JP3728689B2 - Non-lubricated seismic isolation device - Google Patents

Non-lubricated seismic isolation device Download PDF

Info

Publication number
JP3728689B2
JP3728689B2 JP37726498A JP37726498A JP3728689B2 JP 3728689 B2 JP3728689 B2 JP 3728689B2 JP 37726498 A JP37726498 A JP 37726498A JP 37726498 A JP37726498 A JP 37726498A JP 3728689 B2 JP3728689 B2 JP 3728689B2
Authority
JP
Japan
Prior art keywords
shaped
fitting groove
guide rail
sliders
inverted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP37726498A
Other languages
Japanese (ja)
Other versions
JP2000193024A (en
Inventor
良晴 白田
一男 堀切川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP37726498A priority Critical patent/JP3728689B2/en
Publication of JP2000193024A publication Critical patent/JP2000193024A/en
Application granted granted Critical
Publication of JP3728689B2 publication Critical patent/JP3728689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、建物の土台部或は機械器具装置の据え付け部に配置して用いられ、該部に上下方向に間隔をおいて十字クロスさせた軸を配設しその交叉部外面に軸受けを嵌合するとともにその軸受けを軸に沿って或は軸を軸受けに沿って相互にスライドさせることにより,地震による揺れをダンパーのように吸収して建物或は機械器具類の地震による歪形乃至破損を防止する免震装置に関するものである。そして特に,そのスライド機構部に優れた摩擦特性と摩擦振動抑制機能を有するウッドセラミックス等の摩擦体を利用した面接触による摺動機構を採用することによって従来では困難であった軽量建築物や軽量機械器具装置類の免震をも的確にそして経済的に図り得る無潤滑免震装置に係るものである。
【0002】
【従来の技術】
地震の揺れには縦揺れと横揺れとがあるが、建築物は一般に縦揺れに抗し得るように構造的な配慮がなされている。 しかし地震による被害は横揺れに原因する場合が多いとされており、そこに建築物自身の構造的配慮とは別に,地震の揺れを吸収してその被害を少なくする免震装置の設置の必要がある。
従来の免震装置としては、前記軸受けと軸とのスライド機構としてスチールボールや各種金属の合金を利用した転がり摺動機構が一般に用いられていた。
しかしこの場合には、その摩擦体の素材と摺動機構の構造の関係で次のような種々の難点を有している。
即ち,比較的摩擦係数が大きくその変動も大きく不安定で安定した摩擦特性が得られず,また摩擦速度(摺動速度)が増加するにつれて摩擦係数が漸次減少する特性を有し摩擦速度の増加に伴う摩擦振動の抑制機能に優れないため、安定した動作精度が得られず、摺動に大きな動作エネルギーを必要とする。
そして,摩擦変動が大きく不安定であるため,地震の横揺れを受けた当初と受けている最中の摺動機構の揺れスピード(動作速度)が不安定で突然大きく揺れだすこともあり、また,転がり摺動機構で応力を点接触により受ける構造であるため,上下方向の荷重特に上方への引き抜き荷重に弱い性質を有し、それだけ建物への影響従って破損率も大きくなる。
そのため以上の点が原因で,従来の免震装置はビルやマンション等の重量建築物でないとその機能を充分に発揮することができず、その分コスト高となるとともに、軽量住宅(一戸建て住宅)や軽量機械器具類の免震を的確に図ることは困難であった。
また.耐摩耗性や耐蝕性にも優れないため、前記安定した摩擦特性が得られないことと相まって、経年変化による機構の狂いが生じ耐久性上問題がある。
更に,動作に潤滑油を必要とする関係上、その機能が低下するところや損なわれるところでは使用が困難で使用場所や使用条件に制約が伴うとともに、メンテナンスに多大な労力と費用を必要とする。
【0003】
【発明が解決しようとする課題】
そこで本発明は、免震装置の摺動機構の素材と構造に工夫を施すことにより、前記従来装置が有する種々の難点を解消することを課題とする。
即ち,特に,装置のスライド機構部に優れた摩擦特性と摩擦振動抑制機能を有し,無潤滑でも安定した動作精度と高い耐久性が得られるウッドセラミックス等の摩擦体を利用した面接触によるものを用いることによって、従来では困難であった一般住宅等の軽量建築物や軽量機械器具類の免震をも的確に且つ経済的に図り得る無潤滑免震装置の提供を目的とする。
【0004】
【課題を解決するための手段】
本発明は前記の目的を達成するために,次のような手段を講じている。
【0005】
先ず基本的には、建物の土台部或は機械器具装置の据え付け部に上下方向に間隔をおき十字クロスして固定配設され,互いに両側面にV字形切欠摺動面2,2、4,4を対称状に形成せる上部ガイドレール1と下部ガイドレール3と、内部にU字形上部嵌合溝6と逆U字形下部嵌合溝7とを上下方向に間隔をおき十字クロスさせて一体成型するとともに,このU字形上部嵌合溝6と逆U字形下部嵌合溝7とを介して前記上部ガイドレール1と下部ガイドレール3との交叉部外面に摺動可能に挿通嵌合するガイドホルダー5と、前記U字形上部嵌合溝6と逆U字形下部嵌合溝7内に配設されて上部及び下部の各ガイドレール1,3とガイドホルダー5とを面接触により摺動自在に係合せしめる,木質系多孔質炭素材料のウッドセラミックスからなる摩擦体によるスライダーとを具備せしめたことを特徴とする。
【0006】
そして前記上部及び下部の各ガイドレール1,3とガイドホルダー5とを面接触により摺動自在に係合せしめるウッドセラミックスからなる摩擦体によるスライダーとしては、ガイドホルダー5のU字形上部嵌合溝6の下面と逆U字形下部嵌合溝7の上面とに嵌着して配設され,各々上部ガイドレール1の下面と下部ガイドレール3の上面とに摺動自在に接触係合する下面スライダー9及び上面スライダー10と、前記ガイドホルダー5のU字形上部嵌合溝6と逆U字形下部嵌合溝7の両側面に,各々摺動部材12,14に嵌着して配設され上部ガイドレール1両側面のV字形切欠摺動面2,2における下方傾斜面と下部ガイドレール3両側面のV字形切欠摺動面4,4における上方傾斜面とに摺動自在に接触係合する側面スライダー11,13とにより形成し、この各々摺動部材12,14に嵌着して配設された側面スライダー11,13をU字形上部嵌合溝6と逆U字形下部嵌合溝7の両側面に対し取り付けネジ15を介して緊締・弛緩自在に取り付けるとともに、その取り付けネジ15を介した弛緩時に押圧調整ネジ16又はボールプランジャを介して側面スライダー11,13を嵌着した摺動部材12,14を揺動可能に支持せしめてスライダー11,13の上部及び下部ガイドレール1,3のV字形切欠摺動面2,4に対する接触圧力の調整を自在ならしめたものである。
【0007】
また,前記の上部及び下部のガイドレール1,3として、ウッドセラミックスからなる摩擦体によるスライダー9,10,11,13の保有する摩擦特性をより有効に発揮させ,且つ装置の設置環境からの腐食に対する耐蝕性を増大させるためには,SUS304等のステンレス系の特殊鋼を用いる。
【0008】
また同じく,前記の上部及び下部のU字形及び逆U字形嵌合溝6,7内にガイドレール1,3と摺動自在に接触係合するスライダー9,10,11,13を配設せしめたガイドホルダー5として、装置の設置環境からの腐食に対する耐蝕性を増大させ経年変化による狂いを防止するためには、SUS304等のステンレス系の特殊鋼を用いる。
【0009】
更に,前記の上部及び下部ガイドレール1,3とガイドホルダー5との摺動自在な接触係合を図る摩擦体によるスライダー9,10,11,13として、木質系以外の植物の多孔質炭素材料を原材料としウッドセラミックスと同様な製造方法で得られるその他の植物性セラミックスからなる摩擦体によるスライダーを用いる場合もある。
【0010】
【発明の実施の形態】
別紙図面(図1乃至図11)に基づき本発明の実施の形態の一例について説明する。
【0011】
図1は、本発明の実施形態に係る免震装置の平面図、図2はその一部を断面とした正面図、図3は同じく一部を断面とした側面図である。 1は両側面にV字形切欠摺動面2,2を対称形に形成した上部ガイドレール、3はそれと逆さまの状態で配置される下部ガイドレールで、同様に両側面にV字形切欠摺動面4,4を対称形に形成している。 5は、上下方向に間隔をおいて十字形状に交叉して配置される前記上部及び下部ガイドレール1と3の交叉部に後記の嵌合溝6,7を介して摺動可能に嵌合されるガイドホルダーである。
【0012】
ガイドホルダー5内には、U字形上部嵌合溝6と逆U字形下部嵌合溝7とが上下方向に間隔を置いて十字クロスさせた(一方を90度回転させた)状態で一体に形成されている。 ガイドホルダー5の上部嵌合溝6には,上部ガイドレール1が挿通嵌合され、下部嵌合溝7には,下部ガイドレール3が挿通嵌合される。
上部ガイドレール1は、ガイドホルダー5へ嵌合した後,建物の土台部の鉄骨梁Uへ固定され(図2,図4,図9参照)、下部ガイドレール3は、ガイドホルダー5へ嵌合した後,取り付け台8を介して建物土台部の基礎コンクリートCへ固定される(図2乃至図9参照)。
【0013】
ガイドホルダー5のU字形上部嵌合溝6の下面には、上部ガイドレール1下面に摺動自在に面接触により係合する一対の下面スライダー9,9が埋設固定されている。逆U字形下部嵌合溝7の上面にも、下部ガイドレール3上面に摺動自在に面接触により係合する一対の上面スライダー10,10が埋設固定されている。 下面スライダー9と上面スライダー10は共に、上部嵌合溝6と下部嵌合溝7内にαの僅かな距離だけ突出している(図2,図3参照)。
【0014】
ガイドホルダー5のU字形上部嵌合溝6の両側面には、側面スライダー11,11を埋設固定した断面ほぼ逆三角形状の摺動部材12,12が取り付けネジ15,15を介して緊締・弛緩自在に取り付けられている(図4参照)。 側面スライダー11は、下面及び上面スライダー9,10と同様に摺動部材12より僅かな距離だけ外部に突出している。また側面スライダー11,11は、取り付けネジ15,15を弛緩させたときに,押圧調整ネジ(又はボールプランジャ)16,16を介して摺動部材12,12を揺動可能に支持せしめることにより,上部ガイドレール1両側面のV字形切欠摺動面2,2に対する接触圧力が適度に調整されて摺動自在に面接触により係合されるようになっている(図2参照)。
ガイドホルダー5の逆U字形下部嵌合溝7の両側面にも同様に、側面スライダー13,13を埋設固定した断面ほぼ三角形状の摺動部材14,14が、取り付けネジ15,15を介して緊締・弛緩自在に取り付けられている(図示省略)。 側面スライダー13,13は、摺動部材14,14より僅かな距離だけ外部に突出している。また側面スライダー13,13は、取り付けネジ15,15を弛緩させたときに,押圧調整ネジ(又はボールプランジャ)16,16を介して摺動部材14,14を揺動可能に支持せしめることにより,下部ガイドレール3両側面のV字形切欠摺動面4,4に対する接触圧力が適度に調整されて摺動自在に面接触により係合されるようになっている(図3,図5参照)。
【0015】
図4及び図5は、上部及び下部ガイドレール1,3と、ガイドホルダー5と、下面,上面,側面スライダー9,10,11,13との相互関係(組み立てセット状態)を示した説明図である。 先ず図4の如く,取り付けネジ15を緊締して摺動部材12,12をU字形上部嵌合溝6の両側面に密着させる。このとき,側面スライダー11,11と上部ガイドレール1のV字形切欠摺動面2,2との間にはAの間隙が開くように設定してある(逆U字形下部嵌合溝7においても同様の操作を行う)。 従って,ガイドホルダー5の上部嵌合溝6及び下部嵌合溝7内への上部ガイドレール1及び下部ガイドレール3の挿通嵌合は円滑容易に行うことができる。
次に取り付けネジ15,15を緩めて図5で示す如く,ガイドホルダー5にセットした押圧調整ネジ16,16を介して摺動部材14、14を下部ガイドレール3のV字形切欠摺動面4,4に向かって押し込んで程よい程度に接触せしめ、調整ネジ16,16の押し込み操作量の調整により側面スライダー13と下部ガイドレール3のV字形切欠摺動面4,4(この場合上方の傾斜面)との接触圧力を適度に調整する。 すると,下部嵌合溝7両側面と摺動部材14,14との間にはDの間隙が確保されるので、側面スライダー13を取り付けた摺動部材14,14は押圧調整ネジ16,16の先端部を中心としてBの角度だけ自由に揺動可能(フローティング可能)となる(以上の操作は、上部嵌合溝6内における摺動部材12,12においても同様)。 従って上部及び下部ガイドレール1,3から無理な荷重がかかった場合においても、この側面スライダー11,13を有する摺動部材12,14の揺動作用により,上部及び下部ガイドレール1,3と側面スライダー11,13従ってガイドホルダー5とは常に円滑に且つ軽快に面接触による摺動を行うことができる。
【0016】
図9は、前記の上部,下部ガイドレール1,3、ガイドホルダー5、上面,下面,側面スライダー9,10,11,13等からなる免震装置Sの建物の土台部における配設要領を示す概略説明図であり、同図から明らかなように、免震装置Sを建物の鉄骨梁Uと地中に埋設された基礎コンクリートCとの間に、建物の規模,地盤の関係等を考慮して適宜数,適宜位置に配置する。Yは床板、Tは壁面である。
上部ガイドレール1は鉄骨梁Uに固定され、下部ガイドレール3は取り付け台8にボルト17にて固定され、取り付け台8はアンカーボルト18にて基礎コンクリートCに固定される。
【0017】
上記の下面スライダー9,上面スライダー10,側面スライダー11,13は、自己潤滑作用を有する木質系多孔質炭素材料を素材とするウッドセラミックスからなる摩擦体を用いている。 このウッドセラミックスからなる摩擦体は、耐摩耗性,振動抑制機能,耐久性に優れ、軽量で強靭で摩擦抵抗が極めて小さく摩擦変動が安定している等優れた摩擦特性を有している。 実際には特に,木材等の木質系多孔質炭素材料にフェノール樹脂を含浸させた硬質ガラス状炭素を約30%以上含有させ、これを真空炉で約800度C以上の温度にて焼成したものを用いる。
【0018】
上部及び下部のガイドレール1,3並びにガイドホルダー5は、ウッドセラミックスからなる摩擦体によるスライダ−の保有する優れた摩擦特性をより有効に発揮させ,且つ装置の設置環境からの腐食に対する耐蝕性を増大させるために、SUS304等のステンレス系の特殊鋼を用いている。
【0019】
上記のスライダー9,10,11,13としては、ウッドセラミックスからなる摩擦体によるものの他に、木質系以外の植物の多孔質炭素材料,例えば竹,籾殻,米糠等を素材としてウッドセラミックスと同様に炭化焼成して形成されたその他の植物性セラミックスを用いる場合もある。
【0020】
図6乃至図8は、上記本発明実施形態に係る免地装置の地震の横波による動作説明図である。
図6において、上部ガイドレール1に沿ったY軸方向に地震の横波によるE,Fの揺れが生じた場合、基礎コンクリートCに固定した下部ガイドレール3がE,Fの距離だけ動き3a,3bの位置まで移動し、それに伴いガイドホルダー5は上部ガイドレール1に沿って下部ガイドレール3の移動位置まで摺動する。
また,下部ガイドレール3に沿ったX軸方向にG,Hの揺れが生じた場合には、下部ガイドレール3がガイドホルダー5に沿ってG,Hの距離だけ移動する。即ち,地面が地震により揺れた量だけ下部ガイドレール3とガイドホルダー5が或は下部ガイドレール3のみが移動し、揺れる回数だけその移動を繰り返すことになる。
その際建物に固定されている上部ガイドレール1は、微小な揺れは感ずるものの殆ど移動することはなく、建物も殆ど揺れを感じない。
【0021】
図7において、図6で示す状態で,地面Jの地点が地震により斜め左上方Kの地点まで揺れ動いた場合には、下部ガイドレール3が3aの位置まで移動する、即ち下部ガイドレール3は、上部ガイドレール1に対するガイドホルダー5の摺動を介して,Y軸方向にLの距離X軸方向にMの距離移動することとなる。 地面Jの地点が斜め左下方Nの地点まで揺れ動いた場合も同様で、下部ガイドレール3は3bの位置まで移動する。 この場合も、地震の揺れに伴い移動するのは下部ガイドレール3とガイドホルダー5或は下部ガイドレール3のみで、上部ガイドレール1は移動せず,建物は殆ど揺れを感じない。
【0022】
図8において、図6で示す状態で,地面Pの地点が地震により斜め右上方Q,斜め右下方Rの地点まで揺れ動いた場合には、下部ガイドレール3が3a,3bの位置まで移動する。この場合も前記と同様に、地震の揺れに伴い移動するのは下部ガイドレール3とガイドホルダー5或は下部ガイドレール3のみで、上部ガイドレール1は移動せず、建物は殆ど揺れを感じない。
従って,図6乃至図8の動作説明から分かるように、同一平面上で360度あらゆる方向から地震の横波を受けてもそれを充分に吸収し建物に影響を与えることがないものである。
【0023】
図10及び図11は、免震装置のスライド機構部にウッドセラミックスの摩擦体からなるスライダーを利用したすべり軸受けを用いた本発明装置と転がり軸受けを用いた従来装置との摩擦特性の比較実験説明図である。
同図から分かるように、潤滑油を必要とする従来装置では起動時及び運転時を通して摩擦係数が比較的高く,振幅の大きな且つ小刻みな摩擦変動があり安定性に欠けるのに対し、潤滑油を必要としない本発明装置では低摩擦で摩擦変動も小さく安定している。これはウッドセラミックスがそれ自体自己潤滑作用を有し,摩擦係数が極めて小さい摩擦特性を持っているからである。 また,図11から明らかなように、本発明装置では摩擦速度(摺動速度)が増加するにつれて摩擦係数が僅かづつ増加する特性を示しており、そのため従来装置と異なり摺動速度の増加に伴う摩擦振動を抑制する機能にも充分に優れている。
更にウッドセラミックスの材質上、耐摩耗性,耐久性にも優れている。
斯かる低摩擦で摩擦変動が少なく安定している、振動抑制機能に優れるという特性上、小さな動作エネルギーで円滑・安定した軽快な摺動を繰り返し行うことができ、地震の横波の揺れと建物の揺れとの共振現象の発生を防止して建物の揺れを極力小さく押さえることができ、一戸建て住宅のような軽量住宅の免震を的確に図ることができる。
【0024】
以上においては,本発明装置を建物の免震を図る場合の適用について説明してきたが、これに限らず軽量機械器具装置についても適用が可能であり、その場合には本発明装置をその据え付け部に配置して用いる。
【0025】
【発明の効果】
本発明は上記の構成となしたので、上述の従来技術の諸難点を解消し、次のような特有の効果を奏する。
【0026】
請求項1乃至4に係る発明においては、建物の土台部又は機械器具装置の据え付け部に上下方向に間隔をおいて十字クロスさせて固定配設した上部及び下部ガイドレールの交叉部外面に,内部にU字形上部嵌合溝と逆U字形下部嵌合溝を上下方向に間隔をおいて十字クロスさせて一体成型したガイドホルダーをその嵌合溝を介して摺動可能に嵌合し,この上部及び下部ガイドレールとガイドホルダーとをウッドセラミックスからなる摩擦体によるスライダーを介した面接触により摺動自在に係合せしめたので、そのスライダーの低摩擦で,摩擦変動が少なく安定し,振動抑制機能に優れるという摩擦特性を充分に利用することにより、地震の横波による揺れをスライド機構部で的確に吸収し、建物や機械器具装置類の免震を確実に図ることができる。
そして,小さな動作エネルギーでも軽快で安定した摺動を無潤滑で長期に渡って保持することができ、摩擦変動が少なく安定しているため,地震の横ゆれを受けた当初と受けている最中の摺動機構の揺れスピード(動作速度)が変わらずゆったりと安定しており、応力を低摩擦の面接触により受けるため,上下方向の荷重特に上方への引き抜き荷重にも充分に耐えるることができる。 従って特に,従来困難とされていた一戸建て住宅等の軽量住宅や軽量機械器具装置類の免震をも的確に,且つ全体構造が簡潔であるため経済的に図ることができる。
また,上下方向の引き抜き抵抗に強いので、転倒しやすい塔状の建物や風の吹上が作用する建物の免震にも好適である。
【0027】
また同時に、ガイドレールに対するスライダーの特殊な係合配設構造により、装置に過大な外力が加わっても無理なく円滑で安定した摺動動作を行うことができるので、免震を図る上で一層好適である。
即ち,側面スライダー11,13を嵌着した摺動部材12,14は、取り付けネジ15を介してガイドホルダー5のU字形上部嵌合溝6及び逆U字形下部嵌合溝7の両側面に対し緊締・弛緩自在に取り付けられており,そしてその取り付けネジ15を介した上部及び下部の嵌合溝6,7の両側面に対する弛緩時には押圧調整ネジ16(又はボールプランジャ)の押し込み操作量の調整により,摺動部材12,14は上部及び下部の嵌合溝の両側面との間に間隙が確保され押圧調整ネジ16の先端部を中心として適宜角度揺動可能に支持される状態となるので、この摺動部材12,14の揺動作用により側面スライダー11,13の上部及び下部ガイドレール1,3のV字形切欠摺動面2、4に対する接触圧力が適度に自在に調整され、これによって上部及び下部ガイドレール1,3と側面スライダー11,13従ってガイドホルダー5とは常に無理なく円滑で安定且つ軽快な面接触による摺動動作を行うことができる。 そして更に、取り付けネジ15を介して摺動部材12,14を上部及び下部嵌合溝6,7の両側面に緊締して密着せしめたときには、側面スライダー11,13と上部及び下部ガイドレール1,3のV字形切欠摺動面2,4との間に間隙が確保されるので、ガイドホルダー5の上部及び下部嵌合溝6,7への上部及び下部ガイドレール1,3の挿通嵌合即ち装置の組み立てを円滑容易に行うことができる。
【0028】
請求項2及び3に係る発明においては、スライダーの保有する摩擦特性を一層有効に発揮させることができ、且つ耐蝕性が大であるため設置環境を選ばず使用上好適である。
【図面の簡単な説明】
【図1】本発明の実施形態に係る免震装置の平面図である。
【図2】同上の一部を断面とした正面図である。
【図3】同上の一部を断面とした側面図である。
【図4】上部ガイドレールに対するスライダーの装着説明図である。
【図5】下部ガイドレールに対するスライダーの装着説明図である。
【図6】地震の横波の揺れに対する装置の動作説明図である。
【図7】同上の装置の動作説明図である。
【図8】同上の装置の動作説明図である。
【図9】装置の一戸建て住宅への配置要領図である。
【図10】本発明と従来装置のスライド機構部の摩擦特性図である。
【図11】同上の摩擦特性図である。
【符号の説明】
1 上部ガイドレール
2 V形切欠摺動面
3 下部ガイドレ−ル
4 V形切欠摺動面
5 ガイドホルダー
6 U字形上部嵌合溝
7 逆U字形下部嵌合溝
8 取り付け台
9 下面スライダー
10 上面スライダー
11 側面スライダー
12 摺動部材
13 側面スライダー
14 摺動部材
15 取り付けネジ
16 押圧調整ネジ
17 ボルト
18 アンカーボルト
U 鉄骨梁
C 基礎コンクリート
S 免震装置
Y 床板
T 壁面
[0001]
[Technical field to which the invention belongs]
The present invention is used by being placed on a base of a building or an installation part of a machine / equipment device, and a cross-crossed shaft is disposed on the part at an interval in the vertical direction, and a bearing is fitted on the outer surface of the crossing part. And by sliding the bearings along the shaft or sliding the shafts along the bearings, the vibration caused by the earthquake is absorbed like a damper, and the deformation or damage of the building or machinery / equipment due to the earthquake is prevented. It relates to seismic isolation devices to prevent. In particular, by adopting a sliding mechanism by surface contact using a friction material such as wood ceramics that has excellent friction characteristics and friction vibration suppression function in the sliding mechanism part, it has been difficult to achieve light weight buildings and lightweight The present invention relates to a non-lubricated seismic isolation device that is capable of accurately and economically isolating machinery and equipment.
[0002]
[Prior art]
There are two types of shaking of an earthquake: pitching and rolling, but in general, structural considerations are made so that buildings can withstand pitching. However, it is said that the damage caused by earthquakes is often caused by rolling, and apart from the structural considerations of the building itself, it is necessary to install a seismic isolation device that absorbs the shaking of the earthquake and reduces the damage. There is.
As a conventional seismic isolation device, a rolling sliding mechanism using a steel ball or an alloy of various metals is generally used as a sliding mechanism between the bearing and the shaft.
However, in this case, there are the following various problems due to the relationship between the material of the friction body and the structure of the sliding mechanism.
In other words, the friction coefficient is relatively large and the fluctuation is unstable and unstable and stable friction characteristics cannot be obtained, and the friction coefficient gradually decreases as the friction speed (sliding speed) increases. Therefore, stable operation accuracy cannot be obtained and a large amount of operating energy is required for sliding.
And because the frictional fluctuation is large and unstable, the swing speed (operation speed) of the sliding mechanism during and after the earthquake roll may be unstable and suddenly start shaking. Because it is a structure that receives stress by point contact with a rolling sliding mechanism, it has the property of being weak against vertical load, especially upward pulling load, and the effect on the building is accordingly increased, and the damage rate is also increased.
For this reason, conventional seismic isolation devices can only perform their functions if they are not heavy buildings such as buildings and condominiums, which increases the cost and light weight housing (detached housing). And it was difficult to achieve seismic isolation of lightweight machinery and equipment.
Also. Since the wear resistance and the corrosion resistance are not excellent, coupled with the fact that the stable friction characteristic cannot be obtained, there is a problem in durability due to a mechanism malfunction due to secular change.
Furthermore, due to the fact that it requires lubricating oil for operation, it is difficult to use in places where its function deteriorates or is impaired, and there are restrictions on the place of use and conditions of use, and a great deal of labor and cost are required for maintenance. .
[0003]
[Problems to be solved by the invention]
Then, this invention makes it a subject to eliminate the various difficulty which the said conventional apparatus has by devising the raw material and structure of the sliding mechanism of a seismic isolation apparatus.
In particular, the sliding mechanism of the device has excellent friction characteristics and friction vibration suppression function, and is based on surface contact using a friction material such as wood ceramics that can provide stable operation accuracy and high durability even without lubrication. It is an object of the present invention to provide a non-lubricated seismic isolation device that can accurately and economically achieve seismic isolation of lightweight buildings such as ordinary houses and lightweight machinery and equipment, which has been difficult in the past.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention takes the following measures.
[0005]
First of all, it is basically fixed to the base of the building or the installation part of the machine / equipment with a space in the vertical direction and fixed in a cross shape and V-shaped notch sliding surfaces 2, 2, 4, 4 on both sides. The upper guide rail 1 and the lower guide rail 3 are formed symmetrically, and the U-shaped upper fitting groove 6 and the inverted U-shaped lower fitting groove 7 are internally molded by cross-crossing them at an interval in the vertical direction. And a guide holder that is slidably inserted and fitted to the outer surface of the intersection of the upper guide rail 1 and the lower guide rail 3 through the U-shaped upper fitting groove 6 and the inverted U-shaped lower fitting groove 7. 5, and the U-shaped upper fitting groove 6 and the inverted U-shaped lower fitting groove 7 are slidably engaged with the upper and lower guide rails 1, 3 and the guide holder 5 by surface contact. From wood ceramics made of wood based porous carbon material Characterized in that allowed and a slider by friction body that.
[0006]
The U-shaped upper fitting groove 6 of the guide holder 5 is used as a slider made of a friction material made of wood ceramics that slidably engages the upper and lower guide rails 1 and 3 and the guide holder 5 by surface contact. The lower surface slider 9 is fitted on the lower surface of the lower U-shaped lower fitting groove 7 and is slidably contacted with the lower surface of the upper guide rail 1 and the upper surface of the lower guide rail 3, respectively. The upper guide rail is disposed on both side surfaces of the upper slider 10 and the U-shaped upper fitting groove 6 and the inverted U-shaped lower fitting groove 7 of the guide holder 5. 1. A side slider that slidably contacts and engages a downward inclined surface on the V-shaped notch sliding surfaces 2 and 2 on both sides and an upper inclined surface on the V-shaped notch sliding surfaces 4 and 4 on both sides of the lower guide rail 3. 11, 3 and the side sliders 11 and 13 that are fitted and disposed on the sliding members 12 and 14 respectively, on both side surfaces of the U-shaped upper fitting groove 6 and the inverted U-shaped lower fitting groove 7. The sliding members 12 and 14 fitted with the side sliders 11 and 13 are rocked through the pressure adjusting screw 16 or the ball plunger when loosened through the mounting screw 15 and loosely attached via the mounting screw 15. The slider is supported so as to be movable, and the contact pressure with respect to the V-shaped notch sliding surfaces 2 and 4 of the upper and lower guide rails 1 and 3 of the sliders 11 and 13 can be freely adjusted.
[0007]
Further, as the upper and lower guide rails 1 and 3, the friction characteristics possessed by the sliders 9, 10, 11 and 13 by the friction body made of wood ceramics are more effectively exhibited, and corrosion from the installation environment of the apparatus is achieved. In order to increase the corrosion resistance against SUS304, stainless steel special steel such as SUS304 is used.
[0008]
Similarly, sliders 9, 10, 11 and 13 are provided in the upper and lower U-shaped and inverted U-shaped fitting grooves 6 and 7, which are slidably contacted with the guide rails 1 and 3, respectively. As the guide holder 5, stainless steel special steel such as SUS304 is used in order to increase the corrosion resistance against corrosion from the installation environment of the apparatus and to prevent the deviation due to aging.
[0009]
Further, as the sliders 9, 10, 11, and 13 by friction bodies for slidable contact engagement between the upper and lower guide rails 1 and 3 and the guide holder 5, the porous carbon material of plants other than woody materials is used. In some cases, a slider made of a friction body made of other plant ceramics obtained from the same material as that of wood ceramics is used.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An example of an embodiment of the present invention will be described with reference to the attached drawings (FIGS. 1 to 11).
[0011]
FIG. 1 is a plan view of a seismic isolation device according to an embodiment of the present invention, FIG. 2 is a front view with a part thereof in cross section, and FIG. 3 is a side view with a part in cross section. 1 is an upper guide rail in which V-shaped notch sliding surfaces 2 and 2 are formed symmetrically on both sides, and 3 is a lower guide rail arranged upside down. Similarly, V-shaped notch sliding surfaces on both sides 4 and 4 are formed symmetrically. 5 is slidably fitted to the intersections of the upper and lower guide rails 1 and 3 which are arranged in a cross shape at intervals in the vertical direction via fitting grooves 6 and 7 described later. Guide holder.
[0012]
A U-shaped upper fitting groove 6 and an inverted U-shaped lower fitting groove 7 are integrally formed in the guide holder 5 in a state of being cross-crossed at intervals in the vertical direction (one rotated 90 degrees). Has been. The upper guide rail 1 is inserted and fitted into the upper fitting groove 6 of the guide holder 5, and the lower guide rail 3 is inserted and fitted into the lower fitting groove 7.
The upper guide rail 1 is fitted to the guide holder 5 and then fixed to the steel beam U on the base of the building (see FIGS. 2, 4 and 9), and the lower guide rail 3 is fitted to the guide holder 5. After that, it is fixed to the foundation concrete C of the building base through the mounting base 8 (see FIGS. 2 to 9).
[0013]
A pair of lower surface sliders 9 and 9 that are slidably engaged with the lower surface of the upper guide rail 1 by surface contact are embedded and fixed to the lower surface of the U-shaped upper fitting groove 6 of the guide holder 5. A pair of upper surface sliders 10, 10 which are slidably engaged with the upper surface of the lower guide rail 3 by surface contact are also embedded and fixed on the upper surface of the inverted U-shaped lower fitting groove 7. Both the lower surface slider 9 and the upper surface slider 10 protrude into the upper fitting groove 6 and the lower fitting groove 7 by a slight distance α (see FIGS. 2 and 3).
[0014]
On both side surfaces of the U-shaped upper fitting groove 6 of the guide holder 5, sliding members 12, 12 having a substantially inverted triangular cross section with side sliders 11, 11 embedded and fixed are tightened / relaxed via mounting screws 15, 15. It is attached freely (see FIG. 4). The side slider 11 protrudes to the outside by a slight distance from the sliding member 12 in the same manner as the bottom and top sliders 9 and 10. Further, the side sliders 11 and 11 support the sliding members 12 and 12 so as to be swingable via the pressure adjusting screws (or ball plungers) 16 and 16 when the mounting screws 15 and 15 are loosened. The contact pressure with respect to the V-shaped notch sliding surfaces 2 and 2 on both side surfaces of the upper guide rail 1 is appropriately adjusted so as to be slidably engaged by surface contact (see FIG. 2).
Similarly, sliding members 14 and 14 having a substantially triangular cross section in which side sliders 13 and 13 are embedded and fixed are also provided on both side surfaces of the inverted U-shaped lower fitting groove 7 of the guide holder 5 via mounting screws 15 and 15. It is attached so that it can be tightened and loosened (not shown). The side sliders 13 and 13 protrude outward by a slight distance from the sliding members 14 and 14. Further, the side sliders 13 and 13 support the sliding members 14 and 14 so as to be swingable via the pressure adjusting screws (or ball plungers) 16 and 16 when the mounting screws 15 and 15 are loosened. The contact pressure with respect to the V-shaped notch sliding surfaces 4 and 4 on both side surfaces of the lower guide rail 3 is appropriately adjusted so as to be slidably engaged by surface contact (see FIGS. 3 and 5).
[0015]
4 and 5 are explanatory views showing the mutual relationship (assembled set state) between the upper and lower guide rails 1 and 3, the guide holder 5, and the lower, upper, and side sliders 9, 10, 11, and 13. is there. First, as shown in FIG. 4, the mounting screws 15 are tightened so that the sliding members 12, 12 are brought into close contact with both side surfaces of the U-shaped upper fitting groove 6. At this time, a gap A is set between the side sliders 11 and 11 and the V-shaped notch sliding surfaces 2 and 2 of the upper guide rail 1 (also in the inverted U-shaped lower fitting groove 7). Do the same). Accordingly, the insertion and fitting of the upper guide rail 1 and the lower guide rail 3 into the upper fitting groove 6 and the lower fitting groove 7 of the guide holder 5 can be performed smoothly and easily.
Next, the mounting screws 15 and 15 are loosened, and the sliding members 14 and 14 are connected to the V-shaped notch sliding surface 4 of the lower guide rail 3 via the pressure adjusting screws 16 and 16 set on the guide holder 5 as shown in FIG. , 4 are pushed into contact with each other to an appropriate degree, and the adjustment amount of the adjusting screws 16 and 16 is adjusted to adjust the amount of pushing operation of the side slider 13 and the V-shaped notch sliding surfaces 4 and 4 of the lower guide rail 3 (in this case, the upper inclined surface) ) And adjust the contact pressure appropriately. Then, since a gap D is secured between the both side surfaces of the lower fitting groove 7 and the sliding members 14, 14, the sliding members 14, 14 to which the side slider 13 is attached are connected to the press adjusting screws 16, 16. It is possible to freely swing (float) by an angle B around the tip (the above operation is the same for the sliding members 12 and 12 in the upper fitting groove 6). Therefore, even when an excessive load is applied from the upper and lower guide rails 1 and 3, the upper and lower guide rails 1 and 3 and the side surfaces are moved by the swinging action of the sliding members 12 and 14 having the side sliders 11 and 13. The sliders 11, 13 and therefore the guide holder 5 can always slide smoothly and lightly by surface contact.
[0016]
FIG. 9 shows the layout of the seismic isolation device S composed of the upper and lower guide rails 1 and 3, the guide holder 5, the upper and lower surfaces, the side sliders 9, 10, 11, and 13 in the building base. As is clear from the figure, the seismic isolation device S is considered between the steel beam U of the building and the foundation concrete C embedded in the ground, taking into account the size of the building, the relationship of the ground, etc. Arrange the appropriate number and position. Y is a floor board and T is a wall surface.
The upper guide rail 1 is fixed to the steel beam U, the lower guide rail 3 is fixed to the mounting base 8 with bolts 17, and the mounting base 8 is fixed to the foundation concrete C with anchor bolts 18.
[0017]
The lower surface slider 9, the upper surface slider 10, and the side surface sliders 11 and 13 use friction bodies made of wood ceramics made of a wood-based porous carbon material having a self-lubricating action. The friction body made of this wood ceramic has excellent friction characteristics such as excellent wear resistance, vibration suppressing function and durability, light weight, toughness, extremely low frictional resistance and stable fluctuation of friction. Actually, in particular, hard glassy carbon impregnated with phenol resin in woody porous carbon material such as wood is contained at about 30%, and this is baked in a vacuum furnace at a temperature of about 800 ° C or higher. Is used.
[0018]
The upper and lower guide rails 1 and 3 and the guide holder 5 exhibit the frictional properties of the slider made of a friction material made of wood ceramics more effectively, and have corrosion resistance against corrosion from the installation environment of the apparatus. In order to increase, stainless steel special steel such as SUS304 is used.
[0019]
The sliders 9, 10, 11 and 13 are not only those made of a friction material made of wood ceramics, but also are made of a porous carbon material of a plant other than wood, such as bamboo, rice husk, rice bran, etc. Other plant ceramics formed by carbonization firing may be used.
[0020]
6 to 8 are operation explanatory views of the ground-isolated device according to the embodiment of the present invention due to an earthquake transverse wave.
In FIG. 6, when E and F sway due to a seismic transverse wave in the Y-axis direction along the upper guide rail 1, the lower guide rail 3 fixed to the foundation concrete C moves by a distance of E and F 3 a and 3 b. Accordingly, the guide holder 5 slides along the upper guide rail 1 to the movement position of the lower guide rail 3.
When G and H swings in the X-axis direction along the lower guide rail 3, the lower guide rail 3 moves along the guide holder 5 by a distance of G and H. That is, the lower guide rail 3 and the guide holder 5 or only the lower guide rail 3 are moved by the amount that the ground is shaken due to the earthquake, and the movement is repeated as many times as the number of shaking.
At that time, although the upper guide rail 1 fixed to the building feels a slight shaking, it hardly moves and the building hardly feels shaking.
[0021]
In FIG. 7, in the state shown in FIG. 6, when the point of the ground J is swung to the point of the upper left K due to the earthquake, the lower guide rail 3 moves to the position 3 a, that is, the lower guide rail 3 is Through the sliding of the guide holder 5 with respect to the upper guide rail 1, a distance of L in the Y-axis direction and a distance of M in the X-axis direction are moved. The same applies to the case where the point of the ground J is swung to the point of the diagonally lower left N, and the lower guide rail 3 moves to the position 3b. Also in this case, only the lower guide rail 3 and the guide holder 5 or the lower guide rail 3 move with the shaking of the earthquake, and the upper guide rail 1 does not move and the building hardly feels shaking.
[0022]
In FIG. 8, in the state shown in FIG. 6, when the point of the ground P is swung to the point of the diagonally upper right Q and the diagonally lower right R due to the earthquake, the lower guide rail 3 moves to the positions 3a and 3b. In this case as well, as described above, only the lower guide rail 3 and the guide holder 5 or the lower guide rail 3 move along with the shaking of the earthquake, the upper guide rail 1 does not move, and the building hardly feels shaking. .
Therefore, as can be seen from the description of the operation in FIGS. 6 to 8, even if a transverse wave of an earthquake is received from all directions of 360 degrees on the same plane, it is sufficiently absorbed and does not affect the building.
[0023]
FIG. 10 and FIG. 11 are explanations of comparative experiments of friction characteristics between the present invention device using a sliding bearing using a slider made of a wood ceramic friction body in the slide mechanism of the seismic isolation device and a conventional device using a rolling bearing. FIG.
As can be seen from the figure, the conventional equipment that requires lubricating oil has a relatively high coefficient of friction throughout start-up and operation, and there is a large amplitude and small frictional fluctuation, which is not stable. In the device of the present invention that is not required, the friction is low and the friction fluctuation is small and stable. This is because wood ceramics itself has a self-lubricating action and a friction characteristic with a very small friction coefficient. In addition, as is apparent from FIG. 11, the device according to the present invention has a characteristic that the coefficient of friction increases slightly as the friction speed (sliding speed) increases. Therefore, unlike the conventional apparatus, the sliding speed increases. It also has an excellent ability to suppress frictional vibration.
Furthermore, it is excellent in wear resistance and durability due to the wood ceramic material.
Due to the low friction and stable characteristics with little friction fluctuation and excellent vibration suppression function, smooth and stable light and smooth sliding can be performed repeatedly with small operating energy. By preventing the occurrence of resonance phenomenon with shaking, the shaking of the building can be suppressed as much as possible, and the seismic isolation of a lightweight house such as a detached house can be accurately achieved.
[0024]
In the above description, the application of the device of the present invention in the case of seismic isolation of a building has been described. However, the present invention is not limited to this and can also be applied to a lightweight machine tool device. It is arranged and used.
[0025]
【The invention's effect】
Since the present invention has the above-described configuration, it solves the above-mentioned problems of the prior art and has the following specific effects.
[0026]
In the inventions according to claims 1 to 4, on the outer surface of the intersection of the upper and lower guide rails fixedly arranged in a cross shape with a space in the vertical direction at the base of the building or the installation part of the machine / equipment device, A U-shaped upper fitting groove and an inverted U-shaped lower fitting groove are cruciformly crossed at an interval in the vertical direction, and a guide holder is integrally slidably fitted through the fitting groove. And the lower guide rail and guide holder are slidably engaged by surface contact through a slider made of a friction material made of wood ceramics, so the slider has low friction, stable with little friction fluctuation, and vibration suppression function By fully utilizing the frictional properties of being excellent in vibration, it is possible to accurately absorb the shaking caused by the transverse waves of the earthquake with the slide mechanism and to ensure seismic isolation of buildings and machinery / equipment. Kill.
And even with small operating energy, light and stable sliding can be maintained for a long time without lubrication, and it is stable with little friction fluctuation. The swinging speed (operating speed) of the sliding mechanism is stable and stable, and since it receives stress by surface contact with low friction, it can sufficiently withstand vertical load, especially upward pulling load. it can. Therefore, particularly, it is possible to economically achieve seismic isolation of lightweight houses such as single-family houses and lightweight machinery / equipment, which has been considered difficult in the past, and the overall structure is simple.
In addition, because it is resistant to pulling out in the vertical direction, it is also suitable for seismic isolation of tower-like buildings that easily fall over or buildings where wind blows up.
[0027]
At the same time, the special engagement arrangement of the slider with respect to the guide rail enables smooth and stable sliding operation even if excessive external force is applied to the device, making it even more suitable for seismic isolation. It is.
That is, the sliding members 12 and 14 fitted with the side sliders 11 and 13 are attached to both side surfaces of the U-shaped upper fitting groove 6 and the inverted U-shaped lower fitting groove 7 of the guide holder 5 via the mounting screws 15. It is attached so that it can be tightened / relaxed freely, and when the upper and lower fitting grooves 6 and 7 are loosened on both side surfaces via the attachment screw 15, the adjustment amount of the pressing adjustment screw 16 (or ball plunger) is adjusted. The sliding members 12 and 14 are in a state in which a gap is secured between both side surfaces of the upper and lower fitting grooves, and the sliding members 12 and 14 are supported so as to be able to swing at an appropriate angle around the tip of the pressing adjustment screw 16. Due to the swinging action of the sliding members 12 and 14, the contact pressure with respect to the V-shaped notch sliding surfaces 2 and 4 of the upper and lower guide rails 1 and 3 of the side sliders 11 and 13 is appropriately adjusted. It is possible to perform the sliding operation by always reasonably smooth and stable and buoyant surface contact with the upper and lower guide rails 1, 3 and the side slider 11, 13 thus guide holder 5 I. Further, when the sliding members 12 and 14 are tightened and adhered to both side surfaces of the upper and lower fitting grooves 6 and 7 via the mounting screws 15, the side sliders 11 and 13 and the upper and lower guide rails 1 and 1 are attached. Since a gap is ensured between the V-shaped notch sliding surfaces 2 and 4 of FIG. 3, the upper and lower guide rails 1 and 3 are inserted and fitted into the upper and lower fitting grooves 6 and 7 of the guide holder 5. The assembly of the apparatus can be performed smoothly and easily.
[0028]
In the inventions according to claims 2 and 3, the friction characteristics possessed by the slider can be exhibited more effectively and the corrosion resistance is large, so that it is suitable for use regardless of the installation environment.
[Brief description of the drawings]
FIG. 1 is a plan view of a seismic isolation device according to an embodiment of the present invention.
FIG. 2 is a front view, partly in section, of the same as above.
FIG. 3 is a side view with a part in the cross section.
FIG. 4 is an explanatory diagram of mounting a slider on an upper guide rail.
FIG. 5 is an explanatory diagram of mounting a slider on a lower guide rail.
FIG. 6 is a diagram for explaining the operation of the apparatus with respect to the shaking of a transverse wave of an earthquake.
FIG. 7 is an operation explanatory diagram of the apparatus.
FIG. 8 is an operation explanatory diagram of the apparatus.
FIG. 9 is a layout diagram of a device in a detached house.
FIG. 10 is a friction characteristic diagram of the slide mechanism of the present invention and the conventional device.
FIG. 11 is a friction characteristic diagram of the above.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Upper guide rail 2 V-shaped notch sliding surface 3 Lower guide rail 4 V-shaped notched sliding surface 5 Guide holder 6 U-shaped upper fitting groove 7 Reverse U-shaped lower fitting groove 8 Mounting base 9 Lower surface slider 10 Upper surface slider 11 Side Slider 12 Slide Member 13 Side Slider 14 Slide Member 15 Mounting Screw 16 Pressing Adjustment Screw 17 Bolt 18 Anchor Bolt U Steel Beam C Foundation Concrete S Seismic Isolator Y Floor Plate T Wall Surface

Claims (4)

建物の土台部或は機械器具装置の据え付け部に上下方向に間隔をおき十字クロスして固定配設され,互いに両側面にV字形切欠摺動面2,2、4,4を対称状に形成せる上部ガイドレール1と下部ガイドレール3と、内部にU字形上部嵌合溝6と逆U字形下部嵌合溝7とを上下方向に間隔をおき十字クロスさせて一体成型するとともに,このU字形上部嵌合溝6と逆U字形下部嵌合溝7とを介して前記上部ガイドレール1と下部ガイドレール3との交叉部外面に摺動可能に挿通嵌合するガイドホルダー5と、前記U字形上部嵌合溝6と逆U字形下部嵌合溝7内に配設されて上部及び下部の各ガイドレール1,3とガイドホルダー5とを面接触により摺動自在に係合せしめる,木質系多孔質炭素材料のウッドセラミックスからなる摩擦体によるスライダーとを具備しており、 この上部及び下部の各ガイドレール1,3とガイドホルダー5とを面接触により摺動自在に係合せしめるウッドセラミックスからなる摩擦体によるスライダーとしては、ガイドホルダー5のU字形上部嵌合溝6の下面と逆U字形下部嵌合溝7の上面とに嵌着して配設され,各々上部ガイドレール1の下面と下部ガイドレール3の上面とに摺動自在に接触係合する下面スライダー9及び上面スライダー10と、前記ガイドホルダー5のU字形上部嵌合溝6と逆U字形下部嵌合溝7の両側面に,各々摺動部材12,14に嵌着して配設され上部ガイドレール1両側面のV字形切欠摺動面2,2における下方傾斜面と下部ガイドレール3両側面のV字形切欠摺動面4,4における上方傾斜面とに摺動自在に接触係合する側面スライダー11,13とにより形成し、この各々摺動部材12,14に嵌着して配設された側面スライダー11,13をU字形上部嵌合溝6と逆U字形下部嵌合溝7の両側面に対し取り付けネジ15を介して緊締・弛緩自在に取り付けるとともに、その取り付けネジ15を介した弛緩時に押圧調整ネジ16又はボールプランジャを介して側面スライダー11,13を嵌着した摺動部材12,14を揺動可能に支持せしめてスライダー11,13の上部及び下部ガイドレール1,3のV字形切欠摺動面2,4に対する接触圧力の調整を自在ならしめたことを特徴とする無潤滑免震装置。The base of the building or the installation part of the machine / equipment is fixedly placed in a cross shape with a space in the vertical direction, and the V-shaped notch sliding surfaces 2, 2, 4 and 4 are symmetrically formed on both sides. The upper guide rail 1 and the lower guide rail 3 to be formed, and the U-shaped upper fitting groove 6 and the inverted U-shaped lower fitting groove 7 are integrally formed by cross-crossing them at an interval in the vertical direction. A guide holder 5 which is slidably inserted and fitted to the outer surface of the intersection of the upper guide rail 1 and the lower guide rail 3 via an upper fitting groove 6 and an inverted U-shaped lower fitting groove 7; A wood-based porous material that is disposed in the upper fitting groove 6 and the inverted U-shaped lower fitting groove 7 so that the upper and lower guide rails 1, 3 and the guide holder 5 are slidably engaged by surface contact. By friction body made of carbon ceramics As a slider made of a wood ceramic that slidably engages the upper and lower guide rails 1 and 3 and the guide holder 5 by surface contact, a slider of the guide holder 5 is provided. It is fitted and disposed on the lower surface of the U-shaped upper fitting groove 6 and the upper surface of the inverted U-shaped lower fitting groove 7, and is slidable on the lower surface of the upper guide rail 1 and the upper surface of the lower guide rail 3, respectively. The lower surface slider 9 and the upper surface slider 10 that are brought into contact with each other and the U-shaped upper fitting groove 6 and the inverted U-shaped lower fitting groove 7 of the guide holder 5 are fitted to the sliding members 12 and 14 respectively. The upper guide rail 1 is slidable on the lower inclined surface on the V-shaped notch sliding surfaces 2 and 2 on both sides and the upper inclined surface on the V-shaped notch sliding surfaces 4 and 4 on both sides of the lower guide rail 3. Engage with contact The side sliders 11, 13 formed by being fitted to the sliding members 12, 14 are respectively connected to the U-shaped upper fitting groove 6 and the inverted U-shaped lower fitting groove 7. A sliding member in which the side sliders 11 and 13 are fitted to the both side surfaces via attachment screws 15 and the side sliders 11 and 13 via the pressure adjusting screws 16 or ball plungers when loosening via the attachment screws 15. 12 and 14 are swingably supported so that the contact pressure with respect to the V-shaped notch sliding surfaces 2 and 4 of the upper and lower guide rails 1 and 13 of the sliders 11 and 13 can be freely adjusted. Lubrication isolation device. 上部及び下部のガイドレール1,3として、ウッドセラミックスからなる摩擦体によるスライダー9,10,11,13の保有する摩擦特性をより有効に発揮させ,且つ装置の設置環境からの腐食に対する耐蝕性を増大させるべく,SUS304等のステンレス系の特殊鋼を用いたことを特徴とする請求項1記載の無潤滑免震装置。As the upper and lower guide rails 1, 3, the friction characteristics possessed by the sliders 9, 10, 11, 13 by the friction material made of wood ceramics are more effectively exhibited, and the corrosion resistance against corrosion from the installation environment of the apparatus is provided. 2. The non-lubricated seismic isolation device according to claim 1, wherein a stainless steel special steel such as SUS304 is used for the purpose of increase. 上部及び下部のU字形及び逆U字形嵌合溝6,7内にガイドレール1,3と摺動自在に接触係合するスライダー9,10,11,13を配設せしめたガイドホルダー5として、装置の設置環境からの腐食に対する耐蝕性を増大し経年変化による狂いを防止するべく,SUS304等のステンレス系の特殊鋼を用いたことを特徴とする請求項1又は2記載の無潤滑免震装置。As a guide holder 5 in which sliders 9, 10, 11, and 13 slidably contacting and engaging the guide rails 1 and 3 are disposed in the upper and lower U-shaped and inverted U-shaped fitting grooves 6 and 7, 3. The non-lubricated seismic isolation device according to claim 1, wherein a stainless steel special steel such as SUS304 is used in order to increase corrosion resistance against corrosion from the installation environment of the device and to prevent a deviation due to secular change. . 上部及び下部ガイドレール1,3とガイドホルダー5との摺動自在な接触係合を図る摩擦体によるスライダー9,10,11,13として、木質系以外の植物の多孔質炭素材料を原材料としウッドセラミックスと同様な製造方法で得られるその他の植物性セラミックスからなる摩擦体によるスライダーを用いたことを特徴とする請求項1,2又は3記載の無潤滑免震装置。As the sliders 9, 10, 11 and 13 by friction bodies for slidable contact engagement between the upper and lower guide rails 1 and 3 and the guide holder 5, a porous carbon material of a plant other than wood is used as a raw material. 4. The non-lubricated seismic isolation device according to claim 1, 2 or 3, wherein a slider made of a friction body made of other vegetable ceramics obtained by a manufacturing method similar to ceramics is used.
JP37726498A 1998-12-31 1998-12-31 Non-lubricated seismic isolation device Expired - Lifetime JP3728689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37726498A JP3728689B2 (en) 1998-12-31 1998-12-31 Non-lubricated seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37726498A JP3728689B2 (en) 1998-12-31 1998-12-31 Non-lubricated seismic isolation device

Publications (2)

Publication Number Publication Date
JP2000193024A JP2000193024A (en) 2000-07-14
JP3728689B2 true JP3728689B2 (en) 2005-12-21

Family

ID=18508533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37726498A Expired - Lifetime JP3728689B2 (en) 1998-12-31 1998-12-31 Non-lubricated seismic isolation device

Country Status (1)

Country Link
JP (1) JP3728689B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103291799A (en) * 2013-06-27 2013-09-11 无锡市宏源弹性器材有限公司 Non-angular-displacement vibration isolation device with steel cable

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513090B2 (en) * 2004-06-23 2010-07-28 康夫 福田 Seismic isolation device
JP5568188B1 (en) * 2014-02-20 2014-08-06 平和精機工業株式会社 Sliding device for photography
JP6799310B2 (en) * 2016-04-04 2020-12-16 李 茂▲どぅん▼ Cross-shaped anti-vibration table

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103291799A (en) * 2013-06-27 2013-09-11 无锡市宏源弹性器材有限公司 Non-angular-displacement vibration isolation device with steel cable
CN103291799B (en) * 2013-06-27 2017-08-25 无锡市宏源弹性器材有限公司 Non-angular-displacevibration vibration isolation device with steel cable

Also Published As

Publication number Publication date
JP2000193024A (en) 2000-07-14

Similar Documents

Publication Publication Date Title
CA2672314C (en) Seismic controller for friction bearing isolated structures
CN101351601B (en) Negative rigid device and vibration isolation structure having the negative rigid device
US3771270A (en) Self-centering horizontally translatable support/hold-down apparatus for building structures and the like
CN110820540B (en) Energy-consuming roller vibration reduction and isolation device
CN212250963U (en) Guide rail-Euler beam type three-dimensional self-adaptive rigidity vibration isolation support
JP3728689B2 (en) Non-lubricated seismic isolation device
CN110805651B (en) Self-adaptive adjusting eddy current damper
CN2849041Y (en) Vibration isolation device of building energy consumption body with damping slide board
CN111963609A (en) Damping-adjustable friction pendulum type cultural relic shock isolation device
CN112177185A (en) Displacement response amplification type friction energy dissipation damper based on gear transmission
CN112031177A (en) Shock insulation limit support
CN215858247U (en) Three-dimensional shock insulation support for high-tech factory building
CN216618360U (en) Closed quasi-zero rigidity low-frequency vibration isolation device with active negative rigidity
JP5601644B2 (en) Seismic isolation device with damping device and seismic isolation structure with damping device
JP3716667B2 (en) Lubricant-free isolator
CN110499836B (en) Self-resetting tuned mass damper based on eddy current and shape memory alloy technology
CN101346557B (en) Negative rigidity device and vibration isolating construction provided with this negative rigidity device
CN210769997U (en) Bearing type motion decoupling three-dimensional vibration isolation support
CN114233787A (en) Closed quasi-zero rigidity low-frequency vibration isolation device with active negative rigidity
CN111306241A (en) Self-adaptive friction energy dissipation and vibration reduction device for bridge structure
CN212271291U (en) Frequency modulation amplification mass damper with self-reset function
CN111779150A (en) Frequency modulation amplification mass damper with self-reset function
CN105133741A (en) Strain increasing device and damper
CN2176461Y (en) Vibration absorber for machines
TWI429830B (en) The v-shape inclined plane seismic isolation bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20011227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term