JP3731000B2 - Aluminum foil container with high heating efficiency - Google Patents
Aluminum foil container with high heating efficiency Download PDFInfo
- Publication number
- JP3731000B2 JP3731000B2 JP13580095A JP13580095A JP3731000B2 JP 3731000 B2 JP3731000 B2 JP 3731000B2 JP 13580095 A JP13580095 A JP 13580095A JP 13580095 A JP13580095 A JP 13580095A JP 3731000 B2 JP3731000 B2 JP 3731000B2
- Authority
- JP
- Japan
- Prior art keywords
- container
- aluminum foil
- heat
- embossing
- heat absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011888 foil Substances 0.000 title claims description 64
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 63
- 229910052782 aluminium Inorganic materials 0.000 title claims description 63
- 238000010438 heat treatment Methods 0.000 title description 16
- 238000010521 absorption reaction Methods 0.000 claims description 39
- 239000011248 coating agent Substances 0.000 claims description 27
- 238000000576 coating method Methods 0.000 claims description 27
- 238000004049 embossing Methods 0.000 claims description 21
- 238000010411 cooking Methods 0.000 claims description 19
- 239000003973 paint Substances 0.000 claims description 17
- 238000004806 packaging method and process Methods 0.000 claims description 12
- 238000003825 pressing Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229920006015 heat resistant resin Polymers 0.000 claims description 4
- 206010040844 Skin exfoliation Diseases 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 235000021067 refined food Nutrition 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 239000012611 container material Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 235000015220 hamburgers Nutrition 0.000 description 1
- 235000012149 noodles Nutrition 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Landscapes
- Package Specialized In Special Use (AREA)
- Cookers (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Laminated Bodies (AREA)
Description
【0001】
【産業上の利用分野】
グラタン、ラザニア、ドリア、ミニカップハンバーグ、たこ焼き、焼きそば等、調理済の加工食品に用いられている加熱効率を高めた簡易包装調理用アルミニウム箔容器に関する。
【0002】
【従来の技術】
最近は、スーパーストアあるいはコンビニエンスストアなどにおいて、調理済の加工食品を調理用アルミニウム箔容器等に簡易包装したものが広く市販されている。これらの容器は一般的には、材料としてアルミニウム箔単体を使用しており、容器形状、特に底部はフラットもしくは凹凸がある場合でも強度補強を目的としたリブがつけられている程度である。
この種の容器を使用した調理済食品の加熱には、通常オーブンあるいはレンジオーブンが用いられているが、アルミニウム箔であるため容器材質の熱吸収率が低く、加熱調理時間がかかり過ぎるという欠点があった。そのため熱吸収率の向上を図る目的で容器底面に黒色系の塗料を塗布したり、あるいは容器底面を底上げ形状にして熱吸収効率の向上を図った製品も出てはいるが、加熱メカニズムを十分に解析して行っていないため、比較的効率が低いものであった。
【0003】
加熱効率を高めるため底面の底上げをするには、その底上げの深さを深くし、できるだけ底面部表面積を増大させる必要があるが、底上げの深さを深くするほど加工度が高くなり、底面にコーティングした熱吸収性の良好な塗料の密着性を阻害することになり、またプレコートしたアルミニウム箔を用いると成形時に剥離したり、あるいは運送時に積み重ねた状態で剥離し、下側の容器内に脱落して自動包装ラインで脱落塗料が内容物食品に混入したりする危険性がある。更に底上げのために内容積が小さくなるため容器の形状を大きくするかあるいは口径を大きくする必要を生ずるなどの問題がある。
【0004】
【発明が解決しようとする課題】
本発明は加熱調理用アルミニウム箔容器において、プレコートのアルミニウム箔から直接加熱調理用アルミニウム箔容器を製造しても熱吸収塗料の剥離の危険がなく、容器の形状または口径をを小さくでき、積み重ね性に優れ、オーブンまたはレンジオーブンなどで加熱する場合に、同一の加熱手段を使用しても従来のアルミニウム箔容器より短時間で加熱できるアルミニウム箔容器及びその容器の製造方法の開発を目的とする。
【0005】
【課題を解決するための手段】
本発明は、
[1] 容器底面が微細な凹凸またはエンボッシングされているとともに、該容器底面外面には耐熱性樹脂からなる厚さ0.5〜3μmの熱吸収皮膜が形成されており、該皮膜の熱吸収率(α)が0.5以上、及び熱放射率(ε)が0.5未満であり、且つ該熱吸収率(α)と熱放射率(ε)が、
α(1ーε)≧0.2
の関係を満足する熱吸収皮膜を被覆したことを特徴とする簡易包装調理用アルミニウム箔容器、
[2] 微細な凹凸が深さ0.1〜3mm、ピッチ3〜100個/cmの凹凸、またはエンボッシング加工が深さ20〜100μm、ピッチ10〜50個/cmである上記[1]に記載の簡易包装調理用アルミニウム箔容器、
[3] 熱吸収率(α)が0.5以上、熱放射率(ε)が0.5未満である熱吸収皮膜を被覆したアルミニウム箔を、該被覆面が外側になるようにして、ポンチ面に凹凸が深さ0.1〜3mm、ピッチ3〜100個/cmの凹凸、またはエンボッシング加工が深さ20〜100μm、ピッチ10〜50個/cmのエンボッシング用の凹凸を有するダイスを用い、プレスすることを特徴とする簡易包装調理用アルミニウム箔容器の製造方法、及び
[4] 熱吸収率(α)が0.5以上、熱放射率(ε)が0.5未満である耐熱性樹脂からなる厚さ0.5〜3μmの熱吸収塗料を、凹凸が深さ0.1〜3mm、ピッチ3〜100個/cmの凹凸、またはエンボッシング加工が深さ20〜100μm、ピッチ10〜50個/cm微細な凹凸またはエンボッシングした後コーティングするか、あるいはコーティングした後でエンボッシング加工したアルミニウム箔を、該コーティング面を容器外側になるようにプレス加工することを特徴とする簡易包装調理用アルミニウム箔容器の製造方法、、を開発することにより上記の課題を解決した。
【0006】
本発明に使用するアルミニウム箔は従来使用されているアルミニウム箔と同じもの、例えば厚さ30〜150μm位のものであれば十分である。容器の容量及び形状にもよるが、30μm以下であると、内容物を入れた場合に剛性が十分でなく、容器の変形の危険があり、逆に150μmを越える厚さの箔を使用しても剛性は過剰品質になり、コストアップになるだけで熱伝導性、成形性のいずれをとっても特にメリットはない。
【0007】
本発明においては、アルミニウム箔にあらかじめ熱吸収性の高い塗料をコーティングし、これを容器に成形する方法により本発明の加熱調理用アルミニウム箔容器を製造する。容器成形においてプレコートアルミニウム箔を使用するため、容器成形後に塗装する場合に比して、塗装をコイル状のアルミニウム箔でできるので均質で高品質な塗装が可能となり、高生産性の製造が可能となる。なお、この場合採用する製造方法によりいくつかの方法に分けることができる。
例えば容器底面が微細な凹凸を有する容器の時は、熱吸収性の高い塗装された平滑なアルミニウム箔を、ポンチ面が微細な凹凸を有するプレス機を用い、好ましくはダイスがゴム、紙、あるいは軟質のプラスチックなどの弾性のある面の相手側を用い、容器の成形を行う。
【0008】
あるいは、容器底面をエンボスしたアルミニウム箔とする時は、材料アルミニウム箔をあらかじめエンボッシングしたものを用いることが有利である。この場合、エンボッシングする前に熱吸収性塗料をコーティングしてプレス加工しても良いし、あるいは熱吸収性塗料をコーティングした平滑なアルミニウム箔をエンボッシングし、これを通常のプレス加工を行うことでも良い。これらの場合にはエンボッシングの凹凸が小さいのでプレス加工にさいし通常のポンチのプレス機が使用できる。エンボッシングはエンボスロールでの型付け、コーティングはグラビアロールを用いたコート方式を採用できる。
なお微細な凹凸をつける場合の凹凸は、深さ0.1〜3mm、好ましくは1〜2mm、ピッチ3〜100個/cm、好ましくは5〜10個/cmくらいの範囲の凹凸をつける。またエンボッシング加工の場合は、深さ20〜100μm、好ましくは30〜60μm、ピッチ10〜50個/cm、好ましくは20〜40個/cmくらいのエンボッシングを行う。なお凹凸、エンボッシングの形状は円形、楕円などでも良く、必ずしも円形である必要はない。
【0009】
このような方法で生産された加熱調理用アルミニウム箔容器は、底部を底上げする必要がないので凹凸やエンボッシングがあってもその深さは容器のサイズに比して無視できる程度の微小なものであるので、底上げしたアルミニウム箔容器と比較すると、積み重ねた時は同一の内容積の容器であってもその占める容積は極めて小さくでき、また成形深さ、口径等を広げる必要がないので容器形状を小さくでき、運送コストの低減、ディスプレーのための面積が狭くとも大量の製品を展示できる等のメリットがある。
【0010】
本発明の加熱調理用アルミニウム箔容器の熱吸収皮膜は、熱吸収率(α)及び熱放射率(ε)が、
α(1ーε)≧0.2
の関係を満足するものである。好ましくは熱吸収率(α)は0.5以上、より好ましくは0.8以上、熱放射率(ε)は0.5未満、より好ましくは0.45未満の場合に有効である。
ここで、熱吸収率(α)は500℃の熱源の放射エネルギーの熱吸収率を示すもので、0.8〜25μmの近赤外線・赤外線の分光反射率を測定し、熱源温度500℃における黒体放射エネルギーに対するエネルギーの割合から求めめられる。
【0011】
また熱放射率(ε)は、物体が100℃に加熱された場合の熱放射率を示すもので、2.5〜25μmの赤外線の分光反射率を測定し、物体の温度100℃における黒体放射エネルギーに対するエネルギーの割合から求めるものである。
なおこれらの熱吸収率(α)の簡易測定方法としては、8μm付近の赤外線の反射率を測定し、求める方法があり、また熱放射率(ε)の簡易測定方法として熱放射率計(Devices & Servise社 AERD放射率計:International Technology社 MODEL 2145マクドナルド放射率計)を用いる方法がある。
熱吸収皮膜に使用する熱吸収塗料の色としては熱吸収率(α)が大きくかつ熱放射率(ε)が小さいものであれば何色でも良く、ディスプレーの効果を考慮して選ぶことが可能である。また熱吸収塗料に用いる樹脂としては、耐熱性を有し、加熱に際しては発臭のない熱硬化性樹脂、例えばエポキシ樹脂、メラミン樹脂、熱硬化性アクリル樹脂等を使用することがコスト、性能の面から見て有利である。
【0012】
【作用】
本発明の加熱調理用アルミニウム箔容器は、容器の底面に微細な凹凸あるいはエンボッシングが施されているが、この凹凸は熱吸収塗料の密着性を阻害するほど大きいものでないので、アルミニウム箔容器の加工前にあらかじめアルミニウム箔に熱吸収塗料をコーティングしておくことが可能である。このため塗装はコイル状のアルミニウム箔に行われるので均一で高品質な塗装ができ、容器に成形後に塗装するのに比較して生産性の高いものである。
またこの凹凸が微細なために塗膜の剥離がなく、高い熱効率を維持できる。
更に熱吸収塗料はあらかじめ熱吸収率(α)、熱放射率(ε)を測定しておき、それぞれ規定した範囲内のものをコーティングすることにより加熱効率を更に高効率に維持できることになる。これまでの検討の結果では、熱吸収率(α)は使用樹脂及び顔料などにより影響され固定してはいないが、熱吸収皮膜の厚さが0.5μm未満では小さく、これを越えると急激に増大し、約3μm付近でほぼ飽和し、それ以上厚くしても熱吸収率は向上しないこと、一方熱放射率(ε)は熱吸収皮膜の厚さが3μm付近から急激に増大し、熱吸収皮膜の厚さが大きいと加熱効率が低下することから、熱吸収皮膜は1〜3μm付近の厚さにすることが好ましいことがわかっている。
【0013】
【実施例】
厚さ70μmのアルミニウム箔(3004−O材)を上部径が95X160mm、底部径が65X130mm、高さ25mmの楕円形のアルミニウム箔容器をプレスにより成形し、これに市販のえびグラタン150ccを入れ、オーブン[TOSHIBA HTR823(890W)]で加熱した。グラタン中央部にK−線熱電対を差し込み、オーブン加熱で90℃に到達するに要した時間を測定した。
【0014】
(実施例1)
アルミニウム箔容器は、黒色のエポキシ系の熱吸収塗料で厚さ1.5μmの熱吸収皮膜を被覆したアルミニウム箔を、プレスに際し、微細な凹凸のあるポンチを用い、容器の底面に深さ0.9mm、ピッチ6.2個/cmの凹凸をつけた。この塗膜の熱吸収率(α)は0.89、熱放射率(ε)は0.38であった。この容器はプレス後においても塗膜のはがれはなく、90℃までの到達時間は8.0分であった。
【0015】
(実施例2)
アルミニウム箔容器は、黒色のエポキシ系の熱吸収塗料で厚さ1.5μmの熱吸収皮膜を被覆したアルミニウム箔を、エンボッシング加工により深さ0.048mm、ピッチ32.7個/cmのエンボスをつけた。これを通常のプレスで上記のアルミニウム箔容器を製造した。この塗膜の熱吸収率(α)は0.89、熱放射率(ε)は0.38であった。この容器はプレス後においても塗膜のはがれはなく、90℃までの到達時間は8.0分であった。
【0016】
(比較例1)
アルミニウム箔容器は、熱吸収塗料による処理をしていないアルミニウム箔を用い、実施例2と同様にして通常のプレスで上記と同様の底面がフラットのアルミニウム箔容器を製造した。この塗膜の熱吸収率(α)は0.04、熱放射率(ε)は0.03であった。この容器は90℃までの到達時間は12.5分であった。
【0017】
(比較例2)
アルミニウム箔容器は、黒色のエポキシ系の熱吸収塗料で厚さ3.0μmの熱吸収皮膜を被覆したアルミニウム箔を、通常のプレスで上記の形状で底面がフラットのアルミニウム箔容器を製造した。この塗膜の熱吸収率(α)は0.90、熱放射率(ε)は0.79であった。この容器はプレス後においても塗膜のはがれはなかったが、90℃までの到達時間は12.0分であった。
【0018】
(比較例3)
アルミニウム箔容器は、黒色のエポキシ系の熱吸収塗料で厚さ1.5μmの熱吸収皮膜を被覆したアルミニウム箔を用いたほかは実施例2と同様にして上記と同一の形状で底面がフラットのアルミニウム箔容器を製造した。この塗膜の熱吸収率(α)は0.89、熱放射率(ε)は0.38であった。この容器はプレス後においても塗膜のはがれはなかったが、90℃までの到達時間は10.5分であった。
【0019】
(比較例4)
アルミニウム箔容器は、黒色のエポキシ系の熱吸収塗料で厚さ1.5μmの熱吸収皮膜を被覆したアルミニウム箔を用いたほかは実施例2と同様にして同一の形状で底面積の40%が容器高さの60%(15mm)底上げされたタイプ(底面はフラット)のアルミニウム箔容器を製造した。この塗膜の熱吸収率(α)は0.89、熱放射率(ε)は0.38であった。この容器はプレス後において一部に熱吸収皮膜の剥離が認められ、90℃までの到達時間は8.0分であった。本例においてプレス後の塗膜のはがれをなくそうとすると、底上げ面積、底上げ高さを下げる必要があり、そうすると比較例2〜3と同様になり、加熱効率が低下することが避けられない。また容積的に実施例と同一内容量を確保し、かつプレス後の塗膜の剥離と加熱効率を同一にするには容器形状を大きくしなければならない。
【0020】
【表1】
【0021】
【発明の効果】
本発明の加熱調理用アルミニウム箔容器は、熱吸収皮膜をプレコートしたアルミニウム箔をプレス加工できるため、容器の製造は高い生産性を保持することが可能であり、また容器底面の微細な凹凸あるいはエンボスは、熱吸収皮膜と共に高い熱効率を保持するが、この凹凸あるいはエンボスは塗膜の剥離を効率的に防止し、内容物への塗料の混入を防止できるなど極めて有効なものとなっている。更にこの微細な凹凸あるいはエンボスは容器の容積にほとんど影響を与えることがないのでフラットなアルミニウム箔と同一の容器形状で間に合うことになる。このため熱効率を高めるため底上げしたアルミニウム箔容器と比較すると、積み重ねが可能であり、輸送コストなども低減が可能であるだけでなく容器形状をコンパクトにできるので陳列スペースが小さくて済むなど優れた加熱調理用アルミニウム箔容器である。[0001]
[Industrial application fields]
The present invention relates to an aluminum foil container for simple packaging and cooking that has improved heating efficiency used for cooked processed foods such as gratin, lasagna, doria, mini cup hamburger, takoyaki, and fried noodles.
[0002]
[Prior art]
Recently, supermarkets and convenience stores that have been prepared by simply packaging cooked processed foods in cooking aluminum foil containers or the like are widely available. These containers generally use a single aluminum foil as a material, and the shape of the container, in particular, the bottom is flat or uneven so that ribs are provided for the purpose of reinforcing the strength.
An oven or a microwave oven is usually used for heating cooked foods using this type of container. However, since it is an aluminum foil, the heat absorption rate of the container material is low and the cooking time is too long. there were. For this reason, some products have been developed to improve heat absorption efficiency by applying black paint on the bottom of the container for the purpose of improving the heat absorption rate, or improving the heat absorption efficiency by raising the bottom of the container. Therefore, the efficiency was relatively low.
[0003]
In order to raise the bottom of the bottom in order to increase the heating efficiency, it is necessary to increase the depth of the bottom and increase the surface area of the bottom as much as possible. Adhesion of coated heat-absorbing paint will be hindered, and if precoated aluminum foil is used, it will be peeled off during molding or piled up during transportation and dropped into the lower container There is a risk that the fallen paint may be mixed into the food contents in the automatic packaging line. Further, since the inner volume is reduced for raising the bottom, there is a problem that the shape of the container needs to be increased or the diameter needs to be increased.
[0004]
[Problems to be solved by the invention]
The present invention is an aluminum foil container for heating and cooking, and even if the aluminum foil container for heating and cooking is manufactured directly from the precoated aluminum foil, there is no risk of peeling of the heat-absorbing paint, the shape or diameter of the container can be reduced, and stackability An object of the present invention is to develop an aluminum foil container that can be heated in a shorter time than a conventional aluminum foil container even when the same heating means is used when heating in an oven or a microwave oven, and a method for manufacturing the container.
[0005]
[Means for Solving the Problems]
The present invention
[1] The bottom surface of the container is finely uneven or embossed, and a heat absorbing film having a thickness of 0.5 to 3 μm made of a heat resistant resin is formed on the outer surface of the bottom surface of the container. (Α) is 0.5 or more, and the thermal emissivity (ε) is less than 0.5, and the heat absorption rate (α) and the thermal emissivity (ε) are
α (1−ε) ≧ 0.2
An aluminum foil container for simple packaging cooking, characterized by being coated with a heat absorbing film that satisfies the relationship of
[2] Described in the above [1], wherein the fine unevenness has a depth of 0.1 to 3 mm and a pitch of 3 to 100 / cm, or the embossing process has a depth of 20 to 100 μm and a pitch of 10 to 50 / cm. Aluminum foil container for simple packaging cooking,
[3] An aluminum foil coated with a heat absorbing film having a heat absorption coefficient (α) of 0.5 or more and a heat emissivity (ε) of less than 0.5 is punched so that the coated surface is on the outside. Using a die having unevenness on the surface having a depth of 0.1 to 3 mm and a pitch of 3 to 100 pieces / cm, or embossing processing having a depth of 20 to 100 μm and a pitch of 10 to 50 pieces / cm for embossing, method for producing a simple packaging cooking aluminum foil container, characterized by pressing, and [4] the thermal absorption rate (alpha) is 0.5 or more, heat resistant resin thermal emissivity (epsilon) is less than 0.5 A heat-absorbing paint having a thickness of 0.5 to 3 μm , and having a depth of 0.1 to 3 mm and a pitch of 3 to 100 / cm, or an embossing depth of 20 to 100 μm and a pitch of 10 to 50 / cm fine irregularities or Enbo' Or coated after packaging, or embossed processed aluminum foil after coating, the manufacturing method ,, a simple packaging cooking aluminum foil container, characterized in that pressing such that the coating surface in a container outside The above problems were solved by development.
[0006]
The aluminum foil used in the present invention is sufficient if it is the same as a conventionally used aluminum foil, for example, having a thickness of about 30 to 150 μm. Although it depends on the capacity and shape of the container, if it is 30 μm or less, the content will not be sufficiently rigid when the contents are put in, and there is a risk of deformation of the container. Conversely, use a foil with a thickness exceeding 150 μm. However, the rigidity becomes excessive quality, and there is no particular merit even if it takes both thermal conductivity and moldability just by increasing the cost.
[0007]
In this invention, the aluminum foil container for heat cooking of this invention is manufactured with the method of coating a coating material with high heat absorption in advance on aluminum foil, and shape | molding this into a container. Since pre-coated aluminum foil is used in container molding, compared to the case of coating after container molding, the coating can be done with coiled aluminum foil, which enables uniform and high-quality coating and enables high-productivity manufacturing. Become. In this case, it can be divided into several methods according to the manufacturing method employed.
For example, in the case of a container having fine irregularities on the bottom surface of the container, a smooth aluminum foil coated with high heat absorption is used, and a press machine having fine irregularities on the punch surface, preferably a die is made of rubber, paper, or The container is molded using the other side of the elastic surface such as soft plastic.
[0008]
Alternatively, when an aluminum foil embossed on the bottom surface of the container is used, it is advantageous to use a material that has been previously embossed with an aluminum foil. In this case, the heat absorbing paint may be coated and pressed before embossing, or a smooth aluminum foil coated with the heat absorbing paint may be embossed and subjected to normal pressing. . In these cases, since the unevenness of the embossing is small, a normal punch press machine can be used for press working. Embossing can be done with embossing rolls, and coating can be applied with gravure rolls.
In addition, the unevenness | corrugation in the case of giving a fine unevenness | corrugation attaches the unevenness | corrugation in the range of depth 0.1-3 mm, Preferably 1-2 mm, The pitch 3-100 piece / cm, Preferably about 5-10 piece / cm. In the case of embossing, embossing is performed at a depth of 20 to 100 μm, preferably 30 to 60 μm, and a pitch of 10 to 50 pieces / cm, preferably about 20 to 40 pieces / cm. The shape of the unevenness and embossing may be a circle or an ellipse, and is not necessarily a circle.
[0009]
The heating and cooking aluminum foil container produced by such a method does not require raising the bottom, so even if there is unevenness or embossing, the depth is so small that it can be ignored compared to the size of the container. Therefore, when compared with aluminum foil containers raised at the bottom, even if the containers have the same inner volume, the volume occupied by them can be extremely small, and it is not necessary to increase the molding depth, diameter, etc. There are merits such as reduction in size, reduction in transportation costs, and display of a large number of products even if the display area is small.
[0010]
The heat absorption film of the aluminum foil container for cooking according to the present invention has a heat absorption rate (α) and a heat emissivity (ε),
α (1−ε) ≧ 0.2
Satisfies the relationship. The heat absorption rate (α) is preferably 0.5 or more, more preferably 0.8 or more, and the thermal emissivity (ε) is less than 0.5, more preferably less than 0.45.
Here, the heat absorption rate (α) indicates the heat absorption rate of the radiant energy of the heat source at 500 ° C., the near infrared / infrared spectral reflectance of 0.8 to 25 μm is measured, and the black at the heat source temperature of 500 ° C. It is obtained from the ratio of energy to body radiation energy.
[0011]
The thermal emissivity (ε) indicates the thermal emissivity when the object is heated to 100 ° C., and the infrared spectral reflectance of 2.5 to 25 μm is measured. It is determined from the ratio of energy to radiant energy.
As a simple method for measuring the heat absorption rate (α), there is a method for measuring and obtaining the reflectance of infrared rays in the vicinity of 8 μm, and as a simple method for measuring the heat emissivity (ε), a thermal emissivity meter (Devices). & Service AERD emissometer: International Technology MODEL 2145 McDonald emissometer).
The color of the heat-absorbing coating used for the heat-absorbing film may be any color as long as it has a large heat absorption rate (α) and a low heat emissivity (ε), and can be selected in consideration of the display effect. It is. In addition, as the resin used for the heat-absorbing coating, it is cost-effective to use a thermosetting resin that has heat resistance and does not generate odor upon heating, such as epoxy resin, melamine resin, thermosetting acrylic resin, etc. It is advantageous from the aspect.
[0012]
[Action]
The aluminum foil container for cooking according to the present invention has fine irregularities or embossing on the bottom surface of the container, but the irregularities are not so large as to inhibit the adhesion of the heat-absorbing paint. It is possible to previously coat the aluminum foil with a heat absorbing paint. For this reason, since the coating is performed on the coiled aluminum foil, uniform and high-quality coating can be performed, and the productivity is higher than that of coating the container after molding.
Moreover, since this unevenness | corrugation is fine, there is no peeling of a coating film and it can maintain high thermal efficiency.
Furthermore, the heat absorption paint can measure the heat absorption rate (α) and the heat emissivity (ε) in advance, and can coat the coating within the specified range, thereby maintaining the heating efficiency at a higher level. As a result of the examination so far, the heat absorption rate (α) is affected and not fixed by the resin and pigment used, but if the heat absorption film thickness is less than 0.5 μm, it is small. Increased, nearly saturated around 3μm, and heat absorption does not improve even if it is thicker, while thermal emissivity (ε) increases the thickness of the heat absorption film from around 3μm and heat absorption When the thickness of the film is large, the heating efficiency is lowered. Therefore, it has been found that the heat absorption film preferably has a thickness of about 1 to 3 μm.
[0013]
【Example】
A 70 μm thick aluminum foil (3004-O material) is formed by pressing an elliptical aluminum foil container having a top diameter of 95 × 160 mm, a bottom diameter of 65 × 130 mm, and a height of 25 mm. Heated with [TOSHIBA HTR823 (890 W)]. A K-line thermocouple was inserted into the center of the gratin, and the time required to reach 90 ° C. by oven heating was measured.
[0014]
Example 1
The aluminum foil container was pressed with an aluminum foil coated with a heat absorbing film having a thickness of 1.5 μm with a black epoxy-based heat absorbing paint, and a punch with fine irregularities was used. Concavities and convexities of 9 mm and a pitch of 6.2 pieces / cm were provided. The heat absorption coefficient (α) of this coating film was 0.89, and the thermal emissivity (ε) was 0.38. The container did not peel off even after pressing, and the arrival time up to 90 ° C. was 8.0 minutes.
[0015]
(Example 2)
The aluminum foil container is embossed with an aluminum foil coated with a black epoxy heat-absorbing coating with a thickness of 1.5 μm and embossed at a depth of 0.048 mm and a pitch of 32.7 / cm. It was. The above-mentioned aluminum foil container was produced by using an ordinary press. The heat absorption coefficient (α) of this coating film was 0.89, and the thermal emissivity (ε) was 0.38. The container did not peel off even after pressing, and the arrival time up to 90 ° C. was 8.0 minutes.
[0016]
(Comparative Example 1)
The aluminum foil container used was an aluminum foil that had not been treated with a heat-absorbing paint, and an aluminum foil container having a flat bottom surface similar to the above was manufactured by a normal press in the same manner as in Example 2. The heat absorption coefficient (α) of this coating film was 0.04, and the thermal emissivity (ε) was 0.03. This container reached 12.5 minutes up to 90 ° C.
[0017]
(Comparative Example 2)
As the aluminum foil container, an aluminum foil container having a flat bottom surface with the above-mentioned shape was manufactured by an ordinary press using an aluminum foil coated with a heat absorption film having a thickness of 3.0 μm with a black epoxy heat absorbing paint. This coating film had a heat absorption coefficient (α) of 0.90 and a heat emissivity (ε) of 0.79. Although the container did not peel off even after pressing, the arrival time up to 90 ° C. was 12.0 minutes.
[0018]
(Comparative Example 3)
The aluminum foil container has the same shape as the above and a flat bottom surface in the same manner as in Example 2 except that an aluminum foil covered with a heat absorption film having a thickness of 1.5 μm is coated with a black epoxy heat absorption paint. An aluminum foil container was produced. The heat absorption coefficient (α) of this coating film was 0.89, and the thermal emissivity (ε) was 0.38. The container did not peel off even after pressing, but the arrival time up to 90 ° C. was 10.5 minutes.
[0019]
(Comparative Example 4)
The aluminum foil container had the same shape and 40% of the bottom area in the same manner as in Example 2 except that the aluminum foil was coated with a black epoxy heat absorbing paint and coated with a heat absorbing film having a thickness of 1.5 μm. An aluminum foil container of a type in which the bottom was raised by 60% (15 mm) of the container height (the bottom surface was flat) was manufactured. The heat absorption coefficient (α) of this coating film was 0.89, and the thermal emissivity (ε) was 0.38. In this container, peeling of the heat absorption film was partially observed after pressing, and the arrival time up to 90 ° C. was 8.0 minutes. In this example, if it is attempted to eliminate the peeling of the coated film after pressing, it is necessary to reduce the bottom raised area and the bottom raised height. If this is done, it becomes the same as in Comparative Examples 2 to 3, and the heating efficiency is unavoidably reduced. Further, in order to ensure the same internal volume as in the embodiment in volume, and to make the peeling of the coating film after pressing and the heating efficiency the same, the container shape must be enlarged.
[0020]
[Table 1]
[0021]
【The invention's effect】
The aluminum foil container for cooking according to the present invention can press aluminum foil pre-coated with a heat absorption film, so that the production of the container can maintain high productivity, and fine irregularities or embossing on the bottom surface of the container. Maintains a high thermal efficiency together with the heat absorbing film, but the unevenness or embossing is extremely effective in that it effectively prevents the coating film from peeling off and prevents the paint from mixing into the contents. Furthermore, since this fine unevenness or emboss has little influence on the volume of the container, the same container shape as that of the flat aluminum foil can be made in time. Therefore, compared to aluminum foil containers raised to the bottom to increase thermal efficiency, stacking is possible, not only transportation costs can be reduced, but also the container shape can be made compact, so it has excellent heating, such as a small display space. It is an aluminum foil container for cooking.
Claims (4)
α(1ーε)≧0.2
の関係を満足する熱吸収皮膜を被覆したことを特徴とする簡易包装調理用アルミニウム箔容器、 The bottom surface of the container is finely uneven or embossed, and a heat absorbing film having a thickness of 0.5 to 3 μm made of a heat resistant resin is formed on the outer surface of the bottom surface of the container, and the heat absorption rate (α) of the film Is 0.5 or more, the thermal emissivity (ε) is less than 0.5, and the heat absorption rate (α) and the thermal emissivity (ε) are
α (1−ε) ≧ 0.2
An aluminum foil container for simple packaging cooking, characterized by being coated with a heat absorbing film that satisfies the relationship of
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13580095A JP3731000B2 (en) | 1995-05-08 | 1995-05-08 | Aluminum foil container with high heating efficiency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13580095A JP3731000B2 (en) | 1995-05-08 | 1995-05-08 | Aluminum foil container with high heating efficiency |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08300077A JPH08300077A (en) | 1996-11-19 |
JP3731000B2 true JP3731000B2 (en) | 2006-01-05 |
Family
ID=15160122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13580095A Expired - Fee Related JP3731000B2 (en) | 1995-05-08 | 1995-05-08 | Aluminum foil container with high heating efficiency |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3731000B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5203722B2 (en) * | 2008-01-16 | 2013-06-05 | 東洋アルミエコープロダクツ株式会社 | Aluminum foil molding pot |
KR100977667B1 (en) * | 2008-03-14 | 2010-08-24 | 서월식 | Body for kitchen utensil and its manufacturing method |
-
1995
- 1995-05-08 JP JP13580095A patent/JP3731000B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08300077A (en) | 1996-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1241700A (en) | Metal container system for use in microwave ovens | |
US4713510A (en) | Package for microwave cooking with controlled thermal effects | |
JPH0220335A (en) | Microwave heating material | |
JPH01226577A (en) | Packaging for microwave cooking | |
CN110432784B (en) | Microwave reheating container | |
KR102354638B1 (en) | Item of cookware having a textured outer face made of stainless steel | |
JPH04506232A (en) | Method for demetalizing metal film | |
JPH04503733A (en) | Surface heating food wrap with variable microwave transmission | |
CA2575996A1 (en) | Microwaveable laminate container | |
JP2017531472A5 (en) | ||
JP2000142825A (en) | Container for heating with microwave oven | |
JP3716370B2 (en) | Cooking container | |
JP3731000B2 (en) | Aluminum foil container with high heating efficiency | |
CN109349911B (en) | Manufacturing process of soup pot with partial concave-convex patterns on outer surface | |
JP3668710B2 (en) | Aluminum foil container for electromagnetic cooking | |
CN204979776U (en) | Food container | |
US5686160A (en) | Fluoropolymer coated article having inlaid pattern | |
EP0437853B1 (en) | Method and apparatus for producing microwave susceptor sheet material | |
JPH04331150A (en) | Fluororesin coated material having scale, pattern, character, etc., thereon and manufacture thereof | |
KR20150022520A (en) | inner pot for electric cooker and method for manufacturing thereof | |
KR910005038B1 (en) | A decorated metallic disc | |
JP4088059B2 (en) | Molded container | |
JP2005537088A (en) | Manufacturing method of frying pan | |
CN210748694U (en) | Pot in this cauldron | |
JP7250417B2 (en) | Food containers and packages |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050209 |
|
RD13 | Notification of appointment of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7433 Effective date: 20050510 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050517 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050719 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050816 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050824 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050824 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050824 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |