JP3732783B2 - Purification method for oil-contaminated soil - Google Patents

Purification method for oil-contaminated soil Download PDF

Info

Publication number
JP3732783B2
JP3732783B2 JP2002008009A JP2002008009A JP3732783B2 JP 3732783 B2 JP3732783 B2 JP 3732783B2 JP 2002008009 A JP2002008009 A JP 2002008009A JP 2002008009 A JP2002008009 A JP 2002008009A JP 3732783 B2 JP3732783 B2 JP 3732783B2
Authority
JP
Japan
Prior art keywords
oil
contaminated soil
lime
soil
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002008009A
Other languages
Japanese (ja)
Other versions
JP2003205284A (en
Inventor
孝之 松本
高義 羽山
誠彦 那須
知宏 後町
治行 平野
Original Assignee
株式会社Nippoコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nippoコーポレーション filed Critical 株式会社Nippoコーポレーション
Priority to JP2002008009A priority Critical patent/JP3732783B2/en
Publication of JP2003205284A publication Critical patent/JP2003205284A/en
Application granted granted Critical
Publication of JP3732783B2 publication Critical patent/JP3732783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油汚染土壌の浄化処理方法に関し、特に油汚染土壌を浄化する過程で油分に含まれる硫黄分を効率よく除去する方法に関する。
【0002】
【従来の技術】
近年、石油精製プラントや油槽所等の跡地において、油で汚染された土壌(以下、「油汚染土壌」という場合がある。)を浄化処理することが、環境上や土地の有効再利用上から極めて重要になってきた。
従来から利用されている油汚染土壌の浄化処理方法には、油汚染土壌を加熱し、これに含まれる油分を気化して燃焼する物理化学的方法と、バイオレメディエーションと呼ばれる微生物を利用して油分を生物的に分解する生物学的方法等がある。
【0003】
油汚染土壌を加熱する物理化学的方法では、油汚染土壌中の油分の燃焼に際して、この油分に含まれる硫黄分が酸素と結合して(酸化され)、有害な二酸化硫黄、三酸化硫黄等の硫黄酸化物が発生するので、この硫黄酸化物を除去する対策が必要である。
このような硫黄酸化物の除去方法としては、加熱された油汚染土壌から発生した排煙に消石灰等のアルカリ粉末を吹き込むことにより排煙中の硫黄酸化物を除去する方法、排煙を石灰スラリーに気液接触させることにより排煙中の硫黄酸化物を除去する方法、排煙を液相中に溶解させて排煙中の硫黄酸化物を除去する方法などが知られている。
【0004】
【発明が解決しようとする課題】
しかし、このような従来の硫黄酸化物を除去する方法では、消石灰等を吹き込むための装置、硫黄酸化物を液相中に溶解させるための装置等の脱硫装置を設ける必要があり、これらの装置を整備するために莫大な費用がかかっていた。また、脱硫の効率も十分とはいえなかった。
本発明の目的は、多大な経費がかかる脱硫装置を設ける必要がなく、かつ従来の技術と比較してより高い脱硫効果を得られる油汚染土壌の浄化処理方法を提供することにある。
【0005】
【課題を解決するための手段】
かかる課題を解決するために、
請求項1にかかる発明は、油汚染土壌を加熱し油分を燃焼させる油汚染土壌の浄化処理方法において、油汚染土壌に予め生石灰を混合する前処理工程を設けると共に該前処理工程を油汚染土壌の掘削現場において行うことを特徴とする油汚染土壌の浄化処理方法である。
【0007】
請求項1記載の発明においては、油汚染土壌に生石灰CaOを混合したものを加熱することにより、油汚染土壌中の油分に含まれる硫黄分が酸化されて硫黄酸化物となり、この硫黄酸化物がそこに存在する生石灰と反応し、前処理工程または加熱工程において例えば以下の反応式で示されるように、消石灰Ca(OH) を生成し、油汚染土壌に直接消石灰を混合した場合と同じ化学反応により石膏(硫酸カルシウムCaSO )を生成する。
