JP3729236B2 - Method for producing alkylhalosilane - Google Patents

Method for producing alkylhalosilane Download PDF

Info

Publication number
JP3729236B2
JP3729236B2 JP19506698A JP19506698A JP3729236B2 JP 3729236 B2 JP3729236 B2 JP 3729236B2 JP 19506698 A JP19506698 A JP 19506698A JP 19506698 A JP19506698 A JP 19506698A JP 3729236 B2 JP3729236 B2 JP 3729236B2
Authority
JP
Japan
Prior art keywords
boron
reaction
reactor
parts
contact body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19506698A
Other languages
Japanese (ja)
Other versions
JPH1171384A (en
Inventor
鉄雄 中西
鉄也 犬飼
一正 槻岡
宏 中山
行徳 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP19506698A priority Critical patent/JP3729236B2/en
Publication of JPH1171384A publication Critical patent/JPH1171384A/en
Application granted granted Critical
Publication of JP3729236B2 publication Critical patent/JP3729236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、アルキルハロシランの直接法による製造方法に関し、特に金属珪素とアルキルハライドを銅触媒存在下で気−固接触反応させてアルキルハロシランを連続的に製造するアルキルハロシランの製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
アルキルハロシランの合成法に関しては、米国特許第2,380,995号においてロコーが銅触媒による金属珪素とアルキルハライドとの直接法を開示して以来、銅触媒の存在下で用いる種々の助触媒に関するもの、銅触媒とその処理に関するもの、反応装置に関するもの、反応時の添加物に関するものなど、数多くの研究者によって、その成果が報告されてきた。
【0003】
この直接法は、金属珪素に銅触媒を添加した触体を活性化した後、これにアルキルハライドを導入して金属珪素とアルキルハライドとを直接気−固接触させることにより、アルキルハロシランを得る方法である。アルキルハロシランの工業的合成においては、シリコーン樹脂に最も多用されるジアルキルジハロシランの選択性、及びシランの生成速度が重要とされる。ジアルキルジハロシランの選択性は生成シラン中の重量比(あるいはモル比)、及びT/D比により評価される。生成アルキルハロシラン中に含まれる物質としては、ジアルキルジハロシラン(D)、トリアルキルハロシラン(M)、アルキルトリハロシラン(T)などが挙げられ、アルキルヒドロジハロシラン(H)やアルキルハロジシラン類も生成する。特に、シラン製造業者において残渣と呼ばれるジシラン類は有効な利用方法が少なくほとんどが廃棄されているものである。T/D比とは全生成アルキルハロシラン中のアルキルトリハロシランとジアルキルジハロシランの組成比でありT/D比が小さいほど好ましい。一方、アルキルハロシランの生成速度は、STY(Space Time Yield)値を用いる。STY値は反応器内に保持される金属珪素重量に対する単位時間当たりの生成粗アルキルハロシランの重量である。これら生成ジアルキルジハロシラン組成の向上あるいはT/D比の低下及びSTY値を向上させるため、触媒、促進剤を中心とした種々の研究がなされてきた。
【0004】
1959年1月24日付のソヴィエト出願明細書第617,569号(発明者証第122,749号)では、金属珪素−銅合金にアンチモンを20〜40ppm添加した反応が開示されている。このときジメチルジクロロシランの組成は40%から60%へ向上したことが示されている。また、米国特許第4,500,724号においては、200〜3000ppmの錫を含有する銅/亜鉛/錫系触媒を用いることによりT/Dが0.037に向上したことが示されている。更に、特公平6−92421号公報においては、砒素濃度にして50ppm以上のヒ化銅を用いた反応が開示されている。これら錫、アンチモン、砒素助触媒は、金属珪素−銅からなる反応触体に添加することで反応活性を高め、従って金属珪素の反応率を向上させ得ることが述べられている。
【0005】
1964年6月2日付のソヴィエト出願明細書第903,369号(発明者証第178,817号)では、亜鉛、ビスマス、リン(200ppm)、砒素、錫、鉄から選択された助触媒を用いてジメチルジクロロシランの組成が前述の出願明細書第617,569号(発明者証第122,749号)から72.1%まで向上している。また、1969年11月20日付のソヴィエト出願明細書第1,152,943号(発明者証第237,892号)において、リン、銅、珪素の合金の形態で触体に対して2500〜30000ppmのリンを添加することが示されており、ジメチルジクロロシラン組成は82.3%と改善されている。また、米国特許第4,602,101号(特公平5−51596号公報)においては、反応器内で元素状のリンが発生するリン化合物を触体に対して25〜2500ppm添加することが示されている。
【0006】
以上のようにこれまで多くの研究者がアルキルハロシランの直接法の改良を目指して種々の金属の助触媒効果を検討してきたが、更に有効な助触媒が望まれている。
【0007】
本発明は、上記事情に鑑みなされたもので、所望のSTYにおいてジアルキルジハロシランの生産量を高め、かつ不必要なジシラン類を減少させるアルキルハロシランの直接法による製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段及び発明の実施の形態】
本発明者らは、工業的に有効な直接法によるアルキルハロシランの製造方法、特に、所望のSTYにおいてジアルキルジハロシランの生産量を高め、かつ不必要なジシラン類を減少させるアルキルハロシランの直接法について鋭意検討を行った結果、硼素を含有した反応触体を使用することによって反応活性を維持しながらハイドロシラン類、ジシラン類の生成を減少せしめ、従ってジアルキルジハロシランの生産量を高めることを見出した。
【0009】
即ち、上述したように、従来より種々の助触媒について検討されてきたが、本発明に係る硼素化合物に関してはこれまで殆んど検討されておらず、例えばTuset,J.K.,Int.Sem.on Refining and Alloying of Liquid Al & Ferroalloys(1985)Trondheimには標準的な金属珪素中の硼素濃度は多くても50ppmであり、直接法反応に使用される精製された金属珪素では多くても40ppmであることが示されているが、多くの総説において直接法の反応活性は殆んどないか、あるいは多量に使用する場合には触媒毒となると示されているのみである。しかしながら、実際に使用する金属珪素中の硼素含有濃度は原料となる硅石の生産諸国により著しく異なる。硼素含有濃度は元来少ない上に、通常は金属珪素の精錬工程で一層低減され、触体中には実質的に硼素は殆ど含まれていないものである。本発明者の分析によれば、ブラジル等南米産、中国産、オーストラリア産の精錬金属粉末中の硼素濃度は、10ppm以下、フランス、ノルウェー等の欧州産の精錬金属珪素粉末中の硼素濃度は、10ppm以上30ppm以下のものが多数をしめている。
【0010】
ところが、本発明者は、従来はむしろ触媒毒となると考えられていた硼素が助触媒として優れた効果を有し、触体中に硼素を含有させることにより、反応活性を維持しながらハイドロシラン類、ジシラン類の生成を減少させ、ジアルキルジハロシランの生産量を高めることができることを知見し、本発明をなすに至った。
【0011】
以下、本発明を更に詳しく説明すると、本発明のアルキルハロシランの製造方法は、金属珪素粉末と銅触媒とを含む触体を反応器に仕込み、該反応器にアルキルハライドを含むガスを導入して直接合成法により、下記一般式
nSiX4-n
(但し、式中Rは炭素数1〜4のアルキル基、Xはハロゲン原子を示し、nは0〜4の整数である。)
で示されるシラン類を製造する方法において、珪素精錬工程を含む工程における溶融状態の金属珪素に硼素化合物を添加することによって得られる硼素を含有する金属珪素粉末及び/又は硼素もしくは硼素化合物を添加することにより助触媒として上記触体に50〜10000ppmの硼素元素を含有させたことを特徴とするものである。
【0012】
ここで、金属珪素は、通常、珪素の純度が97重量%以上、特に純度が98重量%以上のものを用いることが好ましい。また、金属珪素は粉砕し、適当な粒度を持った粉末として使用することが好ましく、反応器として流動層反応器又は撹拌型反応器を用いる場合は、金属珪素粉末に良好な流動性を持たせるため、金属珪素粉末の粒子径は篩分による重量基準累積分布曲線の50%に相当する粒径として5〜150μmの範囲とすることが好ましい。
【0013】
また銅触媒としては、銅粉末、スタンピング銅などの単体銅あるいは酸化第一銅、酸化第二銅、ハロゲン化銅などの銅化合物など種々の形態のものを用いることができる。また助触媒として、亜鉛、錫、アンチモン、砒素などの種々の促進剤を用いてもよく、これらは単独で用いても銅との合金として用いてもよい。例示すると金属亜鉛、金属錫、金属アンチモン、金属砒素粉及びこれらの塩化物あるいは酸化物、Cu−Zn,Cu−Sn,Cu−Zn−SnあるいはZnやSnの代わりにSb,Asを用いた銅合金が一般に製造可能である。またこれらの銅触媒は反応器中に単独で仕込んでもよいし、金属珪素粉末と共に合金として仕込んでもよい。これら銅触媒の配合量は、金属珪素粉末100部(重量部、以下同じ)に対して銅量に換算して0.1〜10部、特に2〜8部とすることが好ましい。また亜鉛の配合量は、金属珪素粉末100部に対して0.05〜1部、錫、アンチモン及び砒素の配合量は、金属珪素粉末に対していずれか一種あるいは合計で0.001〜0.05部、好ましくは0.005〜0.01部とするのがよい。
【0014】
本発明においては、上記触体として、硼素元素を50〜8000ppm、更に好ましくは55〜6000ppm、最も好ましくは200〜5000ppm含むものを使用する。
【0015】
この場合、触体中の硼素を上記濃度にする方法としては、触体を構成する金属珪素として硼素濃度の高い金属珪素を用いる方法、金属珪素の製造において、金属珪素の溶融温度で揮発性の少ない硼素化合物を添加し、硼素濃度の高い金属珪素を使用する方法、更に直接法反応器中の反応触体に硼素化合物を添加する方法が挙げられる。
【0016】
ここで、硼素を含む金属珪素は、原料珪素の精製工程を含むプロセスの中で硼素化合物を珪素に供給することによって得ることができ、この場合、不揮発性の化合物を珪素精錬工程を含む工程における溶融状態の金属珪素に加えることができる。この際に用いられる硼素化合物としては、ほう砂(Na247・10H2O)、カーン石(Na247・14H2O)、コールマン石(Ca2611・5H2O)等の硼素を含有する天然鉱物や、M1 2B(但し、M1はFe,Co,Ni,Mn,Mo,W,Ta等を示す)、M2 32(但し、M2はMg等を示す)、M3B(但し、M3はFe,Co,Ni,Mn,Cr,Mo,W,Nb,Ta等を示す)、M4 34(但し、M4はTa,Nb,Mn,Cr等を示す)、M52(但し、M5はTi,Zr,Hf,V,Nb,Ta,Cr等を示す)、M6 25(但し、M6はMo,W等を示す)で示される硼化物、窒化硼素、炭化硼素、燐化硼素、硼素リン酸塩などを挙げることができる。また、珪素精錬条件下に硼素化合物を加えた際、この硼素化合物が還元されて硼素が含有された珪素を用いることも好ましいが、このような硼素化合物としては、硼酸、硼酸金属塩、酸化硼素を挙げることができる。
【0017】
また、硼素化合物は、気相状あるいは直ちに揮発するものを用いることができる。
【0018】
更に、珪素に硼素を含有させる方法としては、珪素精錬の原料として、硼素を含有する石英、硼素を含有する石炭、硼素を含有するコークス、硼素を含有する木炭、硼素を含有するユーカリを使用する方法を挙げることもできる。また、珪素精錬の電極として硼素を含有するカーボン電極を用いる方法を採用してもよい。
【0019】
一方、反応触体に硼素化合物を添加する場合、硼素は、例えば酸化物を還元して得られる無定形硼素等の元素硼素、硼素−銅合金、上記と同様のM1 2B、M2 32、M3B、M4 34、M52、M6 25で示される硼化物、窒化硼素、炭化硼素、燐化硼素、硼素リン酸塩等を挙げることができる。これらを直接法反応器に添加する場合には、微量の水分を除去するために予め200℃程度で加熱脱水処理を施すことが更に好ましい。また、添加する硼素化合物として、気相状あるいは直ちに揮発するハロゲン化硼素等を用いることができる。
【0020】
金属珪素と反応させてアルキルハロシランを得るためのアルキルハライドとしては、塩化メチル、塩化エチル、塩化プロピル、臭化メチル、臭化エチルなどを例示することができる。この中で工業的に最も有用なものは塩化メチルであり、これを用いて製造されるジメチルジクロロシランは多くのシリコーン樹脂の原料として幅広い用途がある。アルキルハライドは予め昇温し、ガス化した後、反応器へ送入する。この場合、アルキルハライドガスを単独で送入してもよいし、不活性ガスとの混合ガスとしてもよい。このアルキルハライドガスの送入量は、不活性ガスと合わせて触体が流動化する量として算出され、用いる反応器の直径と空塔速度から適宜決定される。
【0021】
触体の加熱又は触体への触媒活性付与工程において、反応器内の触体の流動化に用いる不活性ガスは、窒素ガス、アルゴンガス等が例示されるが、経済性の点から、窒素ガスを用いることが好ましい。これらの工程における不活性ガスの流速は触体の流動化開始速度以上であればよいが、特に流動化開始速度の5倍程度が好ましい。不活性ガスの流速をこの範囲より小さくすると触体の均一な流動化が困難となり、一方、不活性ガスの流速をこの範囲より大きくすると、金属珪素粉の飛散が増加し、また不活性ガスのロスや熱のロスが増加するため不利となる場合が生じる。また、不活性ガスを循環使用することがより好ましい。
【0022】
上述のようにして触体への触媒活性付与を行った後、反応器にアルキルハライドを導入し、常法に従い、アルキルハライドと金属珪素とを気−固接触反応させることによりアルキルハロシランを得ることができる。この場合、反応温度は280〜300℃とすることができる。なお、反応方法としては、流動層内で連続条件の下に反応を行う方法、撹拌層で反応を行う方法、固定層で反応を行う方法などを挙げることができる。
【0023】
【実施例】
以下、実施例を示し、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、下記の例において部は重量部を示す。
【0024】
〔実施例1,2〕
直径50mm、高さ300mmのカーボンスチール製の流動層反応器に、金属珪素粉を100部、金属銅粉よりなる触媒混合物4部を仕込んだ。また表1に示す硼素化合物を種々の添加量で仕込んだ。
【0025】
その後、塩化メチルを流速1.3cm/secで反応器に導入し、反応器内温度を330℃まで上げ、反応を継続し、6時間後反応を停止した。反応開始から反応終了時までの累積のSTYを表1に示す。また、生成した全メチルクロロシラン量に対するジメチルジクロロシランの割合、メチルジクロロシランの割合、高沸点生成物(生成メチルクロロシラン中のジシランなどの常圧における沸点が70℃より高い生成物)の割合も表1にそれぞれD、H、Rとして併記する。なお、上記STYは以下の意味を示す。
【0026】
【数1】

Figure 0003729236
【0027】
【表1】
Figure 0003729236
【0030】
〔実施例
直径50mm、高さ300mmのカーボンスチール製の流動層反応器に、硼素を74ppm含有する金属珪素粉を100部、金属銅粉よりなる触媒混合物4部を仕込んだ。触体中の硼素濃度を表2に示す。
【0031】
その後、塩化メチルを流速1.3cm/secで反応器に導入し、反応器内温度を330℃まで上げ、反応を継続し、6時間後反応を停止した。反応開始から反応終了時までの累積のSTY、D、H、Rを表2に示す。
【0032】
〔実施例
直径50mm、高さ300mmのカーボンスチール製の流動層反応器に、硼素を148ppm含有する金属珪素粉を100部、金属銅粉よりなる触媒混合物4部を仕込んだ。触体中の硼素濃度を表2に示す。
【0033】
その後、塩化メチルを流速1.3cm/secで反応器に導入し、反応器内温度を330℃まで上げ、反応を継続し、6時間後反応を停止した。反応開始から反応終了時までの累積のSTY、D、H、Rを表2に示す。
【0034】
〔実施例
直径50mm、高さ300mmのカーボンスチール製の流動層反応器に、硼素を2200ppm含有する金属珪素粉を100部、金属銅粉よりなる触媒混合物4部を仕込んだ。触体中の硼素濃度を表2に示す。
【0035】
その後、塩化メチルを流速1.3cm/secで反応器に導入し、反応器内温度を330℃まで上げ、反応を継続し、6時間後反応を停止した。反応開始から反応終了時までの累積のSTY、D、H、Rを表2に示す。
【0036】
〔比較例1〕
直径50mm、高さ300mmのカーボンスチール製の流動層反応器に、硼素を0.032ppm含有する金属珪素粉を100部、金属銅粉よりなる触媒混合物4部を仕込んだ。触体中の硼素濃度を表2に示す。
【0037】
その後、塩化メチルを流速1.3cm/secで反応器に導入し、反応器内温度を330℃まで上げ、反応を継続し、6時間後反応を停止した。反応開始から反応終了時までの累積のSTY、D、H、Rを表2に示す。
【0038】
〔比較例2〕
直径50mm、高さ300mmのカーボンスチール製の流動層反応器に、硼素を0.50ppm含有する金属珪素粉を100部、金属銅粉よりなる触媒混合物4部を仕込んだ。触体中の硼素濃度を表2に示す。
【0039】
その後、塩化メチルを流速1.3cm/secで反応器に導入し、反応器内温度を330℃まで上げ、反応を継続し、6時間後反応を停止した。反応開始から反応終了時までの累積のSTY、D、H、Rを表2に示す。
【0040】
なお、上記実施例3〜、比較例1、2において、硼素は硼酸、硼酸金属塩(金属はナトリウムあるいはカリウム)、酸化硼素を用いて所定量を含有させた。この場合、これら硼素化合物は、原料珪素の精錬工程において、還元反応前に、原料硅石、木炭、木片等と共に電炉釜に添加し、1500℃以上でアークを発生させ、還元反応を行った。その後、容器を移し換え、窒素、空気によるバブリングを1時間以上20時間以下行い、酸化物スラグと分別し、冷却するという方法で処理した。
【0041】
【表2】
Figure 0003729236
【0042】
〔実施例
直径50mm、高さ300mmのカーボンスチール製の流動層反応器に、硼素を7.0ppm含有する金属珪素粉を100部、金属銅粉3.7部、硼素を2.0重量%含有する金属銅粉0.3部を仕込んだ。触体中の硼素濃度を表3に示す。
【0043】
その後、塩化メチルを流速1.3cm/secで反応器に導入し、反応器内温度を330℃まで上げ、反応を継続し、6時間後反応を停止した。反応開始から反応終了時までの累積のSTY、D、H、Rを表3に示す。
【0044】
〔実施例
直径50mm、高さ300mmのカーボンスチール製の流動層反応器に、硼素を550ppm含有する金属珪素粉を100部、金属銅粉3.5部、硼素を2.0重量%含有する金属銅粉0.5部を仕込んだ。触体中の硼素濃度を表3に示す。
【0045】
その後、塩化メチルを流速1.3cm/secで反応器に導入し、反応器内温度を330℃まで上げ、反応を継続し、6時間後反応を停止した。反応開始から反応終了時までの累積のSTY、D、H、Rを表3に示す。
【0046】
〔実施例
直径50mm、高さ300mmのカーボンスチール製の流動層反応器に、硼素を148ppm含有する金属珪素粉を100部、金属銅粉4.0部、硼化チタン1.2部を仕込んだ。触体中の硼素濃度を表3に示す。
【0047】
その後、塩化メチルを流速1.3cm/secで反応器に導入し、反応器内温度を330℃まで上げ、反応を継続し、6時間後反応を停止した。反応開始から反応終了時までの累積のSTY、D、H、Rを表3に示す。
【0048】
〔実施例
直径50mm、高さ300mmのカーボンスチール製の流動層反応器に、硼素を550ppm含有する金属珪素粉を100部、金属銅粉4.0部、硼化ジルコニウム0.5部を仕込んだ。触体中の硼素濃度を表3に示す。
【0049】
その後、塩化メチルを流速1.3cm/secで反応器に導入し、反応器内温度を330℃まで上げ、反応を継続し、6時間後反応を停止した。反応開始から反応終了時までの累積のSTY、D、H、Rを表3に示す。
【0050】
〔実施例10
直径50mm、高さ300mmのカーボンスチール製の流動層反応器に、硼素を74ppm含有する金属珪素粉を100部、金属銅粉4.0部、硼化ニオブ0.5部を仕込んだ。触体中の硼素濃度を表3に示す。
【0051】
その後、塩化メチルを流速1.3cm/secで反応器に導入し、反応器内温度を330℃まで上げ、反応を継続し、6時間後反応を停止した。反応開始から反応終了時までの累積のSTY、D、H、Rを表3に示す。
【0052】
〔実施例11
直径50mm、高さ300mmのカーボンスチール製の流動層反応器に、硼素を148ppm含有する金属珪素粉を100部、金属銅粉3.5部、硼化タングステン1.0部を仕込んだ。触体中の硼素濃度を表3に示す。
【0053】
その後、塩化メチルを流速1.3cm/secで反応器に導入し、反応器内温度を330℃まで上げ、反応を継続し、6時間後反応を停止した。反応開始から反応終了時までの累積のSTY、D、H、Rを表3に示す。
【0054】
なお、上記実施例11において、硼素を7〜550ppm含有する金属珪素粉は、実施例3〜と同様にして製造した。また、硼素を2.0重量%含有する金属銅粉は、硼素と銅粉末とを混合し、窒素雰囲気下において室温から2時間かけて1800〜2200℃に加熱して1時間保持した後、溶融体を冷却させることにより製造した。
【0055】
【表3】
Figure 0003729236
【0056】
〔実施例12
直径50mm、高さ300mmのカーボンスチール製の流動層反応器に、硼素を7.0ppm含有する金属珪素粉を100部、金属銅粉よりなる触媒混合物4部、窒化硼素0.2部を仕込んだ。触体中の硼素濃度を表4に示す。
【0057】
その後、塩化メチルを流速1.3cm/secで反応器に導入し、反応器内温度を330℃まで上げ、反応を継続し、6時間後反応を停止した。反応開始から反応終了時までの累積のSTY、D、H、Rを表4に示す。
【0058】
〔実施例13
直径50mm、高さ300mmのカーボンスチール製の流動層反応器に、硼素を7.0ppm含有する金属珪素粉を100部、金属銅粉よりなる触媒混合物4部、窒化硼素0.7部を仕込んだ。触体中の硼素濃度を表4に示す。
【0059】
その後、塩化メチルを流速1.3cm/secで反応器に導入し、反応器内温度を330℃まで上げ、反応を継続し、6時間後反応を停止した。反応開始から反応終了時までの累積のSTY、D、H、Rを表4に示す。
【0060】
〔実施例14
直径50mm、高さ300mmのカーボンスチール製の流動層反応器に、硼素を7.0ppm含有する金属珪素粉を100部、金属銅粉よりなる触媒混合物4部、窒化硼素1.4部を仕込んだ。触体中の硼素濃度を表4に示す。
【0061】
その後、塩化メチルを流速1.3cm/secで反応器に導入し、反応器内温度を330℃まで上げ、反応を継続し、6時間後反応を停止した。反応開始から反応終了時までの累積のSTY、D、H、Rを表4に示す。
【0062】
〔実施例15
直径50mm、高さ300mmのカーボンスチール製の流動層反応器に、硼素を7.0ppm含有する金属珪素粉を100部、金属銅粉よりなる触媒混合物4部、炭化硼素0.5部を仕込んだ。触体中の硼素濃度を表4に示す。
【0063】
その後、塩化メチルを流速1.3cm/secで反応器に導入し、反応器内温度を330℃まで上げ、反応を継続し、6時間後反応を停止した。反応開始から反応終了時までの累積のSTY、D、H、Rを表4に示す。
【0064】
〔実施例16
直径50mm、高さ300mmのカーボンスチール製の流動層反応器に、硼素を78ppm含有する金属珪素粉を100部、金属銅粉よりなる触媒混合物4部、メタ燐酸硼素3.0部を仕込んだ。触体中の硼素濃度を表4に示す。
【0065】
その後、塩化メチルを流速1.3cm/secで反応器に導入し、反応器内温度を330℃まで上げ、反応を継続し、6時間後反応を停止した。反応開始から反応終了時までの累積のSTY、D、H、Rを表4に示す。
【0066】
【表4】
Figure 0003729236
【0067】
【発明の効果】
本発明に基づいて硼素を従来の反応触体に添加すれば、従来に比較してより安価な方法で所望のSTYにおいてジアルキルジハロシランの生産量を高め、かつ不必要なハイドロシラン類、ジシラン類を減少させることによってアルキルハロシランの直接法による製造方法の生産性を向上させることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an alkylhalosilane by a direct method, and more particularly to a method for producing an alkylhalosilane by continuously producing an alkylhalosilane by subjecting metal silicon and an alkyl halide to a gas-solid contact reaction in the presence of a copper catalyst. .
[0002]
[Prior art and problems to be solved by the invention]
With respect to the synthesis of alkylhalosilanes, various cocatalysts used in the presence of copper catalysts since Locoh disclosed a direct method of copper-catalyzed metal silicon and alkyl halides in US Pat. No. 2,380,995. The results have been reported by many researchers, such as those related to copper catalysts and their treatment, reactors, and additives in the reaction.
[0003]
In this direct method, after activating a contact body obtained by adding a copper catalyst to metal silicon, an alkyl halide is introduced into the contact body to bring the metal silicon and alkyl halide into direct gas-solid contact, thereby obtaining an alkylhalosilane. Is the method. In the industrial synthesis of alkylhalosilanes, the selectivity of dialkyldihalosilanes most frequently used in silicone resins and the rate of silane formation are important. The selectivity of dialkyldihalosilane is evaluated by the weight ratio (or molar ratio) in the produced silane and the T / D ratio. Examples of substances contained in the generated alkylhalosilane include dialkyldihalosilane (D), trialkylhalosilane (M), and alkyltrihalosilane (T), and alkylhydrodihalosilane (H) and alkylhalosilane. Disilanes are also produced. In particular, disilanes called residues in silane manufacturers have few effective uses and are mostly discarded. The T / D ratio is the composition ratio of the alkyltrihalosilane and the dialkyldihalosilane in the total generated alkylhalosilane, and the T / D ratio is preferably as small as possible. On the other hand, STY (Space Time Yield) value is used for the production rate of alkylhalosilane. The STY value is the weight of the resulting crude alkylhalosilane per unit time relative to the weight of metal silicon held in the reactor. In order to improve the composition of these produced dialkyldihalosilanes or lower the T / D ratio and improve the STY value, various studies have been conducted focusing on catalysts and accelerators.
[0004]
Soviet application specification No. 617,569 (inventor's certificate No. 122,749) dated January 24, 1959 discloses a reaction in which 20-40 ppm of antimony is added to a metal silicon-copper alloy. At this time, it is shown that the composition of dimethyldichlorosilane was improved from 40% to 60%. U.S. Pat. No. 4,500,724 shows that T / D is improved to 0.037 by using a copper / zinc / tin-based catalyst containing 200 to 3000 ppm of tin. Further, Japanese Patent Publication No. 6-92421 discloses a reaction using copper arsenide having an arsenic concentration of 50 ppm or more. It is stated that these tin, antimony, and arsenic cocatalysts can be added to a reaction catalyst made of metal silicon-copper to increase the reaction activity and thus improve the reaction rate of metal silicon.
[0005]
Soviet application specification No. 903,369 dated June 2, 1964 (Inventor ID No. 178,817) uses a promoter selected from zinc, bismuth, phosphorus (200 ppm), arsenic, tin, iron Thus, the composition of dimethyldichlorosilane is improved to 72.1% from the above-mentioned application specification No. 617,569 (Inventor ID No. 122,749). Further, in Soviet application specification No. 1,152,943 (inventor's certificate No. 237,892) dated November 20, 1969, 2500 to 30000 ppm with respect to the contact body in the form of an alloy of phosphorus, copper and silicon. Of phosphorus has been shown to improve the dimethyldichlorosilane composition to 82.3%. Further, US Pat. No. 4,602,101 (Japanese Patent Publication No. 5-51596) shows that 25 to 2500 ppm of a phosphorus compound generating elemental phosphorus in the reactor is added to the contact body. Has been.
[0006]
As described above, many researchers have so far studied the cocatalyst effect of various metals with the aim of improving the direct method of alkylhalosilane, but more effective cocatalysts are desired.
[0007]
The present invention has been made in view of the above circumstances, and provides a production method of an alkylhalosilane by a direct method that increases the production amount of dialkyldihalosilane and reduces unnecessary disilanes in a desired STY. Objective.
[0008]
Means for Solving the Problem and Embodiment of the Invention
The inventors of the present invention have provided an industrially effective direct method for producing alkylhalosilanes, particularly alkylhalosilanes that increase dialkyldihalosilane production and reduce unnecessary disilanes in a desired STY. As a result of diligent studies on the direct method, the use of a reaction catalyst containing boron reduced the production of hydrosilanes and disilanes while maintaining the reaction activity, thus increasing the production of dialkyldihalosilanes. I found out.
[0009]
That is, as described above, various cocatalysts have been conventionally studied, but the boron compound according to the present invention has not been studied so far. For example, Tuset, J. et al. K. , Int. Sem. on Refining and Alloying of Liquid Al & Ferroalloys (1985) Trondheim has a boron concentration of at most 50 ppm in standard metallic silicon, and at most 40 ppm for purified metallic silicon used in direct process reactions. Although it has been shown, there are few direct reaction activities in many reviews, or only a catalyst poison when used in large amounts. However, the boron-containing concentration in the silicon metal actually used varies significantly depending on the country where the meteorite used as a raw material is produced. The boron-containing concentration is originally low and is usually further reduced by the refining process of metallic silicon, and the contact body is substantially free of boron. According to the inventor's analysis, the boron concentration in refined metal powders from South America such as Brazil, China and Australia is 10 ppm or less, and the boron concentration in refined metal silicon powders from Europe such as France and Norway is Many are 10 ppm or more and 30 ppm or less.
[0010]
However, the present inventor has found that boron, which was conventionally considered to be rather a catalyst poison, has an excellent effect as a co-catalyst, and hydrosilanes while maintaining reaction activity by containing boron in the contact body. The inventors have found that production of disilanes can be reduced and the production amount of dialkyldihalosilanes can be increased, and the present invention has been made.
[0011]
Hereinafter, the present invention will be described in more detail. In the method for producing an alkylhalosilane of the present invention, a contact body containing a metal silicon powder and a copper catalyst is charged into a reactor, and a gas containing an alkyl halide is introduced into the reactor. The following general formula R n SiX 4-n
(In the formula, R represents an alkyl group having 1 to 4 carbon atoms, X represents a halogen atom, and n is an integer of 0 to 4.)
In the method for producing silanes represented by the above, boron-containing metal silicon powder and / or boron or a boron compound obtained by adding a boron compound to molten metal silicon in a process including a silicon refining process is added. Thus, the contact body contains 50 to 10,000 ppm of boron element as a promoter .
[0012]
Here, it is preferable to use metal silicon having a purity of silicon of 97% by weight or more, particularly 98% by weight or more. Metal silicon is preferably pulverized and used as a powder having an appropriate particle size. When a fluidized bed reactor or a stirred reactor is used as a reactor, the metal silicon powder has good fluidity. Therefore, the particle size of the metal silicon powder is preferably in the range of 5 to 150 μm as the particle size corresponding to 50% of the weight-based cumulative distribution curve by sieving.
[0013]
As the copper catalyst, various forms such as copper powder, single copper such as stamping copper, or copper compounds such as cuprous oxide, cupric oxide, and copper halide can be used. Various promoters such as zinc, tin, antimony, and arsenic may be used as a co-catalyst, and these may be used alone or as an alloy with copper. For example, metallic zinc, metallic tin, metallic antimony, metallic arsenic powder and their chlorides or oxides, Cu—Zn, Cu—Sn, Cu—Zn—Sn, or copper using Sb, As instead of Zn or Sn Alloys are generally manufacturable. These copper catalysts may be charged alone in the reactor or may be charged as an alloy together with the metal silicon powder. The blending amount of these copper catalysts is preferably 0.1 to 10 parts, particularly 2 to 8 parts in terms of copper amount with respect to 100 parts of metal silicon powder (parts by weight, the same applies hereinafter). Moreover, the compounding quantity of zinc is 0.05-1 part with respect to 100 parts of metal silicon powder, and the compounding quantity of tin, antimony and arsenic is 0.001-0. 05 parts, preferably 0.005 to 0.01 parts.
[0014]
In the present invention, the contact body contains boron element in an amount of 50 to 8000 ppm, more preferably 55 to 6000 ppm, and most preferably 200 to 5000 ppm.
[0015]
In this case, the boron in the contact body is made to have the above concentration by using a metal silicon having a high boron concentration as the metal silicon constituting the contact body. Examples include a method of adding a small amount of boron compound and using metal silicon having a high boron concentration, and a method of adding a boron compound to the reaction catalyst in the direct method reactor.
[0016]
Here, the metal silicon containing boron can be obtained by supplying a boron compound to silicon in a process including a purification step of raw material silicon. In this case, a nonvolatile compound in a step including a silicon refining step is obtained. It can be added to molten metallic silicon. Examples of the boron compound used in this, borax (Na 2 B 4 O 7 · 10H 2 O), (2 O Na 2 B 4 O 7 · 14H) Kahn stone, colemanite (Ca 2 B 6 O 11 · Natural minerals containing boron such as 5H 2 O), M 1 2 B (where M 1 represents Fe, Co, Ni, Mn, Mo, W, Ta, etc.), M 2 3 B 2 (where, M 2 represents Mg, etc.), M 3 B (provided that M 3 represents Fe, Co, Ni, Mn, Cr, Mo, W, Nb, Ta, etc.), M 4 3 B 4 (provided that M 4 Represents Ta, Nb, Mn, Cr, etc.), M 5 B 2 (where M 5 represents Ti, Zr, Hf, V, Nb, Ta, Cr, etc.), M 6 2 B 5 (where M 6 represents Mo, W, etc.), boride, boron nitride, boron carbide, boron phosphide, boron phosphate and the like. In addition, when a boron compound is added under silicon refining conditions, it is also preferable to use silicon containing boron by reduction of the boron compound. Examples of such a boron compound include boric acid, metal borate, boron oxide. Can be mentioned.
[0017]
The boron compound can be used in the vapor phase or immediately volatilizing.
[0018]
Furthermore, as a method of adding boron to silicon, as a raw material for silicon refining, quartz containing boron, coal containing boron, coke containing boron, charcoal containing boron, and eucalyptus containing boron are used. A method can also be mentioned. Alternatively, a method of using a carbon electrode containing boron as an electrode for silicon refining may be employed.
[0019]
On the other hand, when a boron compound is added to the reaction catalyst, boron is, for example, elemental boron such as amorphous boron obtained by reducing an oxide, boron-copper alloy, M 1 2 B, M 2 3 similar to the above. Examples thereof include borides, boron nitride, boron carbide, boron phosphide, and boron phosphate represented by B 2 , M 3 B, M 4 3 B 4 , M 5 B 2 , and M 6 2 B 5 . When these are directly added to the method reactor, it is more preferable to perform a heat dehydration treatment at about 200 ° C. in advance in order to remove a trace amount of water. Further, as the boron compound to be added, vapor-phase or immediately volatile boron halide or the like can be used.
[0020]
Examples of the alkyl halide for reacting with metal silicon to obtain an alkylhalosilane include methyl chloride, ethyl chloride, propyl chloride, methyl bromide, and ethyl bromide. Of these, methyl chloride is industrially most useful, and dimethyldichlorosilane produced using this is widely used as a raw material for many silicone resins. The alkyl halide is heated in advance and gasified, and then sent to the reactor. In this case, the alkyl halide gas may be sent alone or a mixed gas with an inert gas. The amount of the alkyl halide gas fed in is calculated as the amount of fluidization of the contact body together with the inert gas, and is appropriately determined from the diameter of the reactor used and the superficial velocity.
[0021]
In the step of heating the contactor or imparting catalytic activity to the contactor, examples of the inert gas used for fluidizing the contactor in the reactor include nitrogen gas and argon gas. It is preferable to use a gas. The flow rate of the inert gas in these steps may be equal to or higher than the fluidization start speed of the contact body, but is preferably about 5 times the fluidization start speed. If the flow rate of the inert gas is lower than this range, it is difficult to uniformly fluidize the contact body. On the other hand, if the flow rate of the inert gas is higher than this range, the scattering of the metal silicon powder increases, and the inert gas flows. It may be disadvantageous because loss and heat loss increase. Further, it is more preferable to circulate and use an inert gas.
[0022]
After the catalytic activity is imparted to the contact body as described above, an alkyl halide is introduced into the reactor, and an alkyl halosilane is obtained by subjecting the alkyl halide and metal silicon to gas-solid contact reaction according to a conventional method. be able to. In this case, the reaction temperature can be 280 to 300 ° C. In addition, as a reaction method, the method of reacting on a continuous condition in a fluidized bed, the method of reacting with a stirring layer, the method of reacting with a fixed bed, etc. can be mentioned.
[0023]
【Example】
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited to the following Example. In the following examples, parts indicate parts by weight.
[0024]
Examples 1 and 2
A fluidized bed reactor made of carbon steel having a diameter of 50 mm and a height of 300 mm was charged with 100 parts of metal silicon powder and 4 parts of a catalyst mixture made of metal copper powder. Further, boron compounds shown in Table 1 were charged in various addition amounts.
[0025]
Thereafter, methyl chloride was introduced into the reactor at a flow rate of 1.3 cm / sec, the temperature in the reactor was raised to 330 ° C., the reaction was continued, and the reaction was stopped after 6 hours. Table 1 shows cumulative STY from the start of the reaction to the end of the reaction. In addition, the ratio of dimethyldichlorosilane, the ratio of methyldichlorosilane, and the ratio of high-boiling products (products having a boiling point higher than 70 ° C. at normal pressure such as disilane in the generated methylchlorosilane) are also shown in the table. 1 are also written as D, H, and R respectively. The above STY has the following meaning.
[0026]
[Expression 1]
Figure 0003729236
[0027]
[Table 1]
Figure 0003729236
[0030]
[Example 3 ]
A carbon steel fluidized bed reactor having a diameter of 50 mm and a height of 300 mm was charged with 100 parts of metal silicon powder containing 74 ppm of boron and 4 parts of a catalyst mixture made of metal copper powder. Table 2 shows the boron concentration in the contact body.
[0031]
Thereafter, methyl chloride was introduced into the reactor at a flow rate of 1.3 cm / sec, the temperature in the reactor was raised to 330 ° C., the reaction was continued, and the reaction was stopped after 6 hours. Table 2 shows cumulative STY, D, H, and R from the start of the reaction to the end of the reaction.
[0032]
[Example 4 ]
A fluidized bed reactor made of carbon steel having a diameter of 50 mm and a height of 300 mm was charged with 100 parts of metal silicon powder containing 148 ppm of boron and 4 parts of a catalyst mixture made of metal copper powder. Table 2 shows the boron concentration in the contact body.
[0033]
Thereafter, methyl chloride was introduced into the reactor at a flow rate of 1.3 cm / sec, the temperature in the reactor was raised to 330 ° C., the reaction was continued, and the reaction was stopped after 6 hours. Table 2 shows cumulative STY, D, H, and R from the start of the reaction to the end of the reaction.
[0034]
[Example 5 ]
A fluidized bed reactor made of carbon steel having a diameter of 50 mm and a height of 300 mm was charged with 100 parts of metal silicon powder containing 2200 ppm of boron and 4 parts of a catalyst mixture made of metal copper powder. Table 2 shows the boron concentration in the contact body.
[0035]
Thereafter, methyl chloride was introduced into the reactor at a flow rate of 1.3 cm / sec, the temperature in the reactor was raised to 330 ° C., the reaction was continued, and the reaction was stopped after 6 hours. Table 2 shows cumulative STY, D, H, and R from the start of the reaction to the end of the reaction.
[0036]
[Comparative Example 1]
A carbon steel fluidized bed reactor having a diameter of 50 mm and a height of 300 mm was charged with 100 parts of metal silicon powder containing 0.032 ppm of boron and 4 parts of a catalyst mixture made of metal copper powder. Table 2 shows the boron concentration in the contact body.
[0037]
Thereafter, methyl chloride was introduced into the reactor at a flow rate of 1.3 cm / sec, the temperature in the reactor was raised to 330 ° C., the reaction was continued, and the reaction was stopped after 6 hours. Table 2 shows cumulative STY, D, H, and R from the start of the reaction to the end of the reaction.
[0038]
[Comparative Example 2]
A carbon steel fluidized bed reactor having a diameter of 50 mm and a height of 300 mm was charged with 100 parts of metallic silicon powder containing 0.50 ppm of boron and 4 parts of a catalyst mixture made of metallic copper powder. Table 2 shows the boron concentration in the contact body.
[0039]
Thereafter, methyl chloride was introduced into the reactor at a flow rate of 1.3 cm / sec, the temperature in the reactor was raised to 330 ° C., the reaction was continued, and the reaction was stopped after 6 hours. Table 2 shows cumulative STY, D, H, and R from the start of the reaction to the end of the reaction.
[0040]
In Examples 3 to 5 and Comparative Examples 1 and 2, boron was added in a predetermined amount using boric acid, a boric acid metal salt (metal is sodium or potassium), and boron oxide. In this case, these boron compounds were added to the electric furnace together with the raw material meteorite, charcoal, wood chips and the like in the refining process of the raw material silicon, and an arc was generated at 1500 ° C. or higher to perform the reduction reaction. Thereafter, the container was transferred, and bubbling with nitrogen and air was performed for 1 hour to 20 hours, separated from oxide slag, and cooled.
[0041]
[Table 2]
Figure 0003729236
[0042]
[Example 6 ]
Metallic copper containing 100 parts of metallic silicon powder containing 7.0 ppm of boron, 3.7 parts of metallic copper powder and 2.0% by weight of boron in a fluidized bed reactor made of carbon steel having a diameter of 50 mm and a height of 300 mm 0.3 parts of powder was charged. Table 3 shows the boron concentration in the contact body.
[0043]
Thereafter, methyl chloride was introduced into the reactor at a flow rate of 1.3 cm / sec, the temperature in the reactor was raised to 330 ° C., the reaction was continued, and the reaction was stopped after 6 hours. Table 3 shows cumulative STY, D, H, and R from the start of the reaction to the end of the reaction.
[0044]
[Example 7 ]
Metallic copper powder containing 100 parts of metallic silicon powder containing 550 ppm of boron, 3.5 parts of metallic copper powder and 2.0% by weight of boron in a fluidized bed reactor made of carbon steel having a diameter of 50 mm and a height of 300 mm 0 .5 parts were charged. Table 3 shows the boron concentration in the contact body.
[0045]
Thereafter, methyl chloride was introduced into the reactor at a flow rate of 1.3 cm / sec, the temperature in the reactor was raised to 330 ° C., the reaction was continued, and the reaction was stopped after 6 hours. Table 3 shows cumulative STY, D, H, and R from the start of the reaction to the end of the reaction.
[0046]
[Example 8 ]
A fluidized bed reactor made of carbon steel having a diameter of 50 mm and a height of 300 mm was charged with 100 parts of metal silicon powder containing 148 ppm of boron, 4.0 parts of metal copper powder, and 1.2 parts of titanium boride. Table 3 shows the boron concentration in the contact body.
[0047]
Thereafter, methyl chloride was introduced into the reactor at a flow rate of 1.3 cm / sec, the temperature in the reactor was raised to 330 ° C., the reaction was continued, and the reaction was stopped after 6 hours. Table 3 shows cumulative STY, D, H, and R from the start of the reaction to the end of the reaction.
[0048]
[Example 9 ]
A fluidized bed reactor made of carbon steel having a diameter of 50 mm and a height of 300 mm was charged with 100 parts of metallic silicon powder containing 550 ppm of boron, 4.0 parts of metallic copper powder, and 0.5 part of zirconium boride. Table 3 shows the boron concentration in the contact body.
[0049]
Thereafter, methyl chloride was introduced into the reactor at a flow rate of 1.3 cm / sec, the temperature in the reactor was raised to 330 ° C., the reaction was continued, and the reaction was stopped after 6 hours. Table 3 shows cumulative STY, D, H, and R from the start of the reaction to the end of the reaction.
[0050]
Example 10
A fluidized bed reactor made of carbon steel having a diameter of 50 mm and a height of 300 mm was charged with 100 parts of metallic silicon powder containing 74 ppm of boron, 4.0 parts of metallic copper powder, and 0.5 part of niobium boride. Table 3 shows the boron concentration in the contact body.
[0051]
Thereafter, methyl chloride was introduced into the reactor at a flow rate of 1.3 cm / sec, the temperature in the reactor was raised to 330 ° C., the reaction was continued, and the reaction was stopped after 6 hours. Table 3 shows cumulative STY, D, H, and R from the start of the reaction to the end of the reaction.
[0052]
Example 11
A fluidized bed reactor made of carbon steel having a diameter of 50 mm and a height of 300 mm was charged with 100 parts of metallic silicon powder containing 148 ppm of boron, 3.5 parts of metallic copper powder, and 1.0 part of tungsten boride. Table 3 shows the boron concentration in the contact body.
[0053]
Thereafter, methyl chloride was introduced into the reactor at a flow rate of 1.3 cm / sec, the temperature in the reactor was raised to 330 ° C., the reaction was continued, and the reaction was stopped after 6 hours. Table 3 shows cumulative STY, D, H, and R from the start of the reaction to the end of the reaction.
[0054]
In Examples 6 to 11 , the metal silicon powder containing 7 to 550 ppm of boron was produced in the same manner as in Examples 3 to 5 . Moreover, the metallic copper powder containing 2.0 wt% boron is mixed with boron and copper powder, heated from room temperature to 1800 to 2200 ° C. over 2 hours in a nitrogen atmosphere, held for 1 hour, and then melted. Manufactured by cooling the body.
[0055]
[Table 3]
Figure 0003729236
[0056]
[Example 12 ]
A carbon steel fluidized bed reactor having a diameter of 50 mm and a height of 300 mm was charged with 100 parts of metal silicon powder containing 7.0 ppm of boron, 4 parts of a catalyst mixture made of metal copper powder, and 0.2 part of boron nitride. . Table 4 shows the boron concentration in the contact body.
[0057]
Thereafter, methyl chloride was introduced into the reactor at a flow rate of 1.3 cm / sec, the temperature in the reactor was raised to 330 ° C., the reaction was continued, and the reaction was stopped after 6 hours. Table 4 shows cumulative STY, D, H, and R from the start of the reaction to the end of the reaction.
[0058]
[Example 13 ]
A carbon steel fluidized bed reactor having a diameter of 50 mm and a height of 300 mm was charged with 100 parts of metal silicon powder containing 7.0 ppm of boron, 4 parts of a catalyst mixture made of metal copper powder, and 0.7 part of boron nitride. . Table 4 shows the boron concentration in the contact body.
[0059]
Thereafter, methyl chloride was introduced into the reactor at a flow rate of 1.3 cm / sec, the temperature in the reactor was raised to 330 ° C., the reaction was continued, and the reaction was stopped after 6 hours. Table 4 shows cumulative STY, D, H, and R from the start of the reaction to the end of the reaction.
[0060]
[Example 14 ]
A carbon steel fluidized bed reactor having a diameter of 50 mm and a height of 300 mm was charged with 100 parts of metal silicon powder containing 7.0 ppm of boron, 4 parts of a catalyst mixture made of metal copper powder, and 1.4 parts of boron nitride. . Table 4 shows the boron concentration in the contact body.
[0061]
Thereafter, methyl chloride was introduced into the reactor at a flow rate of 1.3 cm / sec, the temperature in the reactor was raised to 330 ° C., the reaction was continued, and the reaction was stopped after 6 hours. Table 4 shows cumulative STY, D, H, and R from the start of the reaction to the end of the reaction.
[0062]
Example 15
A carbon steel fluidized bed reactor having a diameter of 50 mm and a height of 300 mm was charged with 100 parts of metallic silicon powder containing 7.0 ppm of boron, 4 parts of a catalyst mixture made of metallic copper powder, and 0.5 part of boron carbide. . Table 4 shows the boron concentration in the contact body.
[0063]
Thereafter, methyl chloride was introduced into the reactor at a flow rate of 1.3 cm / sec, the temperature in the reactor was raised to 330 ° C., the reaction was continued, and the reaction was stopped after 6 hours. Table 4 shows cumulative STY, D, H, and R from the start of the reaction to the end of the reaction.
[0064]
Example 16
A carbon steel fluidized bed reactor having a diameter of 50 mm and a height of 300 mm was charged with 100 parts of metallic silicon powder containing 78 ppm of boron, 4 parts of a catalyst mixture made of metallic copper powder, and 3.0 parts of boron metaphosphate. Table 4 shows the boron concentration in the contact body.
[0065]
Thereafter, methyl chloride was introduced into the reactor at a flow rate of 1.3 cm / sec, the temperature in the reactor was raised to 330 ° C., the reaction was continued, and the reaction was stopped after 6 hours. Table 4 shows cumulative STY, D, H, and R from the start of the reaction to the end of the reaction.
[0066]
[Table 4]
Figure 0003729236
[0067]
【The invention's effect】
If boron is added to the conventional reaction catalyst according to the present invention, the production amount of dialkyldihalosilane is increased in a desired STY by a cheaper method compared to the conventional method, and unnecessary hydrosilanes, disilane It is possible to improve the productivity of the production method of the alkylhalosilane by the direct method by reducing the number of the kinds.

Claims (2)

金属珪素粉末と銅触媒とを含む触体を反応器に仕込み、該反応器にアルキルハライドを含むガスを導入して直接合成法により、下記一般式
nSiX4-n
(但し、式中Rは炭素数1〜4のアルキル基、Xはハロゲン原子を示し、nは0〜4の整数である。)
で示されるシラン類を製造する方法において、珪素精錬工程を含む工程における溶融状態の金属珪素に硼素化合物を添加することによって得られる硼素を含有する金属珪素粉末及び/又は硼素もしくは硼素化合物を添加することにより助触媒として上記触体に50〜10000ppmの硼素元素を含有させたことを特徴とするアルキルハロシランの製造方法。
A contact body containing a metal silicon powder and a copper catalyst is charged into a reactor, a gas containing an alkyl halide is introduced into the reactor, and the following general formula R n SiX 4-n is obtained by a direct synthesis method.
(In the formula, R represents an alkyl group having 1 to 4 carbon atoms, X represents a halogen atom, and n is an integer of 0 to 4).
In the method for producing silanes represented by the above, boron-containing metal silicon powder and / or boron or boron compound obtained by adding a boron compound to molten metal silicon in a process including a silicon refining process is added. Thus, 50 to 10,000 ppm of boron element is contained in the contact body as a co-catalyst .
硼素化合物が、硼素を含有する天然鉱物、金属硼化物、窒化硼素、炭化硼素、燐化硼素、硼素リン酸塩、硼酸、硼酸金属塩、酸化硼素、硼素−銅合金から選ばれることを特徴とする請求項1記載の製造方法。  The boron compound is selected from natural minerals containing boron, metal borides, boron nitride, boron carbide, boron phosphide, boron phosphate, boric acid, metal borate, boron oxide, boron-copper alloy. The manufacturing method according to claim 1.
JP19506698A 1997-06-27 1998-06-25 Method for producing alkylhalosilane Expired - Fee Related JP3729236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19506698A JP3729236B2 (en) 1997-06-27 1998-06-25 Method for producing alkylhalosilane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-187574 1997-06-27
JP18757497 1997-06-27
JP19506698A JP3729236B2 (en) 1997-06-27 1998-06-25 Method for producing alkylhalosilane

Publications (2)

Publication Number Publication Date
JPH1171384A JPH1171384A (en) 1999-03-16
JP3729236B2 true JP3729236B2 (en) 2005-12-21

Family

ID=26504445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19506698A Expired - Fee Related JP3729236B2 (en) 1997-06-27 1998-06-25 Method for producing alkylhalosilane

Country Status (1)

Country Link
JP (1) JP3729236B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839938B1 (en) * 2001-11-09 2008-06-20 주식회사 케이씨씨 Catalyst composition for methylchlorosilane synthesis and production of methylchlorosilane using said catalyst
DE102006044372A1 (en) * 2006-09-20 2008-04-03 Wacker Chemie Ag Process for the preparation of methylchlorosilanes

Also Published As

Publication number Publication date
JPH1171384A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
US4762940A (en) Method for preparation of alkylhalosilanes
US4500724A (en) Method for making alkylhalosilanes
JPH0551596B2 (en)
JP3812642B2 (en) Method for producing organohalosilane
EP0812325A1 (en) Method for production of alkylhalosilanes
US7279590B2 (en) Preparation of organohalosilanes
USRE33452E (en) Method for making alkylhalosilanes
JP2003531007A (en) Manufacturing method of contact body
JP2744106B2 (en) Method for producing alkylhalogenosilane
US6025513A (en) Preparation of alkylhalosilanes
JP4570731B2 (en) Method for producing alkylhalosilane
US6288258B1 (en) Preparation of organohalosilanes
US7179933B2 (en) Preparation of organohalosilanes
JP3362619B2 (en) Method for producing alkylhalosilane
JP3729236B2 (en) Method for producing alkylhalosilane
JPH0259590A (en) Production of organic cholorosilane
JPH04305582A (en) Method of increasing yield of methyldichlorosilane
JP3272689B2 (en) Direct synthesis of methylchlorosilane
US5281739A (en) Process for manufacture of alkylhalosilanes
JPH04297483A (en) Method of preparing organohalosilanes
JPH10279584A (en) Production of alkylhalosilane
KR20050075038A (en) Catalytic system and method for the direct synthesis of alkylhalogenosilanes
KR20050085450A (en) Catalytic composition based on copper, phosphorus and alkali metal for the direct synthesis of alkylhalogenosilanes
US6727376B2 (en) Preparation of organohalosilanes
JPH0356492A (en) Method of direct synthesis of organic halohydrosilane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees