JP3732581B2 - Check valve - Google Patents

Check valve Download PDF

Info

Publication number
JP3732581B2
JP3732581B2 JP19304096A JP19304096A JP3732581B2 JP 3732581 B2 JP3732581 B2 JP 3732581B2 JP 19304096 A JP19304096 A JP 19304096A JP 19304096 A JP19304096 A JP 19304096A JP 3732581 B2 JP3732581 B2 JP 3732581B2
Authority
JP
Japan
Prior art keywords
valve
valve body
pipe
pipe connection
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19304096A
Other languages
Japanese (ja)
Other versions
JPH1038108A (en
Inventor
賢昭 外村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP19304096A priority Critical patent/JP3732581B2/en
Publication of JPH1038108A publication Critical patent/JPH1038108A/en
Application granted granted Critical
Publication of JP3732581B2 publication Critical patent/JP3732581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、配管の途中に設けられ、配管を流れる流体の逆流を防止する逆止弁に関する。
【0002】
【従来の技術】
従来、例えば図11のようなスプリンクラー消火設備にあっては、その配管の途中に、必要に応じて流体の逆流を防止する逆止弁を設けている。
このスプリンクラー消火設備は、消火ポンプ41からの給水本管42に接続した分岐管43に流水検知装置4を設け、その二次側に閉鎖型スプリンクラーヘッド45を接続し、閉鎖型スプリンクラーヘッド45までの全配管内に加圧水を充満させている。尚、51は貯水槽、52は呼水槽、53は高架水槽である。
【0003】
消火ポンプ41の吐出口から立ち上げられた給水本管42には、逆止弁46と仕切り弁47が設けられ、逆止弁46によってポンプ側への逆流を阻止している。給水本管42の圧力は圧力タンク48に導入されタンク内の空気を圧縮し、管内圧力を常に規定圧以上に維持している。
火災時にスプリンクラーヘッド45が作動すると流水が生じ、これにより流水検知装置44が作動し、流水検知スイッチ44aがオンして流水検知信号を図示しない自火報受信機制御盤に送って火災の区画を表示する。またスプリンクラーヘッド45の作動により給水本管42の圧力が低下し、圧力タンク48の圧力スイッチ49が作動信号を図示しないポンプ制御盤に出力し、ポンプ制御盤はモータ50の駆動により消火ポンプ41を運転する。ポンプ運転により、貯水槽51から消火用水が加圧供給され、作動したスプリンクラーヘッド45から連続放水が行われる。
【0004】
図12は、図11に使用されている従来の逆止弁46の構造である。逆止弁46は、弁ボディ54に一対の配管接続口55,56を形成し、配管接続口55,56を仕切る内部の仕切壁の水平部分の弁穴に弁座58を形成し、弁座58に弁体57を配置している。弁体57は上側にガイド軸57bを一体に備え、下側に弁座58の開口穴をガイドするガイド部材57aを一体に備える。弁体57のガイド軸57bは、ボディ54の上部にねじ込み固定した蓋部材59に摺動自在に嵌め込まれている。
【0005】
逆止弁46は、配管接続口55から56へ流体を流すが、配管接続口56から55への逆流は阻止する。即ち、配管接続口55からの流体は弁体57をリフトして流路を開くが、配管接続口56からの流体は、弁体57を弁座58に押し付けることとなって流路を閉鎖する。
【0006】
【発明が解決しようとする課題】
しかしながら、このような従来の逆止弁にあっては、逆流方向が固定的に決められているため、現場での配管作業の際に逆流方向に十分に注意しながら配管に取り付ける必要があり、逆止弁の数が多くなると、作業負担がかなり大きい。また工事完了後に逆止弁の取付方向が間違っていることに気付いても、逆止弁を取り外して再度取り付け直さなければならず、相当に困難な作業となる。
【0007】
更に、実験設備や保守点検等の際に、必要に応じて流体の方向を切替えたい場合があるが、配管に逆止弁を設けている場合には、流路方向を切替えることができず、逆止弁と並列に別途バイパス配管を組むか、もしくは、当初の設計工事の段階で、流路の切替え機能を配管に組み込んでおく必要があり、逆止弁を設けた場合、簡単に流路方向を切替えることが困難であった。
【0008】
本発明は、配管に取付け状態のまま逆流方向を必要に応じて簡単に切替えることのできる逆止弁を提供することを目的とする。
【0009】
【発明が解決しようとする課題】
この目的を達成するための本発明は、配管の途中に設けられ、配管を流れる流体の逆流を阻止する逆止弁として、相対する一対の配管接続口を配置した弁ボディ、相対する一対の配管接続口に連通する一対の開口部を有すると共に開口部を仕切る仕切壁の弁穴に弁座を形成し前記弁ボディ内で流路に直交する軸回りに回動自在に設けられた弁座部材と、弁座部材内の弁座に配置され配管接続口の一方からの流体の流れを受けた際にリフトして弁を開き配管接続口の他方からの流体の流れを受けた際に弁座に押圧されて流路を閉じる弁体と、弁体のリフト方向側に弁ボディに回動自在に設けられ内部の弁座部材に連結された操作軸と、操作軸を回動させるため外部に設けられたレバー又はハンドルからなる操作部材を備え、弁座部材の一対の開口部をボディの一対の配管接続口に対し相互に逆となる位置に回動して逆止方向を切替える操作機構と、操作軸には弁体に接続されたリフト用ガイド軸が摺動自在に挿入されるガイド穴を備えたことを特徴とする。
【0010】
このような本発明の逆止弁にあっては、弁ボディの中に、逆止用の弁体を備えた弁部材が外部から回動自在に組込まれており、レバーやハンドル等により外部からの操作で弁部材を回動して、弁ボディの配管接続口に対する弁座部材の入出力関係を逆の位置に切替えることができ、逆止弁を配管に取付けた状態であっても、必要に応じて逆止方向を簡単に切替えることができる。
【0011】
このため取付工事の際に取付方向を誤っても、完成後に簡単に正しい方向に切替えることができる。また実験や保守点検で流路方向を切替える必要がある場合、本発明の逆止弁を設けることで、簡単に流路方向の変更に対応できる。
また弁座部材は、弁ボディの一対の配管接続口に対し相互に逆となる位置への切替え途中の位置で、流路を閉鎖することができる。このため逆止弁と仕切弁の機能を1つの弁で実現し、配管構成を簡単にしコストの低減を図ることができる。
【0012】
操作機構は、弁ボディに回動自在に設けられ内部の弁座部材に連結された操作軸と、操作軸を回動させる外部に設けられたレバー又はハンドル等の操作部材とを備え、レバー又はハンドル等の操作部材には、逆止方向を示す矢印等のマーカを設ける。これによって外部からの切替操作が容易にでき、またマーカによって現在設定している逆流方向を簡単に見分けることができる。
【0013】
本発明の逆止弁は、弁ボディに相対する一対の配管接続口を十字方向に配置することにより、4方口の逆止弁を構成することができる。この場合、弁座部材および弁体は、弁ボディに相対する一対の配管接続口を配置した2方口の逆止弁と同じであり、更に、操作機構は、弁座部材の一対の開口部を、弁ボディの十字方向に配置された一対の配管接続口の各位置に回動して逆止方向を切替える。
【0014】
更に、逆止弁の弁体に対し所定のプリセット荷重を加えるスプリングを設け、プリセット荷重を越える流体圧力を受けた際に弁体をリフトして流路を開放するようにしてもよい。
【0015】
【発明の実施の形態】
図1は本発明の実施形態の断面図である。図1において、1は配管の途中に設けられ配管内を流れる流体の逆流を阻止する逆止弁であり、逆止弁1の弁ボディ2は両端に一対の配管接続口3,4を有する。弁ボディ2の上側には上方に突出する円筒部2aが形成され、円筒部2aには蓋部材15がねじ込み装着される。また、弁ボディ2の下側には下方に突出する円筒部2bが形成され、円筒部2bには後述する操作機構25が回動自在に装着される。弁ボディ2の内部には流路に直交する軸回りにパッキン13,14を介して回動自在に弁座部材5が収納される。
【0016】
弁座部材5は、図2に示すように、球状に形成され、内部は中空になっている。弁座部材5の側壁には一方の配管接続口3に連通する開口部6が形成され、反対側の側壁には他方の配管接続口4に連通する他方の開口部7が形成されている。また、開口部6と開口部7の間の外壁5a,5bは弁座部材5が途中まで回動したとき、開口部6,7を閉止して、流路を閉じる。
【0017】
弁座部材5の上壁には弁体10のガイド軸11が上方に突出する軸通し穴17が形成され、また、図1に示すように、下壁の外周には操作軸18の嵌合突起19が嵌合する嵌合凹部20が形成されている。また、弁座部材5の内部には開口部6,7を仕切る仕切壁8が形成され、下室8aと上室8bを画成している。
仕切壁8には弁穴9aが形成され、弁穴9aにより下室8aと上室8bが連通可能になっている。仕切壁8の水平部上面には弁座9が形成され、弁座9にはガイド軸12を備えた弁体10が着座する。弁体10は一方の配管接続口3から下室8aに流入する方向の流体の流れを受けたとき上方に移動して弁穴9aを開き、他方の配管接続口4から上室8bに流入する方向流体の流れを受けたときは弁穴9aを閉じる。
【0018】
弁体10の下面には弁体10を案内するガイド片12が一体に形成され、弁体10が上方に移動するとき、ガイド片12は弁穴9aに沿って移動し、弁体10が弁座9からはずれるのを阻止している。弁体10の上面にはガイド軸11が固着され、ガイド軸11は蓋部材15の内壁から下方に突出して形成された小円筒部15aのガイド穴16内を摺動自在に上下動する。したがって、弁体10はガイド穴16内に摺動自在に挿入されたガイド軸11に案内されて上方に移動する。
【0019】
弁ボディ2の下側の円筒部2bには操作機構25が回動自在に装着され、操作機構25は弁座部材5の一対の開口部6,7を、弁ボディ2の一対の配管接続口3,4に対し相互に逆に位置に回動して逆止方向を切り替える。
操作機構25を180度回動すると、弁座部材5の開口部6と配管接続口7が連通し、弁座部材5の開口部7と配管接続口3が連通し、逆止方向が切り替えられる。
【0020】
また、操作機構25を略90度回動すると、弁座部材5は弁ボディ2の一対の配管接続口3,4に対し相互に逆となる位置へのの切替え途中の位置で、流路を閉鎖する。即ち、弁座部材5の一方の開口部6と他方の開口部7との間の外壁5aが開口部6を閉鎖し、外壁5bが開口部7を閉鎖する。
操作機構25は弁座部材5に連結され、操作軸18と、操作軸18を回動させる外部に設けられた操作部材としての操作レバー25aを備える。操作軸18の先端部には嵌合突起19が一体に形成され、嵌合突起19は弁座部材5の底壁外周に形成された嵌合凹部20に嵌合し、操作軸18は弁座部材5に連結されている。
【0021】
嵌合突起19に連結して鍔部18aが一体に形成され、鍔部18aは円筒部2bの軸穴21の開口部回りに形成された凹部2cに密着し、鍔部18aから下方に突出する軸部18cは軸穴21内に回転自在に収納されている。軸部18bと軸穴21の内壁との間には操作軸18が円滑に回転するようにOリング22が装着されている。
【0022】
操作軸18の後端側に形成されたねじ部23にナット24を締め込むことで操作レバー25が操作軸18に固定される。操作レバー25aの操作により操作軸18が回動し、操作軸18に連結された弁座部材5が一緒に回動する。操作レバー25aの下面から下方に突出しているナット24とねじ部23はキャップ26内に収納され、キャップ26は操作レバー25aの先端部に取り付けられている。
【0023】
図3(A),(B)は図1の操作レバー23aの説明図である。図3(A)に示すように、操作レバー25aの先端部に取り付けられたキャップ26の側面には逆止方向を示す矢印のマーカ27aがつけられている。また、図3(B)に示すように、操作レバー25aの先端部に取り付けられたキャップ26の下面にも逆止方向を示す矢印のマーカ27bがつけられている。
【0024】
逆止弁1の取付場所によっては、下側から見たときの方が見やすい場合もあるので、キャップ26の下面にマーカ27bをつけている。マーカ27a,27bによって外部から切替操作を容易に行うことができ、また、マーカ27a,27bによって現在設定している逆流方向を簡単に見分けることができるようにしている。尚、操作レバー25aを反対側に180度回動すると、キャップ26も操作レバー25aと一緒に180度反対側に回動し、マーカ27a,27bも180度反対方向を示し、逆止方向が切り替えられたことを示す。
【0025】
次に、動作を説明する。図1に示すように、操作レバー25aが弁ボディ2の一方の配管接続口3側に切替えているときは、図3に示すように、マーカ27a,27bは紙面で右方向を示し、流体は図1の矢印Aで示すように、配管接続口3から配管接続口4にのみ流れ、その逆方向には流れない。
すなわち、図1に示すような状態においては、弁座部材5の開口部6は、配管接続口3に連通し、開口部7は他方の配管接続口4に連通している。ガイド軸11を備えた弁体10は仕切壁8の水平部に形成した弁座9に着座し、弁穴9aを閉鎖している。配管接続口3に流体が矢印Aのように流入すると、流体は仕切壁8により仕切られた下室8aに入り、弁体10を上方に押し上げる。
【0026】
弁体10は、ガイド軸11がガイド穴16に案内されて上方に移動することで上方にリフトし、ガイド片12が弁穴9aに沿って上方にリフトすることで、弁穴9aを開く。弁穴9aが開くと、下室8aに入った流体は、弁穴9aから上室8bに入り、他方の開口部7を経て他方の配管接続口4に流出する。
その後、配管接続口6に対して流体の流入がなくなると、弁体10は流体の流れによる押圧力を受けなくなるので、自重によりガイド片12に案内されながら下降し、弁穴9aを閉じる。このように、弁体10は弁穴9aをガイドするガイド片12により案内されて弁穴9aを閉じるので、弁体10が弁座9からはずれてしまうことがない。
【0027】
この状態において、配管接続口4は流体が流入してきたときは、流体は開口部7を経て上室8bに流入するが、流体は弁体10の上面に作用するので、弁体10に弁座9に着座したままであり、弁穴9aは閉じたままである。したがって、図1の状態では逆止弁1は、一方の配管接続口3から他方の配管接続口4への流体の一方向の流れを許容し、その逆流を阻止する。
【0028】
次に、逆止方向を切り替える場合について説明する。図1に示すような操作レバー25aの位置から反対側に180度操作レバー25aを回動すると、図4に示すような状態になる。操作レバー25aを180度回動すると、操作レバー25aに連結された操作軸18も180度回動し、この操作軸18の回動により操作軸18に連結された弁座部材5も弁ボディ2内で180度回動する。
【0029】
図4に示すように、弁座部材5の開口部6は、弁ボディ2の配管接続口4に連通し、弁座部材5の開口部7は弁ボディ2の配管接続口3に連通するようになる。矢印Bで示すように配管接続口4に流体が流入すると、流体は開口部6から下室8aに入り、弁体10を上方の押し上げて弁穴9aを通り、上室8bに入った後に他方の開口部7から配管接続口3に流出する。
【0030】
これに対して、配管接続口3に流体が流入してきて、開口部7から上室8bに入っても、流体は弁座9に対して弁体10を押圧し、弁穴9aは閉じたままである。したがって、配管接続口3に流入した流体は、配管接続口4に流出することがない。このようにして、必要に応じて逆止方向を簡単に切り替えることができる。
【0031】
このため取付工事の際に取付方向を誤っても、完成後に簡単に正しい方向に切り替えることができる。また、実験や保守点検で流路方向を切替える必要がある場合、本実施形態の逆止弁1を設けることで、簡単に流路方向の変更に対応できる。
また、弁座部材5は、弁ボディ2の一対の配管接続口3,4に対し相互に逆となる位置への切替え途中の位置で、流路を閉鎖することができるため、逆止弁と仕切弁の機能を1つの弁で実現し、配管構成を簡単にしコストの低減を図ることができる。
【0032】
さらに、操作レバー25aのキャップ26には、逆止方向を示す矢印のマーカ27a,27bを設けたため、外部からの切替操作が容易にでき、またマーカ27a,27bによって現在設定している逆流方向を簡単に見分けることができる。
次に、図1の状態から図4の状態に切替える途中の位置で流路を閉鎖する場合について説明する。図1に示す操作レバー25aの位置から略90度操作レバー25aを回動すると、弁座部材5の開口部6と弁ボディ2の配管接続口3との連通は遮断され、弁座部材5の外壁5aが配管接続口3を閉鎖し、開口部7と配管接続口4との連通は遮断され、弁座部材5の外壁5bが配管接続口4を閉鎖する。
【0033】
したがって、配管接続口4に流体が流入してきても弁座部材5の外壁5aにより流入が阻止され、流体は配管接続口4に流出することがない。また、配管接続口4に流体が流入してきても弁座部材5の他方の外壁5bにより流入が阻止され、流体が配管接続口3に流出することがない。すなわち、弁座部材5は弁ボディ2の一対の配管接続口3,4に対し相互に逆になる位置への切替え途中の位置で流路を閉鎖することができる。したがって、逆止弁と仕切弁の機能を1つの弁で実現することができる。
【0034】
図5は本発明の他の実施形態を示す断面図である。本実施形態は、逆止方向を切り替え操作する操作機構を弁ボディの上部側に設けた例である。
図5において、2は逆止弁1の弁ボディであり、弁ボディ2は一対の配管接続口3,4を相対配置し、下部には下方に湾曲する底壁2dが一体に形成され、上部には上方に突出する円筒部2eが一体に形成されている。弁ボディ2内には流路に直交する軸回りに弁座部材5がリテーナ38,40に保持されたOリング37,39を介して回動自在に収納される。
【0035】
弁座部材5は図1のものと同様に構成されるが、図1のものでは下部に嵌合凹部20が形成されているのに対して図5のものでは上部に嵌合凹部34が形成されている。弁座部材5の仕切壁8の水平部分に形成した弁座9には図1に示す弁体と同様の弁体10が配置される。弁ボディ2の円筒部2eには軸穴29aが形成された蓋部材29がねじ込まれ、軸穴29a内には操作軸28がOリング30を介して回動自在に収納される。
【0036】
操作軸28はねじ部31に連続して軸本体28aが一体に形成され、軸本体28a内には小円筒部28bが下方に突出して一体に形成されている。小円筒部28bにはガイド穴16が形成され、ガイド穴16には弁体10のガイド軸11が摺動自在に挿入される。操作軸28のねじ部31にナット32をねじ込むことで操作ハンドル33のハンドル固定部33aが操作軸28に固定され、操作ハンドル33が操作軸28に取り付けられている。
【0037】
したがって、操作ハンドル33を回動操作することで、操作軸28を回動することができる。操作軸28の軸本体28aの先端外側には抜止め用鍔部36が一体に形成され、抜止め用鍔部36は蓋部材29の下面と弁座部材5の上面との間の空隙に挿入され、操作軸28が蓋部材29から抜け出してしまうのを防止している。
【0038】