CaO + H O → Ca(OH)
Ca(OH) + SO → CaSO + H
【0008】
すなわち、油汚染土壌から揮発した油分が燃焼する際に、これに含まれる硫黄分が酸化されて二酸化硫黄などの硫黄酸化物となり、この硫黄酸化物が生石灰と反応して石膏を生成することにより、脱硫効果を得ることができる。ここで生成した石膏は無害な物質なので、土壌中に混在していても問題はなく回収の必要もない。
【0010】
特に、本発明においては、生石灰CaOを使用しているため、生石灰が油汚染土壌中の水分と水和反応し、これにより水分量が減少し、次工程の乾燥工程において、油汚染土壌の乾燥に要する熱エネルギーが減少し、好適になる。
また、油汚染土壌を掘削した現場でバックホウ等の重機などを使用して直接油汚染土壌に生石灰を添加混合するので、硫黄分除去の目的で生石灰を供給するための脱硫設備を設ける必要がない。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
まず、油汚染土壌を浄化処理するための前処理工程として、油汚染土壌を掘削した現場において前記油汚染土壌に石灰系材料を添加して混合する。ここで使用される石灰系材料としては、石灰、消石灰、生石灰等の1種または2種以上の混合物が使用されるが、特に上述のように、油汚染土壌の含水比を低減させる観点から、生石灰を用いることが好ましい。
ここでいう前処理工程とは、油汚染土壌を加熱処理部20に投入する直前までの全工程を指し、前記の他に次のような方法も考えられる。例えば、ホッパ11に投入された油汚染土壌に石灰系材料を散布する方法、フィーダ12の一端部上に落下した油汚染土壌に石灰系材料を散布し該フィーダ12の他端部に設置した旋回ブレーカ(図示せず)により解砕する方法、ベルトコンベア13上を移動する油汚染土壌に石灰系材料を散布する方法など、散布または混入する位置は限定されない。
【0012】
この石灰系材料の形状は、粉末状であることが好ましいが、これらに限定されるものではない。例えば、ベルトコンベア13上に石灰系材料を散布するような場合は、消石灰をスラリーまたは懸濁液としてノズルから散布する方法も有効である。石灰系材料の添加量は、浄化処理の対象となる油汚染土壌に含まれる油の種類や量によって異なるが、浄化処理の対象となる油汚染土壌に対する重量比で概ね1〜10%程度とされるが、この範囲に限定されることはない。
【0013】
この石灰系材料の混合は、例えば、油汚染土壌の表面に石灰系材料を人力または散布機等を使用して散布した後、バックホウ、ロードスタビライザ等を用いて前記油汚染土壌と石灰系材料とを十分に混合する方法や掘削した油汚染土壌と石灰系材料とをミキサなどで掘削現場にて混合する方法などにより行われるが、人力で混合することもできる。
【0014】
また、石灰系材料として生石灰を用いる場合は、生石灰が油汚染土壌中に含まれる水分と反応して消石灰に変化するまで、十分な時間をかけて現場に静置することが好ましい。
【0015】
ついで、このようにして油汚染土壌に石灰系材料を混合して得られた土壌(以下、「石灰処理土壌」という。)を加熱し、この土壌に含まれる油分を蒸発させ、燃焼させる。この石灰処理土壌の加熱は、種々の装置を用いて行うことができるが、なかでも、図1に示す構造の浄化処理装置を用いて行うことが好ましい。
【0016】
この浄化処理装置1は、材料搬送部10と、加熱処理部20とで構成され、この材料搬送部10は、石灰処理土壌を投入するホッパ11と、前記ホッパ11底部の開口部から落下した石灰処理土壌を搬送するフィーダ12と、前記フィーダ12の下方に位置し前記フィーダ12から落下した石灰処理土壌を搬送するベルトコンベア13とから概略構成されている。
【0017】
また、加熱処理部20は、上記材料搬送部10のベルトコンベア13により搬送された石灰処理土壌を投入するホッパ21と、前記ホッパ21底部の開口部から落下した石灰処理土壌を搬送するスクリュフィーダ22と、前記スクリュフィーダ22により搬送された石灰処理土壌を加熱乾燥させるための回転ドラム23と、前記回転ドラム23内を加熱するための乾燥用バーナ24および助燃用バーナ26と、石灰処理土壌の加熱乾燥処理後に発生する排煙を排気するための排気装置25とから概略構成されている。
【0018】
まず、油汚染土壌の掘削現場から搬送された石灰処理土壌は、浄化処理装置1の材料搬送部10のホッパ11へ投入される。ホッパ11に投入された石灰処理土壌は、ホッパ11底部の開口部からホッパ11下方に配設されたフィーダ12の一端部上に落下した後搬送され、フィーダ12、ベルトコンベア13を経て加熱処理部20の一端部にあるホッパ21に投入される。
【0019】
この加熱処理部20のホッパ21に投入された石灰処理土壌は、ホッパ21底部に配設されたスクリュフィーダ22によって搬送され、前記回転ドラム23内に投入される。
回転ドラム23の一端部および他端部には、それぞれ乾燥用バーナ24および助燃用バーナ26が設置されており、回転ドラム23内部が約200〜約750℃の高温に保たれるような構成となっている。
【0020】
また、回転ドラム23の外側底部には図示しない駆動モータ、ドラムローラおよびスラストローラからなる回転駆動装置が配設され、この回転駆動装置により回転ドラム23が1分あたり1.5〜5回回転されるようになっている。さらに、回転ドラム23は、一端部から他端部へ向かって緩やかな下り勾配で傾斜しており、回転ドラム23の一端部から投入された石灰処理土壌が順次他端部へ向かって移動するようになっている。
【0021】
また、回転ドラム23の内部は、石灰処理土壌を掻き上げながら加熱乾燥させることにより主として石灰処理土壌中の水分を除去する水分除去部30と、石灰処理土壌を高温加熱することにより主として石灰処理土壌中の油分を蒸発、燃焼して除去する油分除去部40とに区分されるように構成されている。
【0022】
さらに、水分除去部30の回転ドラム23内面には、掻上フライト31が設けられており、この掻上フライト31の先端部を鋸歯状とすることにより、掻き上げた石灰処理土壌をドラム内全体に略ベール状に落下させることができ、熱交換の効率を上げることができるようになっている。油分除去部40の回転ドラム23内面には、耐火レンガ等の耐火材41が貼られており、750℃程度の高温にも耐えられる構造となっている。
【0023】
回転ドラム23の一端部から投入された石灰処理土壌は、水分除去部30の回転ドラム23内面に設置された掻上フライト31によって掻き上げ、落下を繰り返しながら徐々に水分が乾燥し、油分が蒸発しつつ他端部へ向かって移動する。この時の回転ドラム23内部の温度は約200〜400℃程度である。石灰処理土壌は水分除去部30から油分除去部40へ移動し、さらに約400〜750℃の高温で加熱される。
【0024】
回転ドラム23の油分除去部40に送られた石灰処理土壌は、ここで高温で加熱され、土壌中に含まれる油分が完全に蒸発し、さらに燃焼することになる。この油分の燃焼の際に、油分に含まれる硫黄分は同時に酸化されて二酸化硫黄、三酸化硫黄などの硫黄酸化物となる。そして、この硫黄酸化物は、土壌表面に付着している消石灰Ca(OH)2と直ちに反応して石膏CaSO4が生成する。
【0025】
この反応は、400〜750℃の高温下で行われるため、瞬間的に進行し、かつ土壌が回転ドラム内で流動しているため、消石灰の大部分が反応に関与することとなり、極めて効率よく行われる。かくして、生成された石膏は油分が燃焼除去された土壌に混合され、排気装置25の底部から外部に排出され、浄化処理の終わった清浄な土壌を回収できる。
【0026】
排気装置25の上部からは、石灰処理土壌中の油分の燃焼排ガスが、石灰処理土壌の水分に起因する水蒸気およびバーナ24,26からの排ガスとともに排出されるが、この燃焼排ガス中の硫黄酸化物の濃度は十分低い値を示し、そのまま大気中に排出することができる。
また、石膏は無害な物質であり、土壌中に残留しても問題はなく、土壌中に混在させたまま使用することができる。また、必要に応じてこれを除去することもできる。
【0027】
以下、具体例により本発明を具体的に説明するが、本発明はこれら具体例に限定されるものではない。
本発明による脱硫効果を確認するために、従来の方法による脱硫効果との比較試験を行った。脱硫の効果は、油汚染土壌を加熱処理している装置から発生する排煙中に含まれる亜硫酸ガス濃度を測定することにより確認することとした。
【0028】
従来の方法は、現場で掘削した油汚染土壌を無処理のまま浄化装置に投入し、前記浄化装置中で加熱された油汚染土壌から発生する排煙に消石灰粉末を吹き込む方法である。
本発明の方法は、油汚染土壌の掘削現場において油汚染土壌と生石灰とを混合した石灰処理土壌を静置し生石灰の水和が完了した後、前記石灰処理土壌を上記浄化装置に投入して加熱する方法である。
【0029】
数十年にわって油槽所として使用された跡地の油汚染土壌の現場において、幅4m×長さ5m×深さ1mの範囲で油汚染土壌を掘削し、バックホウを用いて十分に混合した。混合後の油汚染土壌から各々1tずつ試料を採取し、生石灰を50kg添加して混合したものを試料A、何も添加しなかったものを試料Bとして24時間現場に静置した。この間に試料Aに添加した生石灰は土壌中の水分と反応して消石灰に変化していた。
【0030】
24時間静置後、試料Aは本発明の方法により、試料Bは従来の方法によりそれぞれ1時間加熱処理した。このとき、試料Bから発生する排煙に添加した消石灰の量は試料Aに添加された生石灰から生成した消石灰の量とほぼ同量とした。各試料の加熱処理中に浄化装置から発生する排煙中の亜硫酸ガス濃度を測定したところ、表1に示すような結果であった。
【0031】
【表1】

Figure 0003732783
【0032】
以上の測定結果より、本発明の方法によれば従来の方法と比較して、より効率的に油汚染土壌中の油分に含まれる硫黄分を除去できるということが確認できた。
【0033】
【発明の効果】
以上説明したように、請求項1記載の発明によれば、油汚染土壌中の油分に含まれる硫黄分を効率よく除去できるとともに、処理対象となる油汚染土壌に直接生石灰を添加混合するので、従来の排煙脱硫技術において必要とされていた消石灰等を吹き込む装置、二酸化硫黄を液相中に溶解させるための装置等の脱硫装置を設ける必要がない。
【0034】
更に、本発明によれば、掘削した油汚染土壌をその掘削現場で(オンサイト)浄化することが可能になり、運搬等の手間、費用等が不要になる。
また、生石灰を混合することで油汚染土壌中の水分が生石灰と反応して、油汚染土壌の水分量が低下し、次工程での加熱の際に油汚染土壌を乾燥するための熱エネルギーが節約できる。
【図面の簡単な説明】
【図1】 本発明の浄化処理方法に好適に用いられる浄化処理装置の一例を示す概略構成図である。
【符号の説明】
1 浄化処理装置 10 材料搬送部
11 ホッパ 12 フィーダ
13 ベルトコンベア 20 加熱処理部
21 ホッパ 22 スクリュフィーダ
23 回転ドラム 24 乾燥用バーナ
25 排気装置 26 助燃用バーナ
30 水分除去部 40 油分除去部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for purifying oil-contaminated soil, and more particularly to a method for efficiently removing sulfur contained in oil during the process of purifying oil-contaminated soil.
[0002]
[Prior art]
In recent years, it has been necessary to purify soil contaminated with oil (hereinafter sometimes referred to as “oil-contaminated soil”) at sites such as oil refining plants and oil depots from the viewpoint of environmental and effective reuse of land. It has become extremely important.
Conventional purification methods for oil-contaminated soil include a physicochemical method that heats oil-contaminated soil, vaporizes and burns the oil contained therein, and a microorganism called bioremediation. Biological methods for biologically decomposing
[0003]
In the physicochemical method of heating oil-contaminated soil, when the oil in the oil-contaminated soil is burned, sulfur contained in this oil is combined with oxygen (oxidized), and harmful sulfur dioxide, sulfur trioxide, etc. Since sulfur oxides are generated, it is necessary to take measures to remove the sulfur oxides.
As a method for removing such sulfur oxides, there is a method for removing sulfur oxides in flue gas by blowing alkali powder such as slaked lime into flue gas generated from heated oil-contaminated soil. There are known a method of removing sulfur oxides in the flue gas by bringing it into gas-liquid contact, a method of removing the sulfur oxides in the flue gas by dissolving the flue gas in the liquid phase, and the like.
[0004]
[Problems to be solved by the invention]
However, in such a conventional method for removing sulfur oxide, it is necessary to provide a desulfurization device such as a device for blowing slaked lime, a device for dissolving sulfur oxide in the liquid phase, and the like. It took a huge amount of money to maintain. Further, the efficiency of desulfurization was not sufficient.
An object of the present invention is to provide a method for purifying oil-contaminated soil that does not require a desulfurization apparatus that requires a large amount of cost and that can provide a higher desulfurization effect than conventional techniques.
[0005]
[Means for Solving the Problems]
To solve this problem,
According to claim 1 invention, the purification treatment method of oil contaminated soil for burning oil to heat the oil-contaminated soil, the Rutotomoni pretreatment steps provide a pretreatment step of mixing a previously burnt lime oil contaminated soil oil pollution A method for purifying oil-contaminated soil, characterized in that the method is performed at a soil excavation site .
[0007]
In invention of Claim 1, by heating what mixed quick lime CaO with oil-contaminated soil, the sulfur content contained in the oil in oil-contaminated soil is oxidized and becomes sulfur oxide, It reacts with quick lime existing there, and as shown in the following reaction formula in the pretreatment step or heating step, for example , the same chemistry as when slaked lime Ca (OH) 2 is generated and slaked lime is directly mixed into oil-contaminated soil Gypsum (calcium sulfate CaSO 4 ) is produced by the reaction .
CaO + H 2 O → Ca (OH) 2
Ca (OH) 2 + SO 2 → CaSO 4 + H 2
[0008]
That is, when the oil component volatilized from the oil-contaminated soil burns, the sulfur component contained therein is oxidized to sulfur oxides such as sulfur dioxide, and this sulfur oxide reacts with quick lime to produce gypsum. A desulfurization effect can be obtained. The gypsum produced here is harmless, so there is no problem even if it is mixed in the soil and there is no need for recovery.
[0010]
In particular, since quick lime CaO is used in the present invention , quick lime hydrates with water in oil-contaminated soil, thereby reducing the amount of water and drying oil-contaminated soil in the subsequent drying step. The heat energy required for this is reduced, which is preferable.
In addition, quick lime is added to and mixed with oil-contaminated soil directly using heavy equipment such as backhoe at the site where the oil-contaminated soil is excavated, so there is no need to install a desulfurization facility for supplying quick lime for the purpose of removing sulfur content. .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
First, as a pretreatment process for purifying oil-contaminated soil, a lime-based material is added to and mixed with the oil-contaminated soil at a site where the oil-contaminated soil is excavated. As the lime-based material used here, one or a mixture of two or more of lime, slaked lime, quick lime, etc. is used. In particular, as described above, from the viewpoint of reducing the water content of oil-contaminated soil, It is preferable to use quicklime.
Here, the pretreatment step refers to all steps up to immediately before the oil-contaminated soil is put into the heat treatment unit 20, and the following method is also conceivable in addition to the above. For example, a method of spraying lime-based material on oil-contaminated soil put into the hopper 11, swirling lime-based material sprayed on oil-contaminated soil dropped on one end of the feeder 12 and installed at the other end of the feeder 12 There are no particular restrictions on the position where the material is sprayed or mixed, such as a method of crushing with a breaker (not shown) or a method of spraying lime-based material on oil-contaminated soil moving on the belt conveyor 13.
[0012]
The shape of the lime-based material is preferably powder, but is not limited thereto. For example, when a lime-based material is sprayed on the belt conveyor 13, a method of spraying slaked lime as a slurry or suspension from a nozzle is also effective. The amount of lime-based material added varies depending on the type and amount of oil contained in the oil-contaminated soil subject to purification treatment, but is approximately 1 to 10% by weight ratio to the oil-contaminated soil subject to purification treatment. However, it is not limited to this range.
[0013]
For example, after mixing the lime-based material on the surface of the oil-contaminated soil using human power or a spreader, the oil-contaminated soil and the lime-based material are mixed with a backhoe, a road stabilizer or the like. However, it is also possible to mix the excavated oil-contaminated soil and the lime-based material at the excavation site with a mixer or the like.
[0014]
Moreover, when using quicklime as a lime-type material, it is preferable to leave still in the field for sufficient time until quicklime reacts with the water | moisture content contained in oil-contaminated soil, and changes to slaked lime.
[0015]
Next, the soil obtained by mixing the lime-based material with the oil-contaminated soil (hereinafter referred to as “lime-treated soil”) is heated to evaporate and burn the oil contained in the soil. The heating of the lime-treated soil can be performed using various apparatuses, and among these, it is preferable to perform using the purification apparatus having the structure shown in FIG.
[0016]
The purification treatment apparatus 1 includes a material transport unit 10 and a heat treatment unit 20. The material transport unit 10 includes a hopper 11 into which lime-treated soil is introduced, and lime dropped from an opening at the bottom of the hopper 11. A feeder 12 that conveys treated soil and a belt conveyor 13 that is located below the feeder 12 and that conveys lime-treated soil that has fallen from the feeder 12 are configured.
[0017]
Moreover, the heat processing part 20 inputs the lime processing soil conveyed by the belt conveyor 13 of the said material conveyance part 10, and the screw feeder 22 which conveys the lime processing soil which fell from the opening part of the said hopper 21 bottom part. A rotating drum 23 for heating and drying the lime-treated soil conveyed by the screw feeder 22, a drying burner 24 and an auxiliary burner 26 for heating the inside of the rotating drum 23, and heating of the lime-treated soil An exhaust device 25 for exhausting the smoke generated after the drying process is schematically configured.
[0018]
First, the lime-treated soil transported from the excavation site of oil-contaminated soil is put into the hopper 11 of the material transport unit 10 of the purification treatment apparatus 1. The lime-treated soil thrown into the hopper 11 is transported after dropping from the opening at the bottom of the hopper 11 onto one end of the feeder 12 disposed below the hopper 11, and the heat treatment unit through the feeder 12 and the belt conveyor 13. 20 is put into a hopper 21 located at one end of 20.
[0019]
The lime-treated soil put into the hopper 21 of the heat treatment unit 20 is transported by the screw feeder 22 arranged at the bottom of the hopper 21 and put into the rotating drum 23.
A drying burner 24 and an auxiliary burner 26 are installed at one end and the other end of the rotating drum 23, respectively, and the inside of the rotating drum 23 is maintained at a high temperature of about 200 to about 750 ° C. It has become.
[0020]
In addition, a rotary drive device including a drive motor, a drum roller, and a thrust roller (not shown) is disposed on the outer bottom of the rotary drum 23, and the rotary drum 23 is rotated 1.5 to 5 times per minute by this rotary drive device. It has become so. Further, the rotating drum 23 is inclined with a gentle downward slope from one end to the other end so that the lime-treated soil introduced from one end of the rotating drum 23 sequentially moves toward the other end. It has become.
[0021]
Further, the interior of the rotary drum 23 includes a moisture removing unit 30 that mainly removes moisture in the lime-treated soil by heating and drying the lime-treated soil, and a lime-treated soil mainly heated at a high temperature. It is configured to be divided into an oil removing unit 40 that evaporates, burns and removes the oil contained therein.
[0022]
Further, a scraping flight 31 is provided on the inner surface of the rotary drum 23 of the moisture removing unit 30. The tip portion of the scraping flight 31 is formed in a sawtooth shape so that the lime-treated soil that has been scraped up is removed from the entire drum. Can be dropped in a substantially bale-like manner to increase the efficiency of heat exchange. A refractory material 41 such as a refractory brick is affixed to the inner surface of the rotating drum 23 of the oil removal unit 40, and has a structure that can withstand a high temperature of about 750 ° C.
[0023]
The lime-treated soil introduced from one end of the rotating drum 23 is scraped up by a scraping flight 31 installed on the inner surface of the rotating drum 23 of the moisture removing unit 30, and the moisture is gradually dried while repeating the dropping, and the oil is evaporated. While moving toward the other end. At this time, the temperature inside the rotary drum 23 is about 200 to 400 ° C. The lime-treated soil moves from the moisture removing unit 30 to the oil removing unit 40 and further heated at a high temperature of about 400 to 750 ° C.
[0024]
The lime-treated soil sent to the oil removal unit 40 of the rotary drum 23 is heated at a high temperature here, and the oil contained in the soil is completely evaporated and further burned. During the combustion of the oil, the sulfur contained in the oil is simultaneously oxidized to sulfur oxides such as sulfur dioxide and sulfur trioxide. This sulfur oxide immediately reacts with slaked lime Ca (OH) 2 adhering to the soil surface to produce gypsum CaSO 4 .
[0025]
Since this reaction is performed at a high temperature of 400 to 750 ° C., the reaction proceeds instantaneously and the soil is flowing in the rotating drum, so that most of the slaked lime is involved in the reaction, which is extremely efficient. Done. Thus, the generated gypsum is mixed with the soil from which the oil has been burned and removed, and is discharged to the outside from the bottom of the exhaust device 25, so that the clean soil after the purification treatment can be recovered.
[0026]
From the upper part of the exhaust device 25, the combustion exhaust gas of oil in the lime-treated soil is discharged together with the water vapor caused by the moisture of the lime-treated soil and the exhaust gas from the burners 24, 26. The sulfur oxide in this combustion exhaust gas The concentration of is sufficiently low and can be discharged into the atmosphere as it is.
Moreover, gypsum is a harmless substance, and even if it remains in the soil, there is no problem and it can be used while mixed in the soil. It can also be removed if necessary.
[0027]
Hereinafter, the present invention will be specifically described by way of specific examples, but the present invention is not limited to these specific examples.
In order to confirm the desulfurization effect of the present invention, a comparative test with the desulfurization effect by the conventional method was performed. The effect of desulfurization was confirmed by measuring the concentration of sulfurous acid gas contained in the flue gas generated from the equipment that heat-treated oil-contaminated soil.
[0028]
The conventional method is a method in which oil-contaminated soil excavated in the field is put into a purification device without treatment, and slaked lime powder is blown into flue gas generated from the oil-contaminated soil heated in the purification device.
In the method of the present invention, after the lime-treated soil obtained by mixing oil-contaminated soil and quicklime is left at the excavation site of the oil-contaminated soil and hydration of quicklime is completed, the lime-treated soil is put into the purification device. It is a method of heating.
[0029]
In the site of the former oil-contaminated soil used as an oil tank for decades, the oil-contaminated soil was excavated in the range of width 4m x length 5m x depth 1m and mixed well with backhoe. Samples were taken 1 t each from the oil-contaminated soil after mixing, 50 kg of quicklime was added and mixed, and the sample A was left unattended for 24 hours. During this time, quick lime added to the sample A reacted with moisture in the soil and changed to slaked lime.
[0030]
After standing for 24 hours, Sample A was heat-treated by the method of the present invention, and Sample B was heat-treated by the conventional method for 1 hour. At this time, the amount of slaked lime added to the flue gas generated from the sample B was almost the same as the amount of slaked lime generated from the quick lime added to the sample A. When the concentration of sulfurous acid gas in the flue gas generated from the purification device during the heat treatment of each sample was measured, the results shown in Table 1 were obtained.
[0031]
[Table 1]
Figure 0003732783
[0032]
From the above measurement results, it was confirmed that the sulfur content contained in the oil in the oil-contaminated soil can be removed more efficiently according to the method of the present invention as compared with the conventional method.
[0033]
【The invention's effect】
As described above, according to the invention of claim 1, since sulfur contained in the oil in the oil-contaminated soil can be efficiently removed, and quick lime is added and mixed directly into the oil-contaminated soil to be treated. There is no need to provide a desulfurization device such as a device for blowing slaked lime or the like, which is required in the conventional flue gas desulfurization technology, or a device for dissolving sulfur dioxide in the liquid phase.
[0034]
Furthermore, according to the present invention , it becomes possible to purify the excavated oil-contaminated soil at the excavation site (on-site), and the labor and cost of transportation and the like become unnecessary.
In addition, by mixing quicklime, the moisture in the oil-contaminated soil reacts with quicklime, reducing the amount of water in the oil-contaminated soil, and the heat energy for drying the oil-contaminated soil during heating in the next process Can save.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a purification treatment apparatus preferably used in the purification treatment method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Purification processing apparatus 10 Material conveyance part 11 Hopper 12 Feeder 13 Belt conveyor 20 Heat processing part 21 Hopper 22 Screw feeder 23 Rotating drum 24 Drying burner 25 Exhaust device 26 Combustion burner 30 Moisture removal part 40 Oil content removal part

Claims (1)

油汚染土壌を加熱し油分を燃焼させる油汚染土壌の浄化処理方法において、油汚染土壌に予め生石灰を混合する前処理工程を設けると共に該前処理工程を油汚染土壌の掘削現場において行うことを特徴とする油汚染土壌の浄化処理方法。In the purification treatment method of oil contaminated soil for burning oil to heat the oil-contaminated soil, the Rutotomoni pretreatment steps provide a pretreatment step of mixing a previously burnt lime oil contaminated soil to make the drilling site of oil contaminated soil A method for purifying oil-contaminated soil.
JP2002008009A 2002-01-16 2002-01-16 Purification method for oil-contaminated soil Expired - Fee Related JP3732783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002008009A JP3732783B2 (en) 2002-01-16 2002-01-16 Purification method for oil-contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002008009A JP3732783B2 (en) 2002-01-16 2002-01-16 Purification method for oil-contaminated soil

Publications (2)

Publication Number Publication Date
JP2003205284A JP2003205284A (en) 2003-07-22
JP3732783B2 true JP3732783B2 (en) 2006-01-11

Family

ID=27646384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002008009A Expired - Fee Related JP3732783B2 (en) 2002-01-16 2002-01-16 Purification method for oil-contaminated soil

Country Status (1)

Country Link
JP (1) JP3732783B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5288623B2 (en) * 2009-07-09 2013-09-11 日工株式会社 Heat purification method for contaminated soil

Also Published As

Publication number Publication date
JP2003205284A (en) 2003-07-22

Similar Documents

Publication Publication Date Title
RU2474762C2 (en) Method (versions) and system of air pollution reduction
CN109127650B (en) Method for harmlessly treating electrolytic manganese slag by using cement kiln intermediate product
TW201610172A (en) Treatment method for coal fly ash
CA2429456A1 (en) Recovery of cement kiln dust through precipitation of calcium sulfate using sulfuric acid solution
CN108559857A (en) A kind of useless mercury catalyst mercury recycling and slag harmlessness treatment process
US20170100618A1 (en) Stabilization of at least one heavy metal contained in a sodic fly ash using a water-soluble source of silicate and a material containing calcium and/or magnesium
WO2000050123A1 (en) Method for removing ammonia from ammonia contaminated fly ash
del Valle-Zermeño et al. Reutilization of low-grade magnesium oxides for flue gas desulfurization during calcination of natural magnesite: A closed-loop process
JP5008507B2 (en) Dust collector having powder mixing processing means and powder mixing processing method
CN104853856B (en) The leachability for the selenium that processing coal ash containing sodium powder is wherein included with reducing
JP2006263651A (en) Carbonated carbide, production method therefor, method for collecting zinc from fly ash from incinerator, and method for treating acidic gas in exhaust gas in incinerator
JP3732783B2 (en) Purification method for oil-contaminated soil
DE69942399D1 (en) Process and apparatus for purifying exhaust gases.
US10024534B2 (en) Stabilization of sodic fly ash of type F using calcium-based material
JP2005320207A (en) Slaked dolomite powder and manufacturing method thereof
JPH09248600A (en) Method of utilizing sewage sludge as cement making material and fuel
JPH11116290A (en) Production of cement
JP2004073976A (en) Method of treating waste gypsum product
JP2006232637A (en) Method for manufacturing anhydrous gypsum
JP4165247B2 (en) Incineration ash stabilization method
RU2296723C2 (en) Power-saving method of utilization of the calcium sulfates - the phosphogypsum and the sediments of the sewage disposal plants with production of the cement clinker and the sulfur dioxide gas for production of the sulfuric acid
JP2001079340A (en) Method for removing sulfur oxide and hydrogen chloride contained in waste gas at incineration facility
JP7143233B2 (en) Incineration ash disposal method
CN104496605B (en) The method and device of sulphur dioxide production alkaline fertilizer in a kind of recycling furnace gas
CN107551808A (en) The method of flue gas desulfurization

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051013

R150 Certificate of patent or registration of utility model

Ref document number: 3732783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees