JP3729371B2 - MgO briquette for slag concentration adjustment - Google Patents

MgO briquette for slag concentration adjustment Download PDF

Info

Publication number
JP3729371B2
JP3729371B2 JP16783197A JP16783197A JP3729371B2 JP 3729371 B2 JP3729371 B2 JP 3729371B2 JP 16783197 A JP16783197 A JP 16783197A JP 16783197 A JP16783197 A JP 16783197A JP 3729371 B2 JP3729371 B2 JP 3729371B2
Authority
JP
Japan
Prior art keywords
mgo
briquette
mass
less
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16783197A
Other languages
Japanese (ja)
Other versions
JPH10317040A (en
Inventor
昌浩 磯部
敬二 芥屋
慎 片村
一夫 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP16783197A priority Critical patent/JP3729371B2/en
Publication of JPH10317040A publication Critical patent/JPH10317040A/en
Application granted granted Critical
Publication of JP3729371B2 publication Critical patent/JP3729371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は製鋼工程においてスラグに添加する成分調整剤に関するものである。
【0002】
【従来の技術】
転炉や取鍋等の溶鋼処理槽の内張り耐火物の溶損防止対策として、スラグ中MgO濃度を調節する為にMgOを含有するドロマイトあるいは軽焼ドロマイトを投入している。これに代わる添加剤として、転炉を解体した時に発生するMgOレンガ屑を20mm以下に粉砕したものを用いることが特開平6−116617号公報にて提示されている。この方法において、レンガ屑の径の上限を30mmとした場合にはスラグ中MgOが上昇せず、過度に大きなレンガ屑は溶解が不十分な事も指摘されている。
【0003】
【発明が解決しようとする課題】
しかし、上記のようにレンガを粉砕して用いる方法は、破砕の際に5mm以下のサイズのレンガ屑が大量に発生するため、有効利用が困難であった。
また、レンガ屑は副原料バンカーに装入するまでのハンドリング中にも破砕し、さらに5mm以下の比率が増加する上、副原料バンカーを詰まらせ切り出し不能の事態をも引き起こす。さらに、細粒は集塵機に吸引されて歩留まり低下を招くと言う、多くの問題があった。
これらの問題を回避するためにはレンガ屑の粒度構成に上下限を設ける必要があり、また副原料バンカー使用時のハンドリングに十分耐えうるだけの強度を持つものが望まれていた。
【0004】
【課題を解決するための手段】
本発明は、5mm以下に粉砕した使用済みMgO耐火物と、200メッシュ以下の軽焼マグネシア粉を、ブリケットマシンのロールポケットへ最充填密度になるような粒度分布になるように調整した後、水を添加、混練しブリケット状に成型することで再使用率を低下させることなく均一粒度でかつ溶解性と投入バンカー使用時のハンドリング性に優れたスラグ中MgO濃度調整用の副原料を提供するものである。
【0005】
【発明の実施の形態】
当ブリケットはMgOを主成分とする使用済み耐火物を5mm以下に粉砕し、バインダー及び水を添加・混練しブリケット状に成型することにより得られる。
ここで、ブリケットの成型性の点からは、MgO主成分とする使用済み耐火物と成型するブリケットの寸法の間には式(1)の関係が成り立つ事が必要である。
(B÷A)×100≦0.3 (1)
但し、A:ブリケット1個当たりの体積(mm
B:原料中最大粒径の1個当たりの体積(mm
【0006】
また圧潰強度の観点からは、このブリケットに用いる原料の配合比率は、粉砕したMgO耐火物70〜85質量%、200メッシュ以下の軽焼マグネシア粉30〜15質量%に水を外数として5〜11質量%加えることが好ましい。
【0007】
あるいは、5mm以下に粉砕したMgOを主成分とする使用済み耐火物にバインダーとしてタールピッチを外数で5〜10質量%加えても良い。
【0008】
粉砕したMgO耐火物の粒径が30mm以上になった場合には転炉での溶解性が悪くなると言う弊害があった。しかし、水を加えて混練・成型したブリケットの場合には、マグネシアの一部が水酸化物に変化しているため、転炉への投入の際その熱により良好な溶解性が得られる径に爆裂することを知見した。
また、第二成分として配合する軽焼マグネシアは、マグネシア耐火物よりMgO品位が高いため必要投入量が少なくて済み、その結果転炉スラグの生成量を低減できるのでスラグ処理費を軽減できるという効果もある。
【0009】
ブリケットの原料として用いる粉砕したマグネシア耐火物の粒径は成型するブリケットの大きさにより制限があり、小径のブリケットに用いうる耐火物径は小さくなる。一方、転炉投入時の溶解性の点からは、使用する耐火物の径は大き過ぎない事が好ましい。
したがって図4の関係が成り立ち、使用済みのMgOを主成分とした耐火物を式1の範囲に粉砕し、バインダー及び水を添加・混練し、ブリケット状に成型することにより高強度で溶解性の良好なブリケットが得られる。
(B÷A)×100≦0.3 (1)
但し、A:ブリケット1個当たりの体積(mm
B:原料中最大粒径の1個当たりの体積(mm
【0010】
転炉に内張りしたMgOレンガを解体した時に生ずるレンガ屑を収集・選別後にジョークラッシャーを用いて5mm以下に式(1)が成り立つように全量を粉砕し、表1に示す粒度範囲に調整したものを90、85、80、75、70、65、60質量%それぞれ秤取り、これに200メッシュ以下に粉砕した軽焼マグネシアを10、15、20、25、30、35、40質量%配合して、水を外数で質量%添加しながら混練し、ブリケットマシンの加圧力を1250kg/cmと一定に保持して40mm×40mm×25mmサイズのマセックス型ブリケットに成型した。成型したブリケットは熱風乾燥機を用いて250℃の雰囲気で60分の一定条件で乾燥し、JISM8718(93)の圧潰強度ならびにJISM8711(93)に定められている焼結鉱の落下強度を得る落下試験に準じて試験を行った。
【0011】
【表1】

Figure 0003729371
【0012】
なお、ブリケットマシンから連続的に製造されるブリケットの強度は、製団原料へのバインダー添加量及び水分添加量によって大きく左右されるため、図1に示すごとく通常使用されているバインダーとして軽焼マグネシア25質量を先述の5mm以下に粉砕した使用済みMgOレンガ75質量%に添加し、外数で3〜13質量%の水を加え、十分混練してブリケットに成型し、ブリケットを250℃×60分の一定条件で乾燥して圧潰強度試験に供し、添加水分とブリケット強度の関係を調査した。
【0013】
図1からわかるように、ブリケットの圧潰強度(1個当たりの平均強度(kgf))は、水分の添加率8質量%をピークとして放物線を示した。この結果は製団する原料の水との濡れ・なじみ性、いわゆる親和力が添加水分量の影響を受け、5質量未満では原料粒子表面の濡れが完全にならず、粘結度が弱くなったものと考えられる。一方、11質量超えの水分を添加したものは、原料粒子表面の濡れが多すぎて、逆に強度が発現しなかった。その結果、使用済みMgOレンガの粉砕物に対する水分の最適な添加率は外数で8質量%であり、5〜11質量%で実用に適する事が分かった。
【0014】
表2に軽焼マグネシア10〜40質量%および水を外数で8質量%を配合・添加して試作したA〜Gのブリケット成型歩留と圧潰強度ならびに落下強度試験結果を示す。
ここで、上記の用語は以下に定義するものである。
ブリケット成型歩留:ブリケットマシンから連続的に成型されたブリケットを20mm篩にてふるい分け、篩上に残ったものの質量百分率。
落下強度:ブリケット20kgをはかり取り、2mの高さから鉄板上に4回落下させ、10mm篩でふるい分け、+10mmの量を試験前重量の20kgで割った質量百分率で、%を省略した値をそのまま指数とし表示した。
【0015】
【表2】
Figure 0003729371
【0016】
本結果から、軽焼マグネシアの配合率はブリケットの成型歩留を決定し、30%で歩留の最高値を示した。軽焼マグネシアは微粉が多く含まれるため、40%を超えて添加すると充填性が悪くなり強度が得られない。また、10未満の添加量では逆に微粉が不足して充填性が悪くなる。よって、十分な強度を確保するため、軽焼マグネシアの配合率を15〜30%とした。
【0017】
【実施例
本発明品であるスラグ濃度調整用MgOブリケットすなわち、5mm以下に粉砕・粒度調整した使用済みMgOレンガ70質量%に200メッシュ以下に粉砕した軽焼マグネシアを30質量%配合し、水9質量%を添加・混練し、40mm×40mm×25mmサイズのマセックス型ブリケットに成型し、250℃の雰囲気で60分乾燥した後、転炉炉上バンカーに貯鉱し、従来使用していたスラグ中MgO調整用副原料である軽焼ドロマイトのMgO純分と同量になるように秤量し、転炉吹錬開始直後に炉内へ投入した。溶解性の確認は目視観察とサンプリングしたスラグの組成の評価により行った。一方、本発明品との比較のため、特開平6−116617号公報に開示されたように本発明品の製造で使用した使用済みMgOレンガを30mm以下に破砕したものを、従来使用していた軽焼ドロマイトのMgO純分同量となるように秤量し、転炉吹錬開始直後に炉内へ投入した。その溶解性を評価した結果を図に示す。本発明法は、同量のMgO純分の添加にも関わらずスラグ中MgO含有量が高く、溶解性が向上していることがわかる。
【0018】
また、転炉炉前操業者による炉内の目視観察結果からも、レンガの破砕品ではスラグ表層部に溶け残りがあったのに対し、本発明品では表層部に溶け残りが全くなく、良好な溶解性を示した。
さらに、これらの副原料を転炉炉上バンカーに貯鉱するまでにおける工程、すなわち転炉副原料全般の搬送・貯鉱設備である打ち込みホッパー(大型ダンプやショベルローダー等による受入れ)、ベルトコンベアやバケットエレベータ等でのハンドリングによる粉化状況を観察した。その結果、従来のレンガ破砕品では粉化が著しく、ダンプによる打ち込みホッパーへのダンピングの際、発塵でホッパー建屋内に充満し5〜6分の集塵時間を要したのに対し、本発明品のブリケットについてはほとんど発塵せず、この問題がなかった。
【0019】
【実施例
本発明の濃度調整用ブリケット、すなわち5mm以下に粉砕・粒度調整した使用済みMgOレンガ100質量%に、タールピッチを外数として3〜11質量%添加・混練し、40mm×40mm×25mmサイズのマセックス型ブリケットに成型し、250℃×60分で乾燥した。乾燥したブリケット圧潰強度試験に供し、添加水分とブリケット強度の関係を調査した。その結果を図2に示すが、強度確保の上からタールピッチの添加量は5〜10質量%添加することが望ましい事が分かった。
【0020】
【発明の効果】
本発明に係るブリケットを使用することにより、粒度が大きい原料の場合の溶解性の悪化の問題や、転炉装入前までのハンドリングによる粉化および歩留低下といった問題が解消され、使用済みMgO耐火物の全量のリサイクルが可能になるため、粗鋼の製造コストが低減できる。
【図面の簡単な説明】
【図1】 使用済みMgOレンガ屑を5mm以下に粉砕し、水を5、7、9、11、13質量%添加しながら混錬しブリケット状に成型した時の添加水分とブリケット圧潰強度との関係を示す図。
【図2】 使用済みMgOレンガ屑を5mm以下に粉砕・粒度調整したものに、タールピッチを添加して添加割合とブリケットの圧潰強度との関係を示す図。
【図3】 使用済みMgOレンガ屑を5mm以下に粉砕・粒度調整したもの70質量%に200メッシュ以下に粉砕した軽焼マグネシア30質量%配合し、水を9%添加・混練し、ブリケットに成型し乾燥したものを、転炉炉内へ投入溶解した時の投入MgO指数(投入MgO÷スラグ量)とスラグ中MgO含有量の関係を示す図。
【図4】 ブリケット一辺の長さと原料の最大粒子径との関係を説明する図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a component modifier added to slag in a steelmaking process.
[0002]
[Prior art]
In order to prevent the refractory lining of molten steel processing tanks such as converters and ladle from melting, dolomite containing MgO or light-burned dolomite is used to adjust the MgO concentration in the slag. As an alternative additive, Japanese Patent Laid-Open No. 6-116617 proposes to use a crushed MgO brick scrap generated when a converter is disassembled to 20 mm or less. In this method, when the upper limit of the diameter of brick waste is set to 30 mm, it has been pointed out that MgO in the slag does not rise, and that excessively large brick waste is not sufficiently dissolved.
[0003]
[Problems to be solved by the invention]
However, the method of pulverizing and using bricks as described above has been difficult to effectively use because brick waste having a size of 5 mm or less is generated in large quantities during crushing.
In addition, the brick scraps are crushed during handling until charging into the auxiliary material bunker, and the ratio of 5 mm or less is further increased, and the auxiliary material bunker is clogged and can not be cut out. Furthermore, there are many problems that fine particles are attracted to the dust collector and cause a decrease in yield.
In order to avoid these problems, it is necessary to provide upper and lower limits to the particle size configuration of the brick scrap, and it has been desired to have a strength sufficient to withstand handling when using the auxiliary material bunker.
[0004]
[Means for Solving the Problems]
The present invention includes a spent MgO refractory ground to 5mm or less, 200 mesh or less of light burned magnesia powder was adjusted to a particle size such that the outermost packing density distribution to roll pocket briquette machine, water the additive, which provides a kneaded auxiliary material for excellent slag MgO concentration adjustment handling properties at the time of uniform particle size and solubility and turned bunker used without reducing the re-utilization by molding the briquettes It is.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
This briquette is obtained by pulverizing a used refractory mainly composed of MgO to 5 mm or less, adding and kneading a binder and water, and molding it into a briquette.
Here, from the point of formability of briquette, it is necessary that the relationship of the formula (1) is established between the used refractory material mainly composed of MgO and the dimensions of the briquette to be molded.
(B ÷ A) × 100 ≦ 0.3 (1)
However, A: Volume per briquette (mm 3 )
B: Volume per one of the largest particle diameter in the raw material (mm 3 )
[0006]
Further, from the viewpoint of crushing strength, the blending ratio of the raw materials used for this briquette is from 5 to 5 by adding 70 to 85% by mass of crushed MgO refractory, 30 to 15% by mass of lightly-burned magnesia powder of 200 mesh or less, and water as the external number. It is preferable to add 11% by mass .
[0007]
Or you may add 5-10 mass% of tar pitches by the outside number as a binder to the used refractory which has grind | pulverized MgO as a main component to 5 mm or less.
[0008]
When the particle size of the crushed MgO refractory is 30 mm or more, there is an adverse effect that the solubility in the converter deteriorates. However, in the case of briquettes kneaded and molded by adding water, since a part of magnesia has been changed to hydroxide, the diameter is such that good solubility is obtained by the heat when it is put into the converter. I found it exploding.
In addition, light burned magnesia blended as the second component has a higher MgO quality than magnesia refractories, so the required amount of input can be reduced, and as a result, the amount of converter slag produced can be reduced, so the effect of reducing slag treatment costs There is also.
[0009]
The particle size of the pulverized magnesia refractory used as a raw material for briquettes is limited by the size of the briquette to be molded, and the refractory diameter usable for small-diameter briquettes becomes small. On the other hand, it is preferable that the diameter of the refractory used is not too large from the viewpoint of solubility when the converter is charged.
Therefore, the relationship shown in FIG. 4 is established, and a refractory material mainly composed of used MgO is pulverized to the range of Formula 1, and a binder and water are added and kneaded, and then molded into a briquette shape. Good briquettes are obtained.
(B ÷ A) × 100 ≦ 0.3 (1)
However, A: Volume per briquette (mm 3 )
B: Volume per one of the largest particle diameter in the raw material (mm 3 )
[0010]
Collected and sorted the brick waste generated when the MgO brick lined in the converter is dismantled and then crushed the whole amount so that the formula (1) is established to 5 mm or less using a jaw crusher, and adjusted to the particle size range shown in Table 1 Are mixed into 90, 85, 80, 75, 70, 65, and 60% by mass, and lightly burned magnesia pulverized to 200 mesh or less is mixed with 10, 15, 20, 25, 30, 35, 40% by mass. Then, the mixture was kneaded while adding 8 % by mass of water, and the briquette machine was held at a constant pressure of 1250 kg / cm 2 and molded into a 40 mm L × 40 mm W × 25 mm H size massex briquette. The molded briquette is dried under a constant condition for 60 minutes in an atmosphere of 250 ° C. using a hot air drier to obtain the crushing strength of JISM8718 (93) and the falling strength of sintered ore specified in JISM8711 (93). The test was conducted according to the test.
[0011]
[Table 1]
Figure 0003729371
[0012]
The strength of briquette continuously produced from the briquette machine is greatly influenced by the amount of binder added and the amount of water added to the raw material for the group, so as shown in FIG. 25 % by mass is added to 75% by mass of used MgO bricks crushed to 5 mm or less, 3 to 13% by mass of water is added, and the mixture is sufficiently kneaded to form briquettes. The sample was dried under a certain condition for a minute and subjected to a crushing strength test, and the relationship between added water and briquette strength was investigated.
[0013]
As can be seen from FIG. 1, the briquette crushing strength (average strength (kgf) per piece) showed a parabola with a water addition rate of 8 % by mass as a peak. This result shows that the wetness and familiarity of the raw material to be assembled with water, the so-called affinity, is affected by the amount of added water, and if it is less than 5% by mass , the raw material particle surface is not completely wetted and the caking degree is weakened. It is considered a thing. On the other hand, when the water content exceeding 11% by mass was added, the surface of the raw material particles was so wet that the strength was not developed. As a result, it was found that the optimum addition rate of moisture to the pulverized product of used MgO brick was 8 % by mass , and 5 to 11% by mass was suitable for practical use.
[0014]
Table 2 shows the results of briquette molding yield, crushing strength, and drop strength test of A to G, which were prepared by adding and adding 10 to 40% by mass of light-burned magnesia and 8% by mass of water.
Here, the above terms are defined as follows.
Briquette molding yield: The mass percentage of the briquette continuously molded from the briquette machine, which was screened with a 20 mm sieve and remained on the sieve.
Drop strength: Weighs 20 kg of briquette, drops 4 times onto a steel plate from a height of 2 m, sifts with a 10 mm sieve, mass percentage obtained by dividing the amount of +10 mm by 20 kg of the weight before the test, and omits%. Expressed as an index.
[0015]
[Table 2]
Figure 0003729371
[0016]
From this result, the blending ratio of lightly burned magnesia determined the molding yield of briquettes and showed the highest yield at 30%. Lightly burned magnesia contains a lot of fine powder, so if it is added in excess of 40%, the filling property is deteriorated and the strength cannot be obtained. On the other hand, when the amount is less than 10, the fine powder is insufficient and the filling property is deteriorated. Therefore, in order to ensure sufficient strength, the blending ratio of light-burned magnesia was set to 15 to 30%.
[0017]
[Example 1 ]
MgO briquette for adjusting the slag concentration according to the present invention, that is, 30% by mass of light-burned magnesia pulverized to 200 mesh or less is mixed with 70% by mass of used MgO brick that has been crushed and adjusted to a particle size of 5 mm or less, and 9% by mass of water Addition and kneading, molding into 40mm L x 40mm W x 25mm H size massex briquette, drying in 250 ° C atmosphere for 60 minutes, storing in converter bunker, and using slag It weighed so that it might be the same amount as the pure MgO content of lightly burned dolomite, which is an auxiliary material for adjusting MgO, and put into the furnace immediately after the start of converter blowing. The solubility was confirmed by visual observation and evaluation of the sampled slag composition. On the other hand, for comparison with the product of the present invention, used MgO bricks crushed to 30 mm or less used in the production of the product of the present invention as disclosed in JP-A-6-116617 have been used conventionally. It was weighed so that MgO purity and the same amount of light burned dolomite was charged to the converter blowing start immediately after the furnace. The result of evaluation of the solubility is shown in FIG. It can be seen that the method of the present invention has a high MgO content in the slag and improved solubility despite the addition of the same amount of pure MgO.
[0018]
In addition, from the result of visual observation in the furnace by the converter pre-operator, the crushed brick was undissolved in the slag surface layer, whereas the present product was completely undissolved in the surface layer. Showed good solubility.
Furthermore, the process until these auxiliary materials are stored in the converter upper bunker, that is, a driving hopper (accepting by a large dump truck or excavator loader) that is a transport and storage facility for all converter auxiliary materials, a belt conveyor, The pulverization state by handling with a bucket elevator or the like was observed. As a result, the conventional brick crushed product is pulverized remarkably, and when dumping into the hopper by dumping, the hopper building was filled with dust and required 5 to 6 minutes to collect dust. The product briquettes generated almost no dust and there was no problem.
[0019]
[Example 2 ]
Concentration adjustment briquette of the present invention, that is, 3 to 11% by mass of tar pitch as an external number is added and kneaded to 100% by mass of used MgO brick crushed to a particle size of 5 mm or less and kneaded, and 40 mm L × 40 mm W × 25 mm H It was molded into a massex briquette of size and dried at 250 ° C. for 60 minutes. The dried briquette crushing strength test was conducted to investigate the relationship between added moisture and briquette strength. The results are shown in FIG. 2, and it was found that the tar pitch is preferably added in an amount of 5 to 10% by mass from the viewpoint of ensuring the strength.
[0020]
【The invention's effect】
By using the briquette according to the present invention, the problem of deterioration in solubility in the case of a raw material having a large particle size and the problem of powdering and yield reduction due to handling before charging the converter are solved, and used MgO Since the entire amount of refractory can be recycled, the production cost of crude steel can be reduced.
[Brief description of the drawings]
FIG. 1 shows the relationship between added moisture and briquette crushing strength when used MgO brick waste is crushed to 5 mm or less, kneaded while adding 5, 7, 9, 11, 13% by mass of water and molded into a briquette shape. The figure which shows a relationship.
FIG. 2 is a diagram showing the relationship between the addition ratio and briquette crushing strength by adding tar pitch to used MgO brick scraps crushed to 5 mm or less and adjusted in particle size.
[Figure 3] Used MgO brick waste crushed to 5 mm or less and adjusted in particle size 70 wt% of lightly burned magnesia 30 wt% crushed to 200 mesh or less, 9% water added and kneaded, molded into briquette The figure which shows the relationship between the input MgO index | exponent (input MgO / amount of slag) and the MgO content in slag when what was then dried and supplied and melted in the converter furnace.
FIG. 4 is a diagram for explaining the relationship between the length of one side of a briquette and the maximum particle diameter of a raw material.

Claims (2)

5mm以下に粉砕したMgOを主成分とする使用済み耐火物バインダー及び水を添加・混練しブリケット状に成型してなるスラグ濃度調整用MgOブリケットにおいて、MgOを主成分とする粉砕した使用済み耐火物70〜85質量%、200メッシュ以下の軽焼マグネシア粉30〜15質量%を配合し、これに水を外数で5〜11質量%加えてブリケット状に成型することを特徴とするスラグ濃度調整用MgOブリケット。 In slag concentration adjusting MgO briquettes spent refractory binder and water added and kneaded into formed by molding the briquettes composed mainly of MgO was ground to 5mm below ground spent refractory mainly containing MgO 70 to 85% by mass of a product, 30 to 15% by mass of light-burned magnesia powder of 200 mesh or less, and 5 to 11% by mass of water added to this to form a briquette slag concentration MgO briquette for adjustment. 混練に用いるMgOを主成分とする粉砕した使用済み耐火物と、成型したブリケットが式1の範囲にあることを特徴とする請求項に記載のスラグ濃度調整用MgOブリケット。
(B÷A)×100≦0.3 (1)
但し、A:ブリケット1個当たりの体積(mm
B:原料中最大粒径の1個当たりの体積(mm
2. The MgO briquette for adjusting slag concentration according to claim 1 , wherein the pulverized used refractory mainly composed of MgO used for kneading and the molded briquette are in the range of Formula 1. 3.
(B ÷ A) × 100 ≦ 0.3 (1)
However, A: Volume per briquette (mm 3 )
B: Volume per one of the largest particle diameter in the raw material (mm 3 )
JP16783197A 1997-05-22 1997-05-22 MgO briquette for slag concentration adjustment Expired - Lifetime JP3729371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16783197A JP3729371B2 (en) 1997-05-22 1997-05-22 MgO briquette for slag concentration adjustment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16783197A JP3729371B2 (en) 1997-05-22 1997-05-22 MgO briquette for slag concentration adjustment

Publications (2)

Publication Number Publication Date
JPH10317040A JPH10317040A (en) 1998-12-02
JP3729371B2 true JP3729371B2 (en) 2005-12-21

Family

ID=15856905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16783197A Expired - Lifetime JP3729371B2 (en) 1997-05-22 1997-05-22 MgO briquette for slag concentration adjustment

Country Status (1)

Country Link
JP (1) JP3729371B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534099A (en) * 2012-03-06 2012-07-04 通化市宇鑫耐火材料有限公司 MgO-C ball capable of improving splashing slag furnace protection effect of converter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5441093B2 (en) * 2008-10-01 2014-03-12 Jfeスチール株式会社 Slag component modifier for protecting refractories stretched in furnace and method for producing the same
JP5463644B2 (en) * 2008-10-01 2014-04-09 Jfeスチール株式会社 Method for refining molten metal
JP5438040B2 (en) * 2011-02-01 2014-03-12 日本マテリアル株式会社 Furnace wall protective material for steel making and method for producing the same
FR3008405A1 (en) * 2013-07-15 2015-01-16 Lhoist Rech & Dev Sa COMPOSITION COMPRISING CALCO MAGNEI COMPOUNDS IN THE FORM OF COMPACTS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534099A (en) * 2012-03-06 2012-07-04 通化市宇鑫耐火材料有限公司 MgO-C ball capable of improving splashing slag furnace protection effect of converter

Also Published As

Publication number Publication date
JPH10317040A (en) 1998-12-02

Similar Documents

Publication Publication Date Title
RU2404264C2 (en) Composition of conditioning addition for slag, method for its obtaining, and method of its application during steel making
CN101613800B (en) Metallurgical composite pelletizing prepared through twice pelletizing method, as well as preparation method and application thereof
CN101194028B (en) Method for processing metallurgical slag
RU2006126829A (en) METHOD FOR MANUFACTURE OF BRIQUETTES WITH DIRECT USE OF COAL WITH A WIDE DISTRIBUTION OF PARTICLES IN DIMENSIONS, METHOD AND DEVICE USING THIS METHOD
JP5699567B2 (en) Method for producing sintered ore
US20070266824A1 (en) Using a slag conditioner to beneficiate bag house dust from a steel making furnace
WO1993011269A1 (en) Method and composition for use in recycling metal containing furnace dust
KR101234388B1 (en) Process for production of direct-reduced iron
JPH0121855B2 (en)
EP1772527B1 (en) Method for production of an addition briqutte
JP2009052141A (en) Method for reducing electric furnace dust
JP3729371B2 (en) MgO briquette for slag concentration adjustment
US20230203607A1 (en) Biomass Direct Reduced Iron
JP4781807B2 (en) Manufacturing method of dephosphorizing agent for steel making using sintering machine
KR101492783B1 (en) Process for the manufacture of ferrochrome
JP4918754B2 (en) Semi-reduced sintered ore and method for producing the same
JP3863052B2 (en) Blast furnace raw material charging method
EA037656B1 (en) Method for production of iron-silicon-aluminum alloys
AU5644500A (en) Method and apparatus for producing reduced iron
WO2005111248A1 (en) Semi-reduced sintered ore and method for production thereof
CN103946400B (en) Metallurgical composites for manufacturing ferrochrome
JPS6081294A (en) Coke aggregates and manufacture thereof
CN102295944A (en) Foundry coke brick and production method thereof
RU2784160C1 (en) Iron-carbon-containing briquette and method for production thereof
CN113699371B (en) Preparation and use methods of composite deoxidation modified pellets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term