操作軸28の軸本体28aの先端には嵌合突起35が一体に形成され、嵌合突起35は弁座部材5の軸通し穴17の外側に形成した嵌合凹部34に嵌合している。したがって、弁座部材5と操作軸28は連結されており、操作ハンドル33を回動操作すると、弁座部材5は操作軸28と、一緒に回動する。
次に、動作を説明する。図5に示すように、操作ハンドル33を回動操作しないときは、弁座部材5の開口部6,7は弁ボディ2の配管接続口3,4にそれぞれ連通している。矢印Aで示すように、流体が一方の配管接続口6に流入すると、流体は開口部6を経て下室8aに入り、弁体10を押し上げて、弁穴9aを通って上室8bに入って他方の開口部7から他方の配管接続口4に流出する。
【0039】
逆に配管接続口4から流体が他方の開口部7を通って上室8bに流入しても、流体は弁体10を弁座9に押し付けて弁穴9aは閉じたままである。したがって、流体は矢印Aで示す一方向にのみ流れ、その逆流は阻止される。
次に、操作ハンドル33を180度回動すると、開口部6は右側の配管接続口4に連通し、開口部7は左側の配管接続口3にそれぞれ連通するようになる。この状態においては、配管接続口4に流入した流体は、配管接続口3にのみ流出し、その逆流方向は阻止される。このように、必要に応じて逆止方向を簡単に切り替えることができる。
【0040】
次に、図5の状態で操作ハンドル33を略90度回動すると、操作軸28も同程度回動し、操作軸28に連結された弁座部材5も一緒に同程度回動する。この状態においては、開口部6,7と配管接続口3,4との連通は遮断され、配管接続口3,4は弁座部材5の外壁5a,5bによって閉鎖される。したがって、流路は閉鎖され、流体は矢印Aの示す方向にも、またその反対方向にも流れない。本実施形態においても、図1と同様な効果を得ることができる。
【0041】
図6は本発明の逆止弁1を用いたスプリンクラー消火設備の説明図である。図6において、41は消火ポンプであり、モータ50より駆動され、モータ50の起動停止は図示しないポンプ制御盤により行われる。消火ポンプ41の吸込管40は貯水槽51に降ろされ、ポンプ起動により貯水槽51から汲み上げた消火用水を加圧して建物の垂直方向に立ち上げた給水本管42に逆止弁1を介して加圧供給する。また建物の屋上には高架水槽53が設置されて、給水本管43に接続し水頭圧を加えている。
【0042】
給水本管42に設けた逆止弁1の一次側は圧力タンク48に分岐接続され、圧力タンク48に給水本管42の圧力を導入して内部の空気を圧縮し、この圧縮空気は圧力センサ49により検出される。また、給水本管42に対しては各階毎に分岐管43が分岐接続され、分岐管43には流水検知装置44が設置され、流水検知装置44の二次側に複数の閉鎖型のスプリンクラーヘッド45を設置している。
【0043】
一方、消火ポンプ41の吐出側には呼水槽52が設置され、ボールタップ52aにより呼水槽52のレベルを常に一定レベルに保つようにしている。また、呼水槽52には呼水配管43aを介して消火ポンプ41より汲み上げた消火用水を呼水として供給する。
消火ポンプ41の吐出側の給水本管42には本発明の逆止弁1が設けられ、逆止弁1は分岐管43および給水本管42内に充満した加圧水が消火ポンプ41側に逆流するのを阻止する。また、火災時にスプリンクラーヘッド45が作動すると、消火ポンプ41は運転され、消火用水を給水本管42に加圧して供給するが、この際逆止弁1は消火用水をスプリンクラーヘッド45側にのみ一方向に流れるのを許容し、消火ポンプ41側に逆流するのを阻止する。
【0044】
また、例えば呼水槽52に対して呼水配管43aを介して消火用水を呼水として供給するときは、逆止弁1を1Aに取出して示すように、操作機構25の操作により流路を閉鎖する。したがって、消火ポンプ41からの消火用水はスプリンクラーヘッド45側には流れず、呼水槽52に呼水として供給される。このような場合には逆止弁1は仕切弁としての機能をもつ。したがって、逆止弁と仕切弁の機能を1つの弁で実現することができ、配管構成が簡単となり、コストの低減を図ることができる。
【0045】
図7は、本発明の逆止弁1を用いた消火実験設備の説明図である。図7において、70は第1の消火実験用ポンプであり、第1の消火実験用ポンプ70の吸込側には、貯水槽55から実験用水を汲み上げる吸込管71および消火用水に所定比率で混合して消火泡を作るため泡消火用水を貯留した貯泡水溶液槽56の吸込管72がそれぞれ接続されている。
【0046】
第1の消火実験用ポンプ70は吸い込んだ泡消火用水または消火用水を実験用配管73に供給し、この実験用配管73には仕切弁74を介して実験用配管75が接続される。実験用配管75は第1のテスト系統76に接続され、第1のテスト系統76は泡消火用水または消火用水の供給を受けて消火の実験を行う。
60は第2の実験用消火ポンプであり、第2の実験用消火ポンプ60は吸込管61により貯水槽55から実験用水を汲み上げて実験用配管62に供給する。実験用配管62は仕切弁64を介して他の実験用配管63に接続され、実験用配管63には第2のテスト系統65が接続されている。第2のテスト系統65は実験用水の供給を受けて消火の実験を行う。
【0047】
ここで、仕切弁74と第1のテスト系統76との間に接続された実験用配管75と、第2の実験用ポンプ60と仕切弁64との間に接続された実験用配管62は実験用接続管80により接続され、実験用接続管80の途中には、本発明による図1または図5の逆止弁1が設けられている。
第1のテスト系統76および第2のテスト系統65でそれぞれ同時に実験用水により消火テストを行いたいときは、逆止弁1により実験接続管80の流路を閉止する。尚、貯泡水溶液槽56の吸込管72はその仕切弁により閉じておく。
【0048】
第1の実験用ポンプ70は貯水槽55から消火用水を汲み上げて実験用配管73、仕切弁74および実験用配管75を介して第1のテスト系統76に実験用水を供給する。この場合、逆止弁1は実験用接続管80の流路を閉止しているため、実験用水が第2のテスト系統65側に供給されることがない。
第2の実験用ポンプ60は、吸込管72の仕切弁を閉じ、吸込管71の仕切弁を開いた状態で、貯水槽55から消火用水を汲み上げて実験用配管62、仕切弁64および実験用配管63を介して第2のテスト系統65に消火用水を供給する。この場合、逆止弁1は実験用接続管80の流路を閉止しているので、実験用水が第1のテスト系統76に供給されることがない。したがって、第1および第2のテスト系統76,65は同時に第1および第2の実験用ポンプ71,61から実験用水の供給を受けて消火テストを行うことができる。
【0049】
次に、第1および第2の実験用ポンプ70,60から同時に大流量の実験用水を受けて第2のテスト系統65のみで消火テストを行いたい場合には、図7の逆止弁1の逆止方向を逆にする。このため吸込管72の仕切弁を閉じた状態で第1の実験用ポンプ70により貯水槽55から汲み上げられた消火用水は、実験用配管73、仕切弁74、実験用配管75、実験用接続管80および逆止弁1を通り、更に仕切弁64から実験用配管63を経て第2の系統65に供給される。
【0050】
また、第1の実験用ポンプ60により貯水槽55から汲み上げられた消火用水は実験用配管62、仕切弁64および実験用配管63を通って第2のテスト系統65に供給される。この場合、第2の実験用ポンプ60で汲み上げられた消火用水は、逆止弁1の逆止方向が逆になっているので、第1のテスト系統76には供給されず、第2のテスト系統65に供給される。
【0051】
したがって、第2のテスト系統65のみに第1および第2の実験用ポンプ70,60からの大流量の実験用水が同時に供給されるので、第2のテスト系統65は大流量の実験用水を用いて消火テストを行うことができる。
次に、第1のテスト系統76で泡による消火テストを行いたいときは、逆止弁1を図7に示すような逆止方向にする。吸込管71の仕切弁を閉じた状態で第1の実験用ポンプ70により貯泡水溶液槽56から吸込んだ泡水溶液は、実験用配管73、仕切弁74、実験用配管75を通って第1のテスト系統76に供給される。
【0052】
この場合、逆止弁1は図示のような逆止方向に設定されているので、第1の実験用ポンプ70からの泡水溶液は第2のテスト系統65側に供給されることがない。したがって、第1のテスト系統76は第1の実験用ポンプ70から供給される泡水溶液を泡ヘッドから放出する消火テストを行うことができる。このように、消火テストで流路方向を切り替える必要がある場合、逆止弁1を設けることで、簡単に流路方向の変更に対応することができる。
【0053】
図8は本発明の他の実施形態であり、図5の実施形態に更に、スプリング100を操作軸28内のガイド穴16の外側部分に組込んで弁体10にプリセット荷重を加え、配管接続口3側から所定値を越える圧力が加わった時に、スプリング100に抗して弁体10をリフトして流路を開くようにしたことを特徴とする。勿論、図1の構造のものについても、同様にスプリング100を組込んだ構造といることができる。
【0054】
図9は本発明の他の実施形態となる逆止弁の平面図であり、弁ボディ2には、相対する一対の配管接続口3A,4Aと同じく相対する一対の配管接続口3B,4Bとを十字方向に配置して、4方口の逆止弁101としたことを特徴とする。この4方口の逆止弁101の内部構造は、例えば図1の2方口の逆止弁1の同じであり、弁ボディ1の4方向に配管接続口3A,3B,4A,4Bが開口している点が相違する。
【0055】
図10は図10の4方口の逆止弁101の切替状態の説明図であり、方向性をもつ弁座部材5を操作機構により90°ずつに回動して切替えることで、図10(A)(B)(C)(D)の4種類の逆止弁のいずれかの機能を選択的に実現できる。
【0056】
【発明の効果】
以上説明してきたように、本発明によれば、逆止弁を配管に取り付けた状態であっても、必要に応じて逆止方向を簡単に切り替えることができるため、取付工事の際に取付方向を誤っても、完成後に簡単に正しい方向に切り替えることができる。
【0057】
また、実験や保守点検で流路方向を切り替える必要がある場合に、簡単に流路方向の変更に対応することができる。また、逆止弁と仕切弁の機能を1つの弁で実現することができ、配管構成が簡単になり、コストも低減することができる。さらに、操作部材に逆止方向を示すマーカを設けたため、外部からの切替操作が容易にでき、また、現在設定している逆止方向を簡単に見分けることができる。
【図面の簡単な説明】
【図1】本発明の実施形態の断面図
【図2】図2の弁座部材を取出して示した説明図
【図3】図1の操作レバーの説明図
【図4】図1の逆流方向を切り替えた状態の断面図
【図5】本発明の他の実施形態の断面図
【図6】本発明の逆止弁を用いたスプリンクラー消火設備の説明図
【図7】本発明の逆止弁を用いた消火実験設備の説明図
【図8】スプリングにより開放圧力を設定できる本発明の他の実施形態の断面図
【図9】4方口の逆止弁とした本発明の他の実施形態の平面図
【図10】図9の4方口とした逆止弁の切替え機能の説明図
【図11】逆止弁を用いた従来のスプリンクラー消火設備の説明図
【図12】従来の逆止弁の断面図
【符号の説明】
1:逆止弁
2:弁ボディ
3,4:配管接続口
5:弁座部材
6,7:開口部
8:仕切壁
9:弁座
10:弁体
18,28:操作軸
25:操作レバー
27:マーカ
33:操作ハンドル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a check valve that is provided in the middle of a pipe and prevents a backflow of fluid flowing through the pipe.
[0002]
[Prior art]
Conventionally, for example, in a sprinkler fire extinguishing facility as shown in FIG. 11, a check valve for preventing a back flow of fluid is provided in the middle of the piping as necessary.
In this sprinkler fire extinguishing equipment, a water flow detection device 4 is provided in a branch pipe 43 connected to a water supply main pipe 42 from a fire extinguishing pump 41, a closed sprinkler head 45 is connected to the secondary side thereof, and the closed sprinkler head 45 is connected. All pipes are filled with pressurized water. In addition, 51 is a water storage tank, 52 is an expiration water tank, 53 is an elevated water tank.
[0003]
A check valve 46 and a gate valve 47 are provided in the water supply main pipe 42 raised from the discharge port of the fire extinguishing pump 41, and the check valve 46 prevents back flow to the pump side. The pressure of the main water supply pipe 42 is introduced into the pressure tank 48 to compress the air in the tank, and the pressure in the pipe is always maintained at a specified pressure or higher.
When the sprinkler head 45 is activated in the event of a fire, flowing water is generated, whereby the flowing water detection device 44 is activated, the flowing water detection switch 44a is turned on, and the flowing water detection signal is sent to a self-reporting receiver control panel (not shown). indicate. Also, the operation of the sprinkler head 45 reduces the pressure of the water supply main pipe 42, and the pressure switch 49 of the pressure tank 48 outputs an operation signal to a pump control panel (not shown). drive. By the pump operation, fire-fighting water is pressurized and supplied from the water storage tank 51, and continuous water discharge is performed from the sprinkler head 45 that has been operated.
[0004]
FIG. 12 shows the structure of the conventional check valve 46 used in FIG. The check valve 46 has a pair of pipe connection ports 55 and 56 formed in the valve body 54, and a valve seat 58 is formed in a valve hole in a horizontal portion of an internal partition wall that partitions the pipe connection ports 55 and 56. A valve body 57 is arranged at 58. The valve body 57 is integrally provided with a guide shaft 57b on the upper side and a guide member 57a for guiding the opening hole of the valve seat 58 on the lower side. The guide shaft 57 b of the valve body 57 is slidably fitted into a lid member 59 that is screwed and fixed to the upper part of the body 54.
[0005]
The check valve 46 allows fluid to flow from the pipe connection ports 55 to 56, but prevents backflow from the pipe connection ports 56 to 55. That is, the fluid from the pipe connection port 55 lifts the valve body 57 to open the flow path, but the fluid from the pipe connection port 56 presses the valve body 57 against the valve seat 58 to close the flow path. .
[0006]
[Problems to be solved by the invention]
However, in such a conventional check valve, since the backflow direction is fixedly determined, it is necessary to attach it to the pipe while paying sufficient attention to the backflow direction during the piping work on site, When the number of check valves increases, the work burden becomes considerably large. Moreover, even if it is noticed that the check valve is attached in the wrong direction after the construction is completed, the check valve must be removed and reattached, which is a considerably difficult task.
[0007]
Furthermore, there are cases where it is desired to switch the direction of the fluid as necessary during experimental equipment, maintenance inspection, etc., but if the check valve is provided in the piping, the flow direction cannot be switched, It is necessary to build a separate bypass pipe in parallel with the check valve, or to incorporate a flow path switching function into the pipe at the initial design work stage. It was difficult to change direction.
[0008]
An object of this invention is to provide the nonreturn valve which can change a backflow direction easily as needed with the state attached to piping.
[0009]
[Problems to be solved by the invention]
To achieve this object, the present invention provides a valve body provided with a pair of opposed pipe connection ports as a check valve that is provided in the middle of the pipe and prevents a reverse flow of fluid flowing through the pipe, and a pair of opposed pipes A valve seat member having a pair of openings communicating with the connection port and forming a valve seat in a valve hole of a partition wall partitioning the opening, and being rotatable about an axis perpendicular to the flow path in the valve body When the fluid flow from one of the pipe connection ports is placed on the valve seat in the valve seat member, the valve is lifted to open the valve and receive the fluid flow from the other of the pipe connection ports Valve Valve body that closes the flow path when pressed by the seat An operation shaft that is rotatably provided on the valve body on the lift direction side of the valve body and is connected to an internal valve seat member, and an operation member that is provided outside to rotate the operation shaft With a valve An operation mechanism for switching the check direction by rotating the pair of openings of the seat member to positions opposite to each other with respect to the pair of pipe connection ports of the body. And a guide hole into which the lift guide shaft connected to the valve body is slidably inserted in the operation shaft. It is characterized by having.
[0010]
In such a check valve of the present invention, a valve member having a check valve body is incorporated in the valve body so as to be rotatable from the outside, and from the outside by a lever, a handle or the like. The valve member can be rotated by the operation to switch the input / output relationship of the valve seat member to the pipe connection port of the valve body to the reverse position, even if the check valve is attached to the pipe. The check direction can be easily switched according to the condition.
[0011]
For this reason, even if the installation direction is wrong during the installation work, it can be easily switched to the correct direction after completion. Further, when it is necessary to switch the flow direction in experiments or maintenance inspections, the flow direction can be easily changed by providing the check valve of the present invention.
Further, the valve seat member can close the flow path at a position in the middle of switching to a position opposite to each other with respect to the pair of pipe connection ports of the valve body. Therefore, the functions of the check valve and the gate valve can be realized with one valve, the piping configuration can be simplified, and the cost can be reduced.
[0012]
The operating mechanism includes an operating shaft that is rotatably provided on the valve body and connected to an internal valve seat member, and an operating member such as a lever or a handle that is provided outside to rotate the operating shaft. A marker such as an arrow indicating a check direction is provided on an operation member such as a handle. Accordingly, the switching operation from the outside can be easily performed, and the currently set back flow direction can be easily identified by the marker.
[0013]
The check valve of the present invention can constitute a four-way check valve by arranging a pair of pipe connection ports facing the valve body in the cross direction. In this case, the valve seat member and the valve body are the same as a two-way check valve in which a pair of pipe connection ports facing the valve body are arranged, and the operation mechanism is a pair of openings of the valve seat member. Is rotated to each position of the pair of pipe connection ports arranged in the cross direction of the valve body to switch the check direction.
[0014]
Furthermore, a spring that applies a predetermined preset load to the valve body of the check valve may be provided, and when the fluid pressure exceeding the preset load is received, the valve body may be lifted to open the flow path.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view of an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a check valve that is provided in the middle of a pipe and prevents a backflow of fluid flowing in the pipe. The valve body 2 of the check valve 1 has a pair of pipe connection ports 3 and 4 at both ends. A cylindrical portion 2a that protrudes upward is formed on the upper side of the valve body 2, and a lid member 15 is screwed onto the cylindrical portion 2a. A cylindrical portion 2b protruding downward is formed on the lower side of the valve body 2, and an operation mechanism 25 described later is rotatably mounted on the cylindrical portion 2b. A valve seat member 5 is housed in the valve body 2 so as to be rotatable through packings 13 and 14 around an axis orthogonal to the flow path.
[0016]
As shown in FIG. 2, the valve seat member 5 is formed in a spherical shape and is hollow inside. An opening 6 communicating with one pipe connection port 3 is formed on the side wall of the valve seat member 5, and the other opening 7 communicating with the other pipe connection port 4 is formed on the opposite side wall. Further, the outer walls 5a and 5b between the opening 6 and the opening 7 close the openings 6 and 7 and close the flow path when the valve seat member 5 is rotated halfway.
[0017]
A shaft through hole 17 through which the guide shaft 11 of the valve body 10 protrudes upward is formed in the upper wall of the valve seat member 5, and as shown in FIG. 1, the operation shaft 18 is fitted on the outer periphery of the lower wall. A fitting recess 20 into which the protrusion 19 is fitted is formed. A partition wall 8 that partitions the openings 6 and 7 is formed inside the valve seat member 5 to define a lower chamber 8a and an upper chamber 8b.
A valve hole 9a is formed in the partition wall 8, and the lower chamber 8a and the upper chamber 8b can communicate with each other through the valve hole 9a. A valve seat 9 is formed on the upper surface of the horizontal portion of the partition wall 8, and a valve body 10 having a guide shaft 12 is seated on the valve seat 9. When the valve body 10 receives a flow of fluid in the direction flowing into the lower chamber 8a from one pipe connection port 3, the valve body 10 moves upward to open the valve hole 9a, and flows into the upper chamber 8b from the other pipe connection port 4. When receiving the flow of directional fluid, the valve hole 9a is closed.
[0018]
A guide piece 12 for guiding the valve body 10 is integrally formed on the lower surface of the valve body 10, and when the valve body 10 moves upward, the guide piece 12 moves along the valve hole 9a. This prevents the seat 9 from coming off. A guide shaft 11 is fixed to the upper surface of the valve body 10, and the guide shaft 11 moves up and down slidably in a guide hole 16 of a small cylindrical portion 15 a formed to protrude downward from the inner wall of the lid member 15. Therefore, the valve body 10 is guided upward by the guide shaft 11 slidably inserted into the guide hole 16 and moves upward.
[0019]
An operating mechanism 25 is rotatably mounted on the lower cylindrical portion 2 b of the valve body 2, and the operating mechanism 25 connects the pair of openings 6 and 7 of the valve seat member 5 to the pair of pipe connection ports of the valve body 2. The check directions are switched by rotating to positions opposite to each other.
When the operating mechanism 25 is rotated 180 degrees, the opening 6 of the valve seat member 5 and the pipe connection port 7 communicate with each other, the opening 7 of the valve seat member 5 communicates with the pipe connection port 3 and the check direction is switched. .
[0020]
Further, when the operation mechanism 25 is rotated by approximately 90 degrees, the valve seat member 5 moves the flow path at a position in the middle of switching to a position opposite to each other with respect to the pair of pipe connection ports 3 and 4 of the valve body 2. Close. That is, the outer wall 5 a between the one opening 6 and the other opening 7 of the valve seat member 5 closes the opening 6, and the outer wall 5 b closes the opening 7.
The operation mechanism 25 is connected to the valve seat member 5, and includes an operation shaft 18 and an operation lever 25 a as an operation member provided outside for rotating the operation shaft 18. A fitting projection 19 is integrally formed at the tip of the operation shaft 18. The fitting projection 19 is fitted into a fitting recess 20 formed on the outer periphery of the bottom wall of the valve seat member 5. It is connected to the member 5.
[0021]
A flange 18a is formed integrally with the fitting protrusion 19, and the flange 18a is in close contact with the recess 2c formed around the opening of the shaft hole 21 of the cylindrical portion 2b and protrudes downward from the flange 18a. The shaft portion 18c is housed in the shaft hole 21 so as to be freely rotatable. An O-ring 22 is mounted between the shaft portion 18b and the inner wall of the shaft hole 21 so that the operation shaft 18 rotates smoothly.
[0022]
The operation lever 25 is fixed to the operation shaft 18 by tightening the nut 24 into the screw portion 23 formed on the rear end side of the operation shaft 18. The operation shaft 18 is rotated by the operation of the operation lever 25a, and the valve seat member 5 connected to the operation shaft 18 is rotated together. The nut 24 and the screw portion 23 projecting downward from the lower surface of the operation lever 25a are housed in a cap 26, and the cap 26 is attached to the distal end portion of the operation lever 25a.
[0023]
3A and 3B are explanatory diagrams of the operation lever 23a of FIG. As shown in FIG. 3A, an arrow marker 27a indicating a non-return direction is attached to the side surface of the cap 26 attached to the tip of the operation lever 25a. Further, as shown in FIG. 3B, an arrow marker 27b indicating a non-return direction is also attached to the lower surface of the cap 26 attached to the tip of the operation lever 25a.
[0024]
Depending on the mounting location of the check valve 1, the marker 27 b is attached to the lower surface of the cap 26 because it may be easier to see when viewed from below. The markers 27a and 27b can be easily switched from the outside, and the marker 27a and 27b can easily distinguish the currently set back flow direction. When the operation lever 25a is rotated 180 degrees to the opposite side, the cap 26 is also rotated 180 degrees to the opposite side together with the operation lever 25a, the markers 27a and 27b also indicate the opposite direction 180 degrees, and the check direction is switched. Indicates that
[0025]
Next, the operation will be described. As shown in FIG. 1, when the operation lever 25a is switched to one pipe connection port 3 side of the valve body 2, as shown in FIG. 3, the markers 27a and 27b indicate the right direction on the paper surface, and the fluid is As shown by the arrow A in FIG. 1, it flows only from the pipe connection port 3 to the pipe connection port 4 and does not flow in the opposite direction.
That is, in the state shown in FIG. 1, the opening 6 of the valve seat member 5 communicates with the pipe connection port 3, and the opening 7 communicates with the other pipe connection port 4. The valve body 10 provided with the guide shaft 11 is seated on a valve seat 9 formed in the horizontal portion of the partition wall 8 and closes the valve hole 9a. When the fluid flows into the pipe connection port 3 as indicated by the arrow A, the fluid enters the lower chamber 8a partitioned by the partition wall 8 and pushes the valve body 10 upward.
[0026]
The valve body 10 is lifted upward by the guide shaft 11 being guided by the guide hole 16 and moving upward, and the guide piece 12 is lifted upward along the valve hole 9a to open the valve hole 9a. When the valve hole 9 a is opened, the fluid that has entered the lower chamber 8 a enters the upper chamber 8 b from the valve hole 9 a, and flows out to the other pipe connection port 4 through the other opening 7.
After that, when the fluid no longer flows into the pipe connection port 6, the valve body 10 does not receive the pressing force due to the flow of the fluid, so that it descends while being guided by the guide piece 12 by its own weight, and closes the valve hole 9a. Thus, since the valve body 10 is guided by the guide piece 12 that guides the valve hole 9a and closes the valve hole 9a, the valve body 10 is not detached from the valve seat 9.
[0027]
In this state, when fluid flows into the pipe connection port 4, the fluid flows into the upper chamber 8 b through the opening 7, but the fluid acts on the upper surface of the valve body 10, so 9 remains seated and the valve hole 9a remains closed. Therefore, in the state of FIG. 1, the check valve 1 allows a one-way flow of fluid from one pipe connection port 3 to the other pipe connection port 4 and prevents the reverse flow.
[0028]
Next, a case where the check direction is switched will be described. When the operation lever 25a is rotated 180 degrees to the opposite side from the position of the operation lever 25a as shown in FIG. 1, the state shown in FIG. 4 is obtained. When the operation lever 25a is rotated 180 degrees, the operation shaft 18 connected to the operation lever 25a is also rotated 180 degrees, and the valve seat member 5 connected to the operation shaft 18 by the rotation of the operation shaft 18 is also the valve body 2. Within 180 degrees.
[0029]
As shown in FIG. 4, the opening 6 of the valve seat member 5 communicates with the piping connection port 4 of the valve body 2, and the opening 7 of the valve seat member 5 communicates with the piping connection port 3 of the valve body 2. become. When a fluid flows into the pipe connection port 4 as indicated by an arrow B, the fluid enters the lower chamber 8a from the opening 6, pushes the valve body 10 upward, passes through the valve hole 9a, and enters the upper chamber 8b. From the opening 7 to the pipe connection port 3.
[0030]
On the other hand, even if the fluid flows into the pipe connection port 3 and enters the upper chamber 8b from the opening 7, the fluid presses the valve body 10 against the valve seat 9, and the valve hole 9a remains closed. is there. Therefore, the fluid flowing into the pipe connection port 3 does not flow out to the pipe connection port 4. In this way, the check direction can be easily switched as necessary.
[0031]
For this reason, even if the installation direction is wrong during the installation work, it can be easily switched to the correct direction after completion. Moreover, when it is necessary to switch the flow path direction by experiment or maintenance inspection, the check valve 1 of this embodiment can be provided to easily cope with the change of the flow path direction.
Further, the valve seat member 5 can close the flow path at a position in the middle of switching to a position opposite to the pair of pipe connection ports 3, 4 of the valve body 2. The function of the gate valve can be realized with one valve, the piping configuration can be simplified, and the cost can be reduced.
[0032]
Further, the cap 26 of the operating lever 25a is provided with arrow markers 27a and 27b indicating a check direction, so that the switching operation from the outside can be easily performed, and the reverse flow direction currently set by the markers 27a and 27b can be changed. It can be easily identified.
Next, a case where the flow path is closed at a position in the middle of switching from the state of FIG. 1 to the state of FIG. 4 will be described. When the operation lever 25a is rotated approximately 90 degrees from the position of the operation lever 25a shown in FIG. 1, the communication between the opening 6 of the valve seat member 5 and the pipe connection port 3 of the valve body 2 is blocked. The outer wall 5 a closes the pipe connection port 3, the communication between the opening 7 and the pipe connection port 4 is blocked, and the outer wall 5 b of the valve seat member 5 closes the pipe connection port 4.
[0033]
Therefore, even if a fluid flows into the pipe connection port 4, the inflow is prevented by the outer wall 5 a of the valve seat member 5, and the fluid does not flow out to the pipe connection port 4. Further, even if fluid flows into the pipe connection port 4, the flow is prevented by the other outer wall 5 b of the valve seat member 5, and the fluid does not flow out to the pipe connection port 3. That is, the valve seat member 5 can close the flow path at a position in the middle of switching to a position that is opposite to the pair of pipe connection ports 3 and 4 of the valve body 2. Therefore, the functions of the check valve and the gate valve can be realized by one valve.
[0034]
FIG. 5 is a sectional view showing another embodiment of the present invention. The present embodiment is an example in which an operation mechanism for switching the check direction is provided on the upper side of the valve body.
In FIG. 5, 2 is a valve body of the check valve 1. The valve body 2 has a pair of pipe connection ports 3 and 4 arranged relative to each other, and a bottom wall 2d curved downward is integrally formed at the lower part. Is integrally formed with a cylindrical portion 2e protruding upward. The valve seat member 5 is accommodated in the valve body 2 through O-rings 37 and 39 held by retainers 38 and 40 around an axis orthogonal to the flow path.
[0035]
The valve seat member 5 is configured in the same manner as that of FIG. 1, but the fitting recess 20 is formed in the lower portion in FIG. 1, whereas the fitting recess 34 is formed in the upper portion in FIG. Has been. A valve body 10 similar to the valve body shown in FIG. 1 is disposed on the valve seat 9 formed in the horizontal portion of the partition wall 8 of the valve seat member 5. A lid member 29 having a shaft hole 29 a is screwed into the cylindrical portion 2 e of the valve body 2, and an operation shaft 28 is rotatably accommodated in the shaft hole 29 a through an O-ring 30.
[0036]
The operation shaft 28 is formed integrally with a shaft body 28a continuously with the screw portion 31, and a small cylindrical portion 28b is formed integrally with the shaft body 28a so as to protrude downward. A guide hole 16 is formed in the small cylindrical portion 28 b, and the guide shaft 11 of the valve body 10 is slidably inserted into the guide hole 16. By screwing the nut 32 into the screw portion 31 of the operation shaft 28, the handle fixing portion 33 a of the operation handle 33 is fixed to the operation shaft 28, and the operation handle 33 is attached to the operation shaft 28.
[0037]
Therefore, the operation shaft 28 can be rotated by rotating the operation handle 33. A retaining collar 36 is integrally formed on the outer end of the shaft main body 28 a of the operation shaft 28, and the retaining collar 36 is inserted into a gap between the lower surface of the lid member 29 and the upper surface of the valve seat member 5. Thus, the operation shaft 28 is prevented from coming out of the lid member 29.
[0038]
A fitting projection 35 is integrally formed at the tip of the shaft main body 28 a of the operation shaft 28, and the fitting projection 35 is fitted in a fitting recess 34 formed outside the shaft through hole 17 of the valve seat member 5. . Therefore, the valve seat member 5 and the operation shaft 28 are connected, and when the operation handle 33 is rotated, the valve seat member 5 rotates together with the operation shaft 28.
Next, the operation will be described. As shown in FIG. 5, when the operation handle 33 is not rotated, the openings 6 and 7 of the valve seat member 5 communicate with the pipe connection ports 3 and 4 of the valve body 2, respectively. As shown by the arrow A, when the fluid flows into one of the pipe connection ports 6, the fluid enters the lower chamber 8a through the opening 6, pushes up the valve body 10, and enters the upper chamber 8b through the valve hole 9a. Then flows out from the other opening 7 to the other pipe connection port 4.
[0039]
Conversely, even if fluid flows from the pipe connection port 4 through the other opening 7 into the upper chamber 8b, the fluid presses the valve body 10 against the valve seat 9 and the valve hole 9a remains closed. Therefore, the fluid flows only in one direction indicated by the arrow A, and the reverse flow is prevented.
Next, when the operation handle 33 is rotated 180 degrees, the opening 6 communicates with the right pipe connection port 4 and the opening 7 communicates with the left pipe connection port 3. In this state, the fluid that has flowed into the pipe connection port 4 flows out only to the pipe connection port 3, and its reverse flow direction is blocked. In this way, the check direction can be easily switched as necessary.
[0040]
Next, when the operation handle 33 is rotated approximately 90 degrees in the state of FIG. 5, the operation shaft 28 is also rotated to the same extent, and the valve seat member 5 connected to the operation shaft 28 is also rotated to the same extent. In this state, the communication between the openings 6 and 7 and the pipe connection ports 3 and 4 is blocked, and the pipe connection ports 3 and 4 are closed by the outer walls 5 a and 5 b of the valve seat member 5. Accordingly, the flow path is closed and fluid does not flow in the direction indicated by arrow A or in the opposite direction. Also in this embodiment, the same effect as FIG. 1 can be acquired.
[0041]
FIG. 6 is an explanatory view of a sprinkler fire extinguishing equipment using the check valve 1 of the present invention. In FIG. 6, 41 is a fire extinguishing pump, which is driven by a motor 50, and the start and stop of the motor 50 is performed by a pump control panel (not shown). The suction pipe 40 of the fire-extinguishing pump 41 is lowered to the water storage tank 51, and the water supply main pipe 42, which has been raised in the vertical direction of the building by pressurizing the fire-fighting water pumped up from the water storage tank 51 by starting the pump, is connected via the check valve 1. Supply pressure. Further, an elevated water tank 53 is installed on the roof of the building, and is connected to the water supply main pipe 43 to apply water head pressure.
[0042]
The primary side of the check valve 1 provided in the water supply main pipe 42 is branched and connected to the pressure tank 48, and the pressure of the water supply main pipe 42 is introduced into the pressure tank 48 to compress the internal air. 49. Further, a branch pipe 43 is branched and connected to the water supply main pipe 42 for each floor, and a running water detection device 44 is installed in the branch pipe 43, and a plurality of closed sprinkler heads are provided on the secondary side of the running water detection device 44. 45 is installed.
[0043]
On the other hand, a priming tank 52 is installed on the discharge side of the fire extinguishing pump 41, and the level of the priming tank 52 is always kept at a constant level by a ball tap 52a. In addition, fire extinguishing water pumped up from the fire extinguishing pump 41 is supplied to the exhalation water tank 52 as exhalation water through the exhalation pipe 43a.
The water supply main pipe 42 on the discharge side of the fire extinguishing pump 41 is provided with the check valve 1 of the present invention. In the check valve 1, the pressurized water filled in the branch pipe 43 and the water supply main pipe 42 flows back to the fire pump 41 side. To prevent it. When the sprinkler head 45 is activated in the event of a fire, the fire extinguishing pump 41 is operated and the fire-extinguishing water is pressurized and supplied to the water supply main pipe 42. At this time, the check valve 1 supplies the fire-extinguishing water only to the sprinkler head 45 side. The flow in the direction is allowed, and the reverse flow to the fire pump 41 side is prevented.
[0044]
Further, for example, when water for fire extinguishing is supplied to the expelling tank 52 via the expelling pipe 43a, the flow path is closed by operating the operating mechanism 25 as shown by taking the check valve 1 into 1A. To do. Therefore, the fire-extinguishing water from the fire-extinguishing pump 41 does not flow to the sprinkler head 45 side but is supplied to the priming water tank 52 as priming water. In such a case, the check valve 1 functions as a gate valve. Therefore, the functions of the check valve and the gate valve can be realized by one valve, the piping configuration is simplified, and the cost can be reduced.
[0045]
FIG. 7 is an explanatory diagram of a fire extinguishing experimental facility using the check valve 1 of the present invention. In FIG. 7, reference numeral 70 denotes a first fire extinguishing experiment pump. On the suction side of the first fire extinguishing experiment pump 70, the suction pipe 71 for pumping up experimental water from the water tank 55 and the fire extinguishing water are mixed at a predetermined ratio. In order to make a fire extinguishing foam, a suction pipe 72 of a foam storage aqueous solution tank 56 storing water for foam fire extinguishing is connected.
[0046]
The first fire extinguishing experimental pump 70 supplies the sucked foam fire extinguishing water or fire extinguishing water to the experimental pipe 73, and the experimental pipe 75 is connected to the experimental pipe 73 via the gate valve 74. The experimental piping 75 is connected to a first test system 76, and the first test system 76 receives a supply of foam fire-extinguishing water or fire-extinguishing water and conducts a fire extinguishing experiment.
Reference numeral 60 denotes a second experimental fire extinguishing pump. The second experimental fire extinguishing pump 60 pumps up experimental water from the water storage tank 55 through the suction pipe 61 and supplies it to the experimental piping 62. The experimental pipe 62 is connected to another experimental pipe 63 via a gate valve 64, and the second test system 65 is connected to the experimental pipe 63. The second test system 65 receives a test water supply and conducts a fire extinguishing experiment.
[0047]
Here, the experimental piping 75 connected between the gate valve 74 and the first test system 76 and the experimental piping 62 connected between the second experimental pump 60 and the gate valve 64 are experimental. The check valve 1 of FIG. 1 or FIG. 5 according to the present invention is provided in the middle of the experimental connection pipe 80.
When it is desired to simultaneously perform a fire extinguishing test using experimental water in each of the first test system 76 and the second test system 65, the flow path of the experimental connection pipe 80 is closed by the check valve 1. In addition, the suction pipe 72 of the foam storage aqueous solution tank 56 is closed by the gate valve.
[0048]
The first experimental pump 70 pumps fire-extinguishing water from the water storage tank 55 and supplies the experimental water to the first test system 76 via the experimental pipe 73, the gate valve 74 and the experimental pipe 75. In this case, since the check valve 1 closes the flow path of the experimental connection pipe 80, the experimental water is not supplied to the second test system 65 side.
The second experimental pump 60 draws fire-extinguishing water from the water storage tank 55 with the gate valve of the suction pipe 72 closed and the gate valve of the suction pipe 71 opened, and then the experimental pipe 62, the gate valve 64, and the experimental pump. Fire extinguishing water is supplied to the second test system 65 via the pipe 63. In this case, since the check valve 1 closes the flow path of the experimental connection pipe 80, the experimental water is not supplied to the first test system 76. Therefore, the first and second test systems 76 and 65 can simultaneously receive the experimental water from the first and second experimental pumps 71 and 61 and perform a fire extinguishing test.
[0049]
Next, in the case where a large amount of experimental water is simultaneously received from the first and second experimental pumps 70 and 60 and a fire extinguishing test is to be performed only by the second test system 65, the check valve 1 of FIG. Reverse the check direction. Therefore, the fire extinguishing water pumped up from the water storage tank 55 by the first experimental pump 70 with the gate valve of the suction pipe 72 closed is the experimental pipe 73, the gate valve 74, the experimental pipe 75, and the experimental connection pipe. 80 and the check valve 1, and further supplied from the gate valve 64 to the second system 65 through the experimental pipe 63.
[0050]
Also, the fire-extinguishing water pumped from the water storage tank 55 by the first experimental pump 60 is supplied to the second test system 65 through the experimental pipe 62, the gate valve 64 and the experimental pipe 63. In this case, the fire-fighting water pumped up by the second experimental pump 60 is not supplied to the first test system 76 because the check valve 1 has the reverse check direction, so that the second test It is supplied to the system 65.
[0051]
Accordingly, since only a large flow rate of experimental water from the first and second experimental pumps 70 and 60 is supplied only to the second test system 65, the second test system 65 uses a large flow rate of experimental water. Fire extinguishing test.
Next, when it is desired to perform a fire-extinguishing test with foam in the first test system 76, the check valve 1 is set in the check direction as shown in FIG. The foam aqueous solution sucked from the foam storage aqueous solution tank 56 by the first experimental pump 70 in a state where the gate valve of the suction pipe 71 is closed passes through the experimental pipe 73, the gate valve 74, and the experimental pipe 75. It is supplied to the test system 76.
[0052]
In this case, since the check valve 1 is set in the check direction as shown in the drawing, the aqueous foam solution from the first experimental pump 70 is not supplied to the second test system 65 side. Therefore, the first test system 76 can perform a fire extinguishing test in which the foam aqueous solution supplied from the first experimental pump 70 is discharged from the foam head. Thus, when it is necessary to switch the flow direction in the fire extinguishing test, the check valve 1 can be provided to easily cope with the change in the flow direction.
[0053]
FIG. 8 shows another embodiment of the present invention. Further, in addition to the embodiment of FIG. 5, a spring 100 is incorporated in the outer portion of the guide hole 16 in the operation shaft 28 to apply a preset load to the valve body 10 to connect the pipe. When a pressure exceeding a predetermined value is applied from the mouth 3 side, the valve body 10 is lifted against the spring 100 to open the flow path. Of course, the structure of FIG. 1 can also have a structure in which the spring 100 is incorporated.
[0054]
FIG. 9 is a plan view of a check valve according to another embodiment of the present invention. The valve body 2 has a pair of opposed pipe connection ports 3B and 4B as well as a pair of opposed pipe connection ports 3A and 4A. Are arranged in a cross direction to form a four-way check valve 101. The internal structure of the four-way check valve 101 is, for example, the same as that of the two-way check valve 1 in FIG. 1, and the pipe connection ports 3A, 3B, 4A, 4B are opened in four directions of the valve body 1. Is different.
[0055]
FIG. 10 is an explanatory diagram of the switching state of the check valve 101 of the four-way port of FIG. 10, and the valve seat member 5 having directionality is switched by rotating 90 ° by the operation mechanism. The function of any of the four types of check valves A), (B), (C), and (D) can be selectively realized.
[0056]
【The invention's effect】
As described above, according to the present invention, even when the check valve is attached to the pipe, the check direction can be easily switched as necessary. Even if you make a mistake, you can easily switch to the correct direction after completion.
[0057]
In addition, when it is necessary to switch the flow channel direction in experiments or maintenance inspections, it is possible to easily cope with a change in the flow channel direction. Further, the functions of the check valve and the gate valve can be realized by one valve, the piping configuration is simplified, and the cost can be reduced. Furthermore, since a marker indicating the check direction is provided on the operation member, switching operation from the outside can be easily performed, and the currently set check direction can be easily identified.
[Brief description of the drawings]
FIG. 1 is a sectional view of an embodiment of the present invention.
FIG. 2 is an explanatory view showing the valve seat member extracted from FIG.
FIG. 3 is an explanatory diagram of the operation lever of FIG.
4 is a cross-sectional view showing a state in which the backflow direction in FIG. 1 is switched.
FIG. 5 is a cross-sectional view of another embodiment of the present invention.
FIG. 6 is an explanatory diagram of a sprinkler fire extinguishing equipment using a check valve according to the present invention.
FIG. 7 is an explanatory diagram of a fire extinguishing experimental facility using the check valve of the present invention.
FIG. 8 is a cross-sectional view of another embodiment of the present invention in which the opening pressure can be set by a spring.
FIG. 9 is a plan view of another embodiment of the present invention in which a four-way check valve is used.
FIG. 10 is an explanatory diagram of the check valve switching function with the four-way port in FIG. 9;
FIG. 11 is an explanatory diagram of a conventional sprinkler fire extinguishing equipment using a check valve.
FIG. 12 is a cross-sectional view of a conventional check valve
[Explanation of symbols]
1: Check valve
2: Valve body
3,4: Piping connection port
5: Valve seat member
6, 7: opening
8: Partition wall
9: Valve seat
10: Valve body
18, 28: Operation axis
25: Operation lever
27: Marker
33: Operation handle

Claims (2)

配管の途中に設けられ、配管を流れる流体の逆流を阻止する逆止弁に於いて、
相対する一対の配管接続口を配置した弁ボディと、
前記相対する一対の配管接続口に連通する一対の開口部を有すると共に該開口部を仕切る仕切壁の弁穴に弁座を形成し、前記弁ボディ内で流路に直交する軸回りに回動自在に設けられた弁座部材と、
前記弁座部材内の弁座に配置され、前記配管接続口の一方からの流体の流れを受けた際に弁をリフトして流路を開き、前記配管接続口の他方からの流体の流れを受けた際に前記弁座に押圧されて流路を閉じる弁体と、
前記の弁体のリフト方向側に弁ボディに回動自在に設けられ内部の弁座部材に連結された操作軸と、該操作軸を回動させるため外部に設けられたレバー又はハンドルからなる操作部材を備え、前記弁座部材の一対の開口部を、前記弁ボディの一対の配管接続口に対し相互に逆となる位置に回動して逆止方向を切替える操作機構と、
更に、前記操作軸には前記弁体に接続されたリフト用ガイド軸が摺動自在に挿入されるガイド穴を備えたことを特徴とする逆止弁。
In a check valve that is provided in the middle of the pipe and prevents the reverse flow of the fluid flowing through the pipe,
A valve body having a pair of opposing pipe connection ports;
A valve seat is formed in the valve hole of the partition wall that has a pair of openings that communicate with the pair of opposing pipe connection ports, and rotates around an axis that is orthogonal to the flow path in the valve body. A freely provided valve seat member;
The valve seat is disposed in a valve seat, and when a fluid flow is received from one of the pipe connection ports, the valve is lifted to open the flow path, and the fluid flow from the other of the pipe connection ports A valve body that is pressed by the valve seat when closed and closes the flow path;
An operation shaft comprising an operation shaft rotatably connected to the valve body on the lift direction side of the valve body and connected to an internal valve seat member, and a lever or a handle provided outside to rotate the operation shaft An operation mechanism that includes a member and rotates the pair of openings of the valve seat member to positions opposite to each other with respect to the pair of pipe connection ports of the valve body;
The check valve further includes a guide hole into which a lift guide shaft connected to the valve body is slidably inserted .
請求項記載の逆止弁に於いて、前記操作機構には、前記弁体に対し所定のプリセット荷重を加えるスプリングを設け、該プリセット荷重を越える流体圧力を受けた際に前記弁体をリフトして流路を開放することを特徴とする逆止弁。2. The check valve according to claim 1 , wherein the operation mechanism is provided with a spring for applying a predetermined preset load to the valve body, and the valve body is lifted when a fluid pressure exceeding the preset load is received. Then, the check valve is characterized in that the flow path is opened.
JP19304096A 1996-07-23 1996-07-23 Check valve Expired - Fee Related JP3732581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19304096A JP3732581B2 (en) 1996-07-23 1996-07-23 Check valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19304096A JP3732581B2 (en) 1996-07-23 1996-07-23 Check valve

Publications (2)

Publication Number Publication Date
JPH1038108A JPH1038108A (en) 1998-02-13
JP3732581B2 true JP3732581B2 (en) 2006-01-05

Family

ID=16301175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19304096A Expired - Fee Related JP3732581B2 (en) 1996-07-23 1996-07-23 Check valve

Country Status (1)

Country Link
JP (1) JP3732581B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106051233A (en) * 2016-08-22 2016-10-26 江苏金晟元特种阀门股份有限公司 Check valve special for ammonia gas

Also Published As

Publication number Publication date
JPH1038108A (en) 1998-02-13

Similar Documents

Publication Publication Date Title
US5862545A (en) Pressurized flow self-cleaning whirlpool tub system
US5845670A (en) Diverter valve with vacuum breaker
JP2003507278A (en) Wash solution dilution and fractionation system
US4228927A (en) Liquid dispensing head and installation
US4089345A (en) Discharge valve
US6688855B2 (en) Apparatus for increasing water pressure
JP3732581B2 (en) Check valve
CA2734529A1 (en) Sanitary hydrant
US5738135A (en) Dispensing apparatus with line pressure diverter
US4092085A (en) Faucet assembly
US4218784A (en) Dual-purpose diverter valve
US20090293967A1 (en) Valve arrangement
KR101931691B1 (en) Valve structure for preaction and deluge valve
JP4157432B2 (en) Independent operation bypass piping unit and independent operation pump device with the bypass piping unit
JP3009190U (en) Simultaneous opening valve
RU2015701C1 (en) Hydrovacuum mixing system for liquid components
CA1071503A (en) Faucet assembly
JPS6219698Y2 (en)
CN215840419U (en) Pedal type emptying device
JP5616708B2 (en) fire hydrant
US6564877B1 (en) Automatic valve with manual override for fire engine high pressure water system
JP2905396B2 (en) Terminal test equipment for sprinkler fire extinguishing equipment
JP2782522B2 (en) Sprinkler fire extinguishing equipment
JPH0112821Y2 (en)
CA1059104A (en) Faucet assembly

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees