
[0040]
[Expression 4]
tPpm = tPgen + tPpls (4)
The calculated tPpm is instructed to the power control device 2, and the power is taken out from the fuel cell 1.
[0041]
Next, the effect of the present invention will be described with reference to FIG. FIG. 5 is a time chart showing temporal changes in power and hydrogen electrode pressure of each part. This time chart shows a state where T1 has a constant accelerator opening, T2 gradually returns the accelerator, and T3 and T4 show a vehicle braking state by regenerative braking.
[0042]
During T1, since the target gas pressure tPrs and the hydrogen electrode pressure detected value rPh2 are in a so-called steady state, the target generated power tPgen and the command value tPpm of the power control device 2 are the same value. Further, since the power tPpm taken out from the fuel cell 1 and the required power consumption tPvcl0 of the vehicle are equal, the secondary battery 3 is not charged.
[0043]
At T2, the required power consumption tPvcl0 of the vehicle starts to decrease, and accordingly, the target generated power tPgen also decreases and the target gas pressure tPrs also decreases. However, even if the supply of hydrogen gas is reduced, the hydrogen gas pressure does not decrease immediately, so the hydrogen electrode pressure detection value rPh2> target gas pressure tPrs, and tPpm is taken out from the fuel cell 1 by adding the remaining hydrogen recoverable power tPpls to tPgen. . At this time, since tPpls and the secondary battery chargeable power Pbchg are equal, all of the charge margin of the secondary battery 3 is used for recovering the remaining hydrogen, and the secondary battery 3 is charged with the same value as the chargeable power.
[0044]
At T3, since the regenerative power (negative value) of the vehicle drive motor becomes larger than the auxiliary machine power consumption, tPvcl0 becomes negative, that is, a regeneration request is generated for the entire vehicle. As a result, tPpls changes from Pbchg to 0 as the regeneration request increases. During this time, the secondary battery 3 is charged with the same value as the chargeable power, similar to T2, but the value occupied by the remaining hydrogen recovery power changes from Pbchg to 0. For this reason, the rate of decrease of rPh2 also gradually decreases. When tPpls becomes 0, tPgen and tPpm are equal, and the power charged in the secondary battery is completely regenerated.
[0045]
At T4, residual hydrogen is not recovered as electric power (remaining hydrogen is consumed only for power generation driven by auxiliary equipment), so there is no electric power for recovering residual hydrogen, and the secondary battery is not charged, but rPh2 is Since the pressure is larger than tPrs, the air electrode pressure must be maintained at rPh2 in order to eliminate the differential pressure with rPh2, and the compressor must also operate at a high load. Therefore, the electric power (auxiliary power consumption tPaux) extracted from the fuel cell can be set to a larger value than when operating at the target gas pressure. Can be reduced.
[0046]
When all the remaining hydrogen generated during deceleration is consumed, there is no need to consume the remaining hydrogen in the fuel cell.Therefore, the auxiliary power consumption taken out from the fuel cell is zero, and the auxiliary power consumption is calculated from the regenerative power. You may make it cover.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram illustrating an embodiment of a control device for a fuel cell vehicle according to the present invention.
FIG. 2 is a flowchart for explaining the operation of the embodiment.
FIG. 3 is a flowchart illustrating the operation of the embodiment.
FIG. 4 is a diagram showing an example of input / output power characteristics with respect to SOC in a secondary battery.
FIG. 5 is a time chart for explaining the effect of the present invention.
FIG. 6 is a configuration diagram showing an example of a fuel cell system.
FIG. 7 is a diagram showing an example of a hydrogen electrode pressure characteristic with respect to electric power taken out of a fuel cell.
FIG. 8 is a diagram for explaining a problem of the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel cell system 2 Electric power control apparatus 3 Secondary battery 4 Vehicle drive motor 5 Vehicle auxiliary machine 6 Controller 7 Request consumption / regenerative power calculation part 8 Auxiliary machine power consumption calculation part 9 Secondary battery input power calculation part

Claims (5)

燃料電池と、2次電池と、車両を駆動する一方、車両減速時に運動エネルギーを回生電力に変換することができる車両駆動用モータと、前記燃料電池から前記2次電池または前記車両駆動用モータに電力を供給する電力制御手段と、を備えた燃料電池車両の制御装置であって、
前記電力制御手段は、前記燃料電池からの電力取出し要求が大から小へ変化して余剰水素が発生する過渡時には、前記車両駆動用モータからの回生電力を優先して、該車両駆動用モータからの回生電力と前記余剰水素による燃料電池の発電電力とを燃料電池車両の補機及び2次電池に供給することを特徴とする燃料電池車両の制御装置。
A fuel cell, a secondary battery, a vehicle driving motor capable of driving a vehicle while converting kinetic energy into regenerative power during vehicle deceleration, and from the fuel cell to the secondary battery or the vehicle driving motor A control device for a fuel cell vehicle, comprising: a power control means for supplying power;
The power control means gives priority to the regenerative power from the vehicle drive motor during a transition in which surplus hydrogen is generated due to a change in the power extraction request from the fuel cell from large to small, and from the vehicle drive motor. A control device for a fuel cell vehicle, wherein the regenerative power of the fuel cell and the generated power of the fuel cell by surplus hydrogen are supplied to an auxiliary device and a secondary battery of the fuel cell vehicle.
前記車両駆動用モータの要求消費・回生電力(tPdrv)を演算する要求消費・回生電力演算手段と、
燃料電池車両の補機消費電力(tPaux)を演算する補機消費電力演算手段と、
前記2次電池の充電状態に基づいて2次電池入力可能電力(Pbchg)を演算する2次電池入力可能電力演算手段と、を備え、
前記要求消費・回生電力(tPdrv)と補機消費電力(tPaux)と2次電池入力可能電力(Pbchg)とに基づいて燃料電池の最大発電電力制限値(tPmax)を演算し、
余剰水素が発生している場合に、燃料電池の発電電力を前記最大発電電力制限値(tPmax)に制御することにより、前記車両駆動用モータからの回生電力を優先し、該車両駆動用モータからの回生電力と前記余剰水素による発電電力を前記2次電池に充電することを特徴とする請求項1に記載の燃料電池車両の制御装置。
Required consumption / regenerative power calculation means for calculating required consumption / regenerative power (tPdrv) of the vehicle drive motor;
Auxiliary power consumption calculating means for calculating the auxiliary power consumption (tPaux) of the fuel cell vehicle,
Rechargeable battery input power calculation means for calculating a rechargeable battery input power (Pbchg) based on a charge state of the rechargeable battery,
Based on the required consumption / regenerative power (tPdrv), auxiliary machine power consumption (tPaux), and secondary battery input possible power (Pbchg), the maximum generated power limit value (tPmax) of the fuel cell is calculated,
When surplus hydrogen is generated, priority is given to regenerative power from the vehicle drive motor by controlling the generated power of the fuel cell to the maximum generated power limit value (tPmax). 2. The control apparatus for a fuel cell vehicle according to claim 1, wherein the secondary battery is charged with the regenerative electric power and the electric power generated by the surplus hydrogen.
前記要求消費・回生電力(tPdrv)は前記車両駆動用モータが電力を回生している場合は負の値をとり、前記要求消費・回生電力(tPdrv)と前記補機消費電力(tPaux)と前記2次電池入力可能電力(Pbchg)の合計を燃料電池の最大発電電力制限値(tPmax)として演算することを特徴とする請求項2に記載の燃料電池車両の制御装置。The required consumption / regenerative power (tPdrv) takes a negative value when the vehicle driving motor is regenerating power, and the required consumption / regenerative power (tPdrv), the auxiliary machine power consumption (tPaux), and the The control device for a fuel cell vehicle according to claim 2, wherein the total of secondary battery input power (Pbchg) is calculated as a maximum generated power limit value (tPmax) of the fuel cell. 車両が減速する場合に、前記最大発電電力制限値(tPmax)が補機消費電力(tPaux)を下回らないようにモータの要求消費・回生電力(tPdrv)を制御することを特徴とする請求項2に記載の燃料電池車両の制御装置。3. The required consumption / regenerative power (tPdrv) of the motor is controlled so that the maximum generated power limit value (tPmax) does not fall below the auxiliary machine power consumption (tPaux) when the vehicle decelerates. The control apparatus of the fuel cell vehicle described in 1. 燃料電池の水素極圧力を検出する水素極圧力検出手段と、
燃料電池の負荷に適した目標圧力を演算する目標圧力演算手段と、を備え、
前記車両駆動用モータの要求消費・回生電力(tPdrv)と補機消費電力(tPaux)から車両に要求される車両要求消費電力(tPvcl0)を演算し、
前記検出された水素極圧力が目標圧力以下になる場合には、余剰水素が発生していない状態であると判断し、燃料電池の発電電力を、前記車両駆動用モータの電力回生が生じていない時は車両要求消費電力(tPvcl0)の値に、前記車両駆動用モータの電力回生が生じているときは補機消費電力(tPaux)を下回らない値に制限することを特徴とする請求項2に記載の燃料電池車両の制御装置。
Hydrogen electrode pressure detecting means for detecting the hydrogen electrode pressure of the fuel cell;
A target pressure calculating means for calculating a target pressure suitable for the load of the fuel cell,
Calculate the vehicle required power consumption (tPvcl0) required for the vehicle from the required consumption / regenerative power (tPdrv) and auxiliary power consumption (tPaux) of the vehicle drive motor,
When the detected hydrogen electrode pressure is equal to or lower than the target pressure, it is determined that surplus hydrogen is not generated, and the power regeneration of the vehicle drive motor is not generated using the generated power of the fuel cell. The time is limited to a value of vehicle required power consumption (tPvcl0), and when power regeneration of the vehicle drive motor is occurring, the auxiliary machine power consumption (tPaux) is limited to a value not lower. The fuel cell vehicle control device described.
JP2001202342A 2001-07-03 2001-07-03 Control device for fuel cell vehicle Expired - Lifetime JP3733879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001202342A JP3733879B2 (en) 2001-07-03 2001-07-03 Control device for fuel cell vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001202342A JP3733879B2 (en) 2001-07-03 2001-07-03 Control device for fuel cell vehicle

Publications (2)

Publication Number Publication Date
JP2003018709A JP2003018709A (en) 2003-01-17
JP3733879B2 true JP3733879B2 (en) 2006-01-11

Family

ID=19039161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001202342A Expired - Lifetime JP3733879B2 (en) 2001-07-03 2001-07-03 Control device for fuel cell vehicle

Country Status (1)

Country Link
JP (1) JP3733879B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460881B1 (en) * 2002-06-28 2004-12-09 현대자동차주식회사 System and method for controlling power conversion of fuel cell hybrid electric vehicle
JP4742486B2 (en) * 2003-04-10 2011-08-10 日産自動車株式会社 Fuel cell power generation control device
JP4752171B2 (en) * 2003-06-02 2011-08-17 日産自動車株式会社 Fuel cell system
JP2005045858A (en) * 2003-07-22 2005-02-17 Honda Motor Co Ltd Controller of hybrid vehicle
JP5125301B2 (en) * 2007-08-08 2013-01-23 トヨタ自動車株式会社 Fuel cell system
JP5309578B2 (en) * 2008-02-01 2013-10-09 日産自動車株式会社 Control device for fuel cell system
JP5347438B2 (en) * 2008-11-07 2013-11-20 トヨタ自動車株式会社 Battery protection device
JP6397871B2 (en) * 2016-11-04 2018-09-26 本田技研工業株式会社 Power system
JP7347325B2 (en) * 2020-05-22 2023-09-20 トヨタ自動車株式会社 vehicle
CN113511111B (en) * 2021-09-01 2024-04-16 潍柴动力股份有限公司 Fuel cell system control method, device, apparatus and readable storage medium
CN113895319B (en) * 2021-10-28 2024-05-10 江苏大学 Dual-cell energy management method capable of reducing performance degradation of fuel cell

Also Published As

Publication number Publication date
JP2003018709A (en) 2003-01-17

Similar Documents

Publication Publication Date Title
CN100481595C (en) Fuel cell system and method for removing residual fuel gas
JP3719229B2 (en) Power supply
JP5335047B2 (en) Fuel cell system
JP4797092B2 (en) Fuel cell vehicle and control method of fuel cell system
KR101135654B1 (en) Fuel cell system and control method of the system
JP4761162B2 (en) Fuel cell system
KR101016396B1 (en) Fuel cell system and moving body
EP1270310A2 (en) Control device for fuel cell vehicle
JP2006296106A (en) Fuel cell vehicle
WO2009011324A1 (en) Fuel cell system and mobile body
JP3733879B2 (en) Control device for fuel cell vehicle
JP2007157586A (en) Fuel cell system and its control method
JP4569350B2 (en) Electric motor system and method for controlling electric motor system
US6875531B2 (en) Fuel cell power supply device
JP3885571B2 (en) Fuel cell power generation control device
WO2006080471A1 (en) Power supply device
CN111509266B (en) Fuel cell system
JP5376390B2 (en) Fuel cell system
JP5077636B2 (en) Fuel cell system
JP3719205B2 (en) Power supply
JP5099580B2 (en) Fuel cell system
JP2007151346A (en) Moving body
JP2005276593A (en) Fuel cell system and its control method as well as automobile
JP2008140618A (en) Fuel cell system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051010

R150 Certificate of patent or registration of utility model

Ref document number: 3733879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

EXPY Cancellation because of completion of term