JP3731934B2 - Manufacturing method of deep and high strength rail - Google Patents

Manufacturing method of deep and high strength rail Download PDF

Info

Publication number
JP3731934B2
JP3731934B2 JP05353596A JP5353596A JP3731934B2 JP 3731934 B2 JP3731934 B2 JP 3731934B2 JP 05353596 A JP05353596 A JP 05353596A JP 5353596 A JP5353596 A JP 5353596A JP 3731934 B2 JP3731934 B2 JP 3731934B2
Authority
JP
Japan
Prior art keywords
rail
head
pearlite
temperature
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05353596A
Other languages
Japanese (ja)
Other versions
JPH09241747A (en
Inventor
大輔 平上
耕一 内野
俊哉 黒木
安典 田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP05353596A priority Critical patent/JP3731934B2/en
Publication of JPH09241747A publication Critical patent/JPH09241747A/en
Application granted granted Critical
Publication of JP3731934B2 publication Critical patent/JP3731934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄道その他の産業機械用として使用されるレールにおいて高深度までレール頭部を高硬度化させる製造方法である。
【0002】
【従来の技術】
高炭素でパーライトの金属組織を呈した鋼は強度が強く、耐摩耗性が良好なことから鉄道車両の重量増加に伴う高軸重化や高速輸送化に対応してレールに多く使用されている。一般にパーライト鋼では、レール頭部を高硬度化させることによって耐摩耗性が向上するといわれており、このレール頭部を高硬度化させる方法としてレール頭部の熱処理がある。
【0003】
このような鋼材の製造方法としては、例えば、特開昭58−221229号公報には「C:0.65〜0.85%、Mn:0.5〜2.5%を含有したMn鋼レールをオーステナイト領域から急冷し、レールまたはレールヘッドの組織をパーライトとして耐摩耗性を改善したレールの熱処理方法」、特開昭59−1333322号公報には「安定してパーライト組織が得られる特定成分の圧延レールをAr3 点以上の温度から特定温度の溶融塩浴中に浸漬して、レール頭部表面下約10mmまでHv350以上の硬さを持つ微細なパーライト組織を呈するレールの熱処理方法」が開示されているがごとく、レール頭部の高硬度化技術が知られている。
【0004】
しかし、レール頭部は厚みが大きいため、高硬度化のための冷却速度を早くするとレール頭部の表層部と内部とで冷却速度に大きく異なり、頭表部と内部との硬さに大きな差が生じる。このため、レールが摩耗すると、内部が柔らかいために摩耗速度が速くなり、寿命が短くなるという問題があり、この問題の早期解決が望まれている。
【0005】
また、特開昭62−243713号公報に「連鋳法あるいは造塊・分塊法で得られる鋼片を熱間圧延直後あるいは熱間圧延後一旦冷却した後、オーステナイト領域に再加熱した鋼レールを冷却するにあたり、800〜620℃の温度区間をレール頭部に指向して噴出する気体もしくは気液体により、3〜10℃/sの冷却速度で冷却し、頭表面から2〜8mm深さの部分をパーライト変態させた後、引き続きレールの頭表部を4〜15℃/sの冷却速度で強制冷却することによってレール内部を微細パーライト高強度化する、耐表面疲労損傷性にすぐれた高強度レールの製造方法」が述べられている。
【0006】
この方法では、レールの頭表下2〜8mmの範囲の硬さを下げることによって、潤滑による摩耗の極端に少ない場所での表面疲労損傷に対し、優れた性能を示している。しかし、重荷重鉄道での潤滑を行っていない曲線区間等の摩耗の激しいところでは、頭表面から内部まで高硬度化したレールが要求されている。
【0007】
【発明が解決しようとする課題】
本発明は上記した要求を充足しようとするものであり、レールの単調な冷却によるレール頭部における表層部と内部の硬さの大きな差による耐摩耗性の問題を克服し、高炭素鋼のレールの耐摩耗性を向上させる方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、レール頭部において高深度まで高硬度化させたレールを製造するために、鋼成分とその製造方法から多くの実験を試みた結果、高炭素鋼ではAr1 以上の領域より徐冷し、図1の曲線1で示した表面を起点として頭表下5mm以内の領域(図3の11)がパーライト変態を開始した後(図1の点6)、急冷することにより図1の曲線2に示した内部(図3の13)が図1の点7に示したところから大きく抜熱されることで内部のパーライト変態点が低下し、表層部変態点(図1の3)と内部変態点(図1の4)とが近くなり、硬さの差が小さくなる知見を得た。
【0009】
本発明はこのような知見に基ずいて構成したものであり、その要旨とするところは、C:0.60〜0.85%を含有し、少くともレール頭部全面にパーライトの金属組織を呈する炭素鋼または低合金鋼レールにおいて、レール形状に熱間圧延後、または熱処理の目的のためにAc1 点以上の温度に加熱後、Ar1 点以上の温度からレール頭部の頭頂部および頭側部の表面を起点として表面下5mm以内の領域(図3の11)がパーライト変態を開始するまで冷却速度1〜10℃/sで冷却した後、表面を起点として表面下20mm以上の領域(図3の12)がパーライト変態終了まで冷却速度が2〜20℃/sで冷却する。
【0010】
あるいは、C:0.60〜0.85%を含有し、レール全面にパーライト組織を呈する炭素鋼または低合金鋼レールにおいて、レール形状に熱間圧延後、または熱処理の目的のためにAc1 点以上の温度に再加熱後、Ar1 点以上の温度からレール頭部の表面を起点として表面下5mm以内の領域(図3の11)がパーライト変態を開始するまで冷却速度1〜10℃/sで冷却した後、冷却速度2〜30℃で400〜600℃まで冷却し、この温度域で表面を起点として表面下20mm以上の領域(図3の12)がパーライト変態終了するまで保定することを特徴とする高深度高強度レールの製造方法である。
【0011】
【発明の実施の態様】
まず、本発明において鋼成分を上記のように限定した理由を説明する。
通常の溶解炉で溶製された溶鋼を連続鋳造法あるいは造塊分塊法の工程を経て製造された炭素鋼片、あるいはさらにCr、Mo、V、Niなどの強度向上元素を少量含有した底合金鋼片において、Cはパーライト金属組織を生成させ、特にレール用鋼として耐摩耗性を向上させるために有効な成分であり、この組織を得るために0.60%以上含有させる必要がある。しかし、0.85%を超える量を含有させることはセメンタイト金属組織が多く析出して延性や靭性を低下させる問題がある。そこで、本発明におけるC量は0.60〜0.85%に限定した。
【0012】
こうして製造された鋼は加熱し圧延され、その圧延後あるいは一旦パーライト変態終了後にAc3 点以上に再加熱後に冷却することにより高硬度を得ている。しかし、単調な冷却では表層部と内部とで冷却速度に差が生じ、連続冷却におけるパーライト変態点に差が生じるため、硬さに大きな差が生じる。そこで、表層部と内部の硬さの差を小さくする方法の条件について説明する。
【0013】
オーステナイト域温度であるAc1 点以上から表面を起点として頭頂下5mm以内の領域がパーライト変態点を切るまで表層部と内部とに冷却速度に差を生じさせないように徐冷させる。このとき、徐冷は頭表面の冷却速度が1℃/s未満の冷却速度では変態までの時間が非常にかかり、一方10℃/sを超えた冷却速度では表層と内部とで大きな冷却速度の差が生じる。そこで、徐冷の頭表面の冷却速度は1〜10℃/sに限定した。また、頭表下5mmを超えた領域がパーライト変態を開始すると、変態発熱量が大きくなり内部の抜熱が困難になるため、急冷を開始するのは表面下5mm以内の領域が変態を開始する時点と決定した。
【0014】
この表層部がパーライト変態開始後、内部を抜熱するための急冷において、頭表面の冷却速度が2℃/s未満の冷却速度では内部の抜熱量を大きくすることはできず、20℃/sを超えた冷却速度では内部にパーライト以外の金属組織を呈するようになる。このため、表層部のパーライト変態開始後、頭表面の冷却速度は2〜20℃/sに限定した。また急冷停止は頭表下パーライト変態完了の領域が20mm未満のとき、頭表下20mmまで高硬度を得ることはできない。そこで、急冷停止は頭表下20mm以上の領域がパーライト変態を終了するまでとした。
【0015】
一方、表層部がパーライト変態をした後の急冷を400〜600℃の間の温度で停止し(図2の8,9)保定する場合において、内部の抜熱のための急冷は2℃/s未満の冷却速度では内部の抜熱量を大きくすることはできず内部硬さを上げることは困難であり、また30℃/sを超えた冷却速度は制御が困難であり冷却速度が不均一になるため硬さにばらつきが生じる。また、保定温度は400未満ではベイナイト組織を呈するようになり、600℃を超えると内部の硬さが低くなる。そこで、冷却速度を2〜30℃/sに限定し、急冷停止温度の範囲および保定温度を400〜600℃に限定した。
【0016】
保定時間は、望ましくは0.5〜10分であり、0.5分未満であるとレール長手方向の頭頂部温度が十分に均一にならないため、冷却後のレール頭頂部硬さにばらつきを生じやすくなり、10分以上になると温度低下のための加熱装置が必要になり、プロセスが複雑になる。
【0017】
【実施例】
表1に金属組織がパーライトを呈する供試鋼の化学成分を示す。表2、表3に熱処理条件を及びその結果得られた各部位の硬度を示した。表1、表2はそれぞれ請求項1、請求項2におけるは本発明および比較法の実施例を示している。 本発明法では比較法に比べて、レール頭表部と内部の硬さの差が大きくなり、高深度まで高硬度を得ることができることがわかる。
【0018】
【表1】

Figure 0003731934
【0019】
【表2】
Figure 0003731934
【0020】
【表3】
Figure 0003731934
【0021】
【発明の効果】
本発明によって図4に示すように熱処理後のレール頭部を高深度まで高硬度化することができる。この方法より、頭頂の硬さと頭表下20mmの硬さの差はHv20以下でかつ長手方向の硬さのばらつきが少ないレールを得ることができる。また、内部まで高硬度なため、レールの耐摩耗性が一段と向上する。
【図面の簡単な説明】
【図1】実施例1のレール頭部の連続冷却曲線を示す図。
【図2】実施例2のレール頭部の連続冷却曲線を示す図。
【図3】レール頭部の冷却範囲を示す図。
【図4】レール頭部横断面硬さ分布を示す図。
【符号の説明】
1 表面を起点として頭表下5mm以内の領域の冷却曲線
2 表面を起点として頭表下20mm以上の領域の冷却曲線
3 表面を起点として頭表下5mm以内の領域のパーライト変態点
4 表面を起点として頭表下20mm以上の領域のパーライト変態点
5 パーライト変態開始曲線
6,7 急冷開始点
8,9 保定開始点
P パーライト変態領域
11 表面を起点として頭表下5mm以内の頭表部の領域
12 表面を起点として頭表下5〜20mmの領域
13 表面を起点として頭表下20mmの内部の領域
14 表面を起点として頭表下5mmの線
15 表面を起点として頭表下20mmの線[0001]
BACKGROUND OF THE INVENTION
The present invention is a manufacturing method for increasing the hardness of a rail head to a high depth in a rail used for railways and other industrial machines.
[0002]
[Prior art]
Steel with a high carbon and pearlite microstructure is strong and has good wear resistance, so it is often used for rails in response to higher axle loads and higher speeds associated with increased weight of railway vehicles. . In general, pearlite steel is said to improve the wear resistance by increasing the hardness of the rail head, and heat treatment of the rail head is a method for increasing the hardness of the rail head.
[0003]
As a method for producing such a steel material, for example, Japanese Patent Application Laid-Open No. 58-212229 discloses “Mn steel rail containing C: 0.65 to 0.85%, Mn: 0.5 to 2.5%. Is a rail heat treatment method in which the structure of the rail or rail head is used as pearlite to improve wear resistance, and in Japanese Patent Application Laid-Open No. 59-1333322, “a specific component for stably obtaining a pearlite structure” is disclosed. Disclosed is a rail heat treatment method in which a rolled rail is immersed in a molten salt bath at a temperature from Ar 3 or higher to a specific temperature to exhibit a fine pearlite structure having a hardness of Hv 350 or higher up to about 10 mm below the surface of the rail head. As is described, a technique for increasing the hardness of the rail head is known.
[0004]
However, because the rail head is thick, increasing the cooling rate to increase the hardness greatly changes the cooling rate between the surface layer and inside of the rail head, and there is a large difference in hardness between the head surface and inside. Occurs. For this reason, when the rail is worn, there is a problem that the wear speed is increased because the inside is soft and the life is shortened, and an early solution of this problem is desired.
[0005]
Further, Japanese Patent Laid-Open No. 62-243713 discloses that a steel rail obtained by reheating a steel slab obtained by continuous casting or ingot-making / splitting immediately after hot rolling or after hot rolling and then reheating to the austenite region. Is cooled at a cooling rate of 3 to 10 ° C./s with a gas or gas liquid ejected in a temperature range of 800 to 620 ° C. toward the rail head, and is 2 to 8 mm deep from the head surface. After the part is transformed to pearlite, the inner surface of the rail is continuously forcibly cooled at a cooling rate of 4 to 15 ° C / s to increase the strength of the fine pearlite inside. High strength with excellent surface fatigue damage resistance Rail manufacturing method "is described.
[0006]
In this method, by reducing the hardness in the range of 2 to 8 mm below the head of the rail, excellent performance is exhibited against surface fatigue damage in a place where wear due to lubrication is extremely small. However, where the wear is severe, such as in a curved section where lubrication is not performed on heavy-duty railways, a highly hardened rail is required from the head surface to the inside.
[0007]
[Problems to be solved by the invention]
The present invention is intended to satisfy the above-described requirements, and overcomes the problem of wear resistance caused by a large difference in hardness between the surface layer portion and the inner portion of the rail head due to monotonous cooling of the rail. It aims at providing the method of improving the abrasion resistance of.
[0008]
[Means for Solving the Problems]
As a result of many experiments from the steel components and the manufacturing method thereof in order to manufacture a rail having a high hardness at a rail head at a high depth in the rail head, the high carbon steel has a higher area than Ar 1 or more. After slowly cooling, after starting the pearlite transformation in a region within 5 mm below the head surface (11 in FIG. 3) starting from the surface shown by curve 1 in FIG. 1 (point 6 in FIG. 1), the region is rapidly cooled as shown in FIG. The inside (13 in FIG. 3) shown in curve 2 is greatly extracted from the point 7 shown in FIG. 1, so that the internal pearlite transformation point is lowered and the surface layer transformation point (3 in FIG. 1) The internal transformation point (4 in FIG. 1) was close, and knowledge was obtained that the difference in hardness was reduced.
[0009]
The present invention is configured on the basis of such knowledge. The gist of the present invention is that C: 0.60 to 0.85% is contained, and at least the pearlite metal structure is formed on the entire rail head. In the present carbon steel or low alloy steel rail, after hot rolling into a rail shape, or after heating to a temperature of Ac 1 point or higher for the purpose of heat treatment, from the temperature of Ar 1 point or higher to the top and head of the rail head After cooling at a cooling rate of 1 to 10 ° C./s until an area within 5 mm below the surface (11 in FIG. 3) starting from the side surface starts pearlite transformation, an area of 20 mm or more below the surface starting from the surface ( Cooling is performed at a cooling rate of 2 to 20 ° C./s until 12) in FIG.
[0010]
Alternatively, in a carbon steel or low alloy steel rail containing C: 0.60 to 0.85% and exhibiting a pearlite structure on the entire surface of the rail, Ac 1 point after hot rolling into the rail shape or for the purpose of heat treatment After reheating to the above temperature, a cooling rate of 1 to 10 ° C./s until a region (11 in FIG. 3) within 5 mm below the surface starting from the surface of the rail head from the temperature of Ar 1 point or higher starts pearlite transformation. After cooling at 400 to 600 ° C. at a cooling rate of 2 to 30 ° C., and holding at this temperature range from the surface to 20 mm or more below the surface (12 in FIG. 3) until the pearlite transformation is completed. It is the manufacturing method of the high-depth high-strength rail characterized.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the reason why the steel components are limited as described above in the present invention will be described.
Carbon steel pieces produced by continuous casting or ingot-and-blooming processes of molten steel produced in a normal melting furnace, or a bottom containing a small amount of strength improving elements such as Cr, Mo, V, Ni In the alloy steel slab, C is an effective component for generating a pearlite metal structure and improving the wear resistance particularly as a steel for rails. In order to obtain this structure, it is necessary to contain 0.60% or more. However, the inclusion of an amount exceeding 0.85% has a problem that a large amount of cementite metal structure is precipitated and ductility and toughness are lowered. Therefore, the amount of C in the present invention is limited to 0.60 to 0.85%.
[0012]
The steel produced in this manner is heated and rolled, and high hardness is obtained by cooling after reheating to Ac 3 point or higher after the rolling or once completion of pearlite transformation. However, in monotonous cooling, a difference occurs in the cooling rate between the surface layer portion and the inside, and a difference occurs in the pearlite transformation point in continuous cooling, resulting in a large difference in hardness. Therefore, the conditions of a method for reducing the difference in hardness between the surface layer portion and the inside will be described.
[0013]
Region within the parietal under 5mm starting surface from above Ac 1 point is the austenite region temperature to gradually cooled so as not to cause a difference in cooling rate and the surface portion and the interior until off pearlite transformation point. At this time, slow cooling takes a very long time until transformation when the cooling rate of the head surface is less than 1 ° C./s, while a cooling rate exceeding 10 ° C./s has a large cooling rate between the surface layer and the inside. There is a difference. Therefore, the cooling rate of the slowly cooled head surface was limited to 1 to 10 ° C./s. In addition, if the area exceeding 5mm below the head surface starts pearlite transformation, the amount of transformation heat generation becomes large and it becomes difficult to remove the heat inside. Therefore, rapid cooling starts when the region within 5mm below the surface starts transformation. Time was determined.
[0014]
In the rapid cooling for removing the inside of the surface layer after the pearlite transformation starts, if the cooling rate of the head surface is less than 2 ° C./s, the amount of heat removal inside cannot be increased, and 20 ° C./s. When the cooling rate exceeds 1, a metal structure other than pearlite is exhibited inside. For this reason, the cooling rate of the head surface was limited to 2 to 20 ° C./s after the start of pearlite transformation in the surface layer. Moreover, when the area of completion of pearlite transformation below the head surface is less than 20 mm, the rapid cooling stop cannot obtain high hardness up to 20 mm below the head surface. Therefore, the rapid cooling stop was performed until the pearlite transformation was completed in an area of 20 mm or more below the head surface.
[0015]
On the other hand, in the case where the rapid cooling after the surface layer portion has undergone pearlite transformation is stopped at a temperature of 400 to 600 ° C. (8 and 9 in FIG. 2) and held, the rapid cooling for heat removal inside is 2 ° C./s. If the cooling rate is less than that, it is difficult to increase the internal heat removal amount and it is difficult to increase the internal hardness, and the cooling rate exceeding 30 ° C./s is difficult to control and the cooling rate becomes uneven. Therefore, the hardness varies. Further, when the holding temperature is less than 400, a bainite structure is exhibited, and when it exceeds 600 ° C., the internal hardness becomes low. Therefore, the cooling rate was limited to 2 to 30 ° C./s, and the range of the quenching stop temperature and the holding temperature were limited to 400 to 600 ° C.
[0016]
The holding time is preferably 0.5 to 10 minutes, and if it is less than 0.5 minutes, the temperature at the top of the rail does not become sufficiently uniform, resulting in variations in the hardness of the rail top after cooling. It becomes easy, and when it becomes 10 minutes or more, a heating device for lowering the temperature is required, and the process becomes complicated.
[0017]
【Example】
Table 1 shows the chemical composition of the test steel whose metal structure exhibits pearlite. Tables 2 and 3 show the heat treatment conditions and the hardness of each part obtained as a result. Tables 1 and 2 show examples of the present invention and comparative methods in claims 1 and 2, respectively. It can be seen that the method according to the present invention has a larger difference in hardness between the rail head surface and the interior than the comparative method, and a high hardness can be obtained up to a high depth.
[0018]
[Table 1]
Figure 0003731934
[0019]
[Table 2]
Figure 0003731934
[0020]
[Table 3]
Figure 0003731934
[0021]
【The invention's effect】
According to the present invention, as shown in FIG. 4, the rail head after heat treatment can be hardened to a high depth. By this method, it is possible to obtain a rail in which the difference between the hardness at the top of the head and the hardness at 20 mm below the head surface is Hv20 or less and the variation in the hardness in the longitudinal direction is small. In addition, since the interior is highly hard, the wear resistance of the rail is further improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a continuous cooling curve of a rail head according to a first embodiment.
FIG. 2 is a diagram showing a continuous cooling curve of a rail head according to a second embodiment.
FIG. 3 is a diagram showing a cooling range of a rail head.
FIG. 4 is a diagram showing a rail head cross-sectional hardness distribution.
[Explanation of symbols]
1 Cooling curve of the region within 5mm below the head surface starting from the surface 2 Cooling curve of the region above 20mm below the head surface starting from the surface 3 Perlite transformation point of the region within 5mm below the head surface starting from the surface 4 Starting point from the surface The pearlite transformation point 5 in the region 20 mm or less below the head surface The pearlite transformation start curve 6, 7 The rapid cooling start point 8, 9 The retention start point P The pearlite transformation region 11 The region 12 in the head surface portion within 5 mm below the head surface starting from the surface 5mm 20mm below the head surface starting from the surface 13 A region 15mm inside the head surface starting from the surface 14 5mm below the head surface starting from the surface 15 A line 20mm below the head surface starting from the surface

Claims (2)

C:0.60〜0.85%を含有し、少くともレール頭部全面にパーライトの金属組織を呈する炭素鋼または低合金鋼レールであって、レール形状に熱間圧延後、または熱処理の目的のためにAc1 点以上の温度に加熱後、Ar1 点以上の温度からレール頭部の頭頂部および頭側部の表面を起点として表面下5mm以内の領域がパーライト変態を開始するまで頭表面の冷却速度が1〜10℃/sで冷却した後、表面を起点として表面下20mm以上の領域がパーライト変態終了まで頭表面の冷却速度が2〜20℃/sで冷却することを特徴とする高深度高強度レールの製造方法。C: A carbon steel or low alloy steel rail containing 0.60 to 0.85% and exhibiting a pearlite metal structure on the entire rail head, after hot rolling into the rail shape, or for the purpose of heat treatment For this purpose, after heating to a temperature of Ac 1 point or higher, the surface of the head until a region within 5 mm below the surface starting from the top of the rail head and the top of the head from the temperature of Ar 1 point or higher begins pearlite transformation. After cooling at a cooling rate of 1 to 10 ° C./s, a region of 20 mm or more below the surface starting from the surface is cooled at a cooling rate of 2 to 20 ° C./s until the pearlite transformation is completed. Manufacturing method of high-depth and high-strength rail. C:0.60〜0.85%を含有し、少くともレール頭部全面にパーライト組織を呈する炭素鋼または低合金鋼レールであって、レール形状に熱間圧延後、または熱処理の目的のためにAc1 点以上の温度に加熱後、Ar1 点以上の温度からレール頭部の表面を起点として表面下5mmがパーライト変態を開始するまで頭表面の冷却速度が1〜10℃/sで冷却した後、頭表面の冷却速度が2〜30℃で400〜600℃の間の温度まで冷却し、この400〜600℃の温度域で表面を起点として表面下20mm以上の領域がパーライト変態終了するまで保定することを特徴とする高深度高強度レールの製造方法。C: A carbon steel or low alloy steel rail containing 0.60 to 0.85% and exhibiting a pearlite structure on the entire rail head, after hot rolling into the rail shape, or for the purpose of heat treatment After heating to a temperature of Ac 1 point or higher, the head surface is cooled at a cooling rate of 1 to 10 ° C./s from the temperature of Ar 1 point or higher until the surface of the rail head starts from 5 mm below the pearlite transformation. After that, the head surface is cooled at a cooling rate of 2 to 30 ° C. to a temperature of 400 to 600 ° C., and the pearlite transformation is completed in the region of 20 mm or more below the surface starting from the surface in this temperature range of 400 to 600 ° C. The manufacturing method of the high-deep high-strength rail characterized by holding up to.
JP05353596A 1996-03-11 1996-03-11 Manufacturing method of deep and high strength rail Expired - Fee Related JP3731934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05353596A JP3731934B2 (en) 1996-03-11 1996-03-11 Manufacturing method of deep and high strength rail

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05353596A JP3731934B2 (en) 1996-03-11 1996-03-11 Manufacturing method of deep and high strength rail

Publications (2)

Publication Number Publication Date
JPH09241747A JPH09241747A (en) 1997-09-16
JP3731934B2 true JP3731934B2 (en) 2006-01-05

Family

ID=12945509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05353596A Expired - Fee Related JP3731934B2 (en) 1996-03-11 1996-03-11 Manufacturing method of deep and high strength rail

Country Status (1)

Country Link
JP (1) JP3731934B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157198A1 (en) 2013-03-28 2014-10-02 Jfeスチール株式会社 Rail manufacturing method and manufacturing equipment
WO2014157252A1 (en) 2013-03-27 2014-10-02 Jfeスチール株式会社 Pearlite rail and method for manufacturing pearlite rail

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4390004B2 (en) * 2007-03-28 2009-12-24 Jfeスチール株式会社 Internal high-hardness pearlite steel rail with excellent wear resistance and fatigue damage resistance and method for producing the same
CN101743334B (en) * 2007-10-10 2012-04-04 杰富意钢铁株式会社 Internal high hardness type pearlitic rail with excellent wear resistance, rolling contact fatigue resistance, and delayed fracture property and method for producing same
JP7070697B2 (en) * 2019-06-20 2022-05-18 Jfeスチール株式会社 Rails and their manufacturing methods

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157252A1 (en) 2013-03-27 2014-10-02 Jfeスチール株式会社 Pearlite rail and method for manufacturing pearlite rail
US10253397B2 (en) 2013-03-27 2019-04-09 Jfe Steel Corporation Pearlitic rail and method for manufacturing pearlitic rail
WO2014157198A1 (en) 2013-03-28 2014-10-02 Jfeスチール株式会社 Rail manufacturing method and manufacturing equipment
US10214795B2 (en) 2013-03-28 2019-02-26 Jfe Steel Corporation Rail manufacturing method and manufacturing equipment
US10563278B2 (en) 2013-03-28 2020-02-18 Jfe Steel Corporation Rail manufacturing method and manufacturing equipment

Also Published As

Publication number Publication date
JPH09241747A (en) 1997-09-16

Similar Documents

Publication Publication Date Title
JP4644105B2 (en) Heat treatment method for bainite steel rail
KR100186793B1 (en) Rails of pearlitic steel with high wear resistance and toughness and their manufacturing method
CN109321739A (en) A kind of heat-treatment processing process of big infiltration layer heavy-duty gear
CN113966406B (en) Steel rail and method for manufacturing same
JP5326343B2 (en) Manufacturing method of high internal hardness rail
JPH11152520A (en) Production of high strength bainite rail excellent in surface damage resistance and wear resistance
JP3731934B2 (en) Manufacturing method of deep and high strength rail
JP3113137B2 (en) Manufacturing method of high toughness rail with pearlite metal structure
JP3764710B2 (en) Method for producing pearlitic rail with excellent toughness and ductility
JP4061003B2 (en) Cold forging bar wire with excellent induction hardenability and cold forgeability
JP3723706B2 (en) High-strength spheroidal graphite cast iron and method for producing the same
JP3631712B2 (en) Heat-treated pearlitic rail with excellent surface damage resistance and toughness, and its manufacturing method
KR0180748B1 (en) Method for producing by continuous heat treatment oil-tempered steel or spring having high strength and high toughness
JP2000178690A (en) Pearlitic rail excellent in resistance to wear and internal fatigue damage, and its manufacture
JP3522613B2 (en) Bainitic rails with excellent rolling fatigue damage resistance, internal fatigue damage resistance, and welded joint characteristics, and manufacturing methods thereof
JP4061141B2 (en) Perlite high-strength rail excellent in ductility and manufacturing method thereof
JPH0734132A (en) Production of high-strength and high-toughness bainite rail having excellent surface damage resistance
JP2001049393A (en) Tempered martensitic rail excellent in wear resistance, and its manufacture
JP4267267B2 (en) Heat treatment method for pearlitic rails with excellent wear resistance and internal fatigue damage resistance
JP3625224B2 (en) Manufacturing method of high depth and high hardness rail
JP3802604B2 (en) Manufacturing method of high strength and toughness rail
JP2004162106A (en) Method for producing high carbon steel rail
JPS61199035A (en) Manufacture of composite roll having tough neck part
JP2002235150A (en) Surface damage resistant rail having uniform hardness in width direction of head part and production method therefor
JPH06336614A (en) Production of bainitic steel rail excellent in surface flaw resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees