JP3728575B2 - Switching power supply with low loss snubber circuit - Google Patents

Switching power supply with low loss snubber circuit Download PDF

Info

Publication number
JP3728575B2
JP3728575B2 JP30141697A JP30141697A JP3728575B2 JP 3728575 B2 JP3728575 B2 JP 3728575B2 JP 30141697 A JP30141697 A JP 30141697A JP 30141697 A JP30141697 A JP 30141697A JP 3728575 B2 JP3728575 B2 JP 3728575B2
Authority
JP
Japan
Prior art keywords
switch element
primary winding
power supply
capacitor
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30141697A
Other languages
Japanese (ja)
Other versions
JPH1198832A (en
Inventor
守男 佐藤
Original Assignee
大平電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大平電子株式会社 filed Critical 大平電子株式会社
Priority to JP30141697A priority Critical patent/JP3728575B2/en
Publication of JPH1198832A publication Critical patent/JPH1198832A/en
Application granted granted Critical
Publication of JP3728575B2 publication Critical patent/JP3728575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)

Description

【0001】
【産業上の利用分野】
本発明はスイッチング電源装置に関する。
【0002】
【従来の技術】
従来、スイッチ素子のターンオフ時に生じるサージ電圧を吸収する回路として、図4に示した回路がよく知られている。スイッチ素子14がターンオフすると、リセット巻線11Cに生じる電圧が直流電源19の両端の電圧によってクランプされるため、間接的に1次巻線11Aの電圧に生じるサージ電圧も抑えられる。電圧クランプによって吸収されるエネルギーは、直流電源19に回生されるのでサージ電圧の吸収による損失は小さい。
【0003】
【発明が解決しようとする課題】
図4に示したスナバ回路は、スイッチ素子14のターンオフ時に生じるサージ電圧を吸収することはできるが、1次巻線11Aを流れる電流の速い変化によって生じるノイズを抑えることはできない。そこで、スイッチ素子14の両端にはコンデンサ13が接続されており、これでノイズを減衰させている。スイッチ素子14が高速でターンオフしても、1次巻線11Aを流れる電流はコンデンサ13を充電する時間だけゆっくりゼロになるのでノイズが小さくなる。しかし、スイッチ素子14がターンオンするときに、コンデンサ13に充電された電荷がスイッチ素子14を流れて放電するので電力損失を生じる。
【0004】
そこで本発明は、ノイズを小さくするこのコンデンサの放電による電力損失をゼロにすることによって、サージ電圧とノイズの両方を電力損失を伴わないで減衰する回路を提供することを目的としている。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明はリセット巻線とダイオードの直列回路を、1次巻線とスイッチ素子の直列回路の両端に、ダイオード側の端が1次巻線側の端に、またリセット巻線側の端がスイッチ素子側の端に各々結ばれるように接続し、かつ、リセット巻線とダイオードの接続点と1次巻線とスイッチ素子の接続点の間にコンデンサを接続した。
【0006】
【作用】
本発明において、1次巻線とリセット巻線の極性は、いずれもコンデンサ側端子が一致するようになっており、リセット巻線に発生するフライバック電圧が入力電圧より高くなればダイオードが導通するので、その上限の電圧は入力電圧の値でクランプされ、1次巻線のフライバック電圧もクランプされるので、スイッチ素子に加わるサージ電圧も制限される。
【0007】
説明を容易にするために、1次巻線とリセット巻線の巻数比が1:1であると仮定すると、スイッチ素子がオン状態のときにリセット巻線に生じる電圧は入力電圧に等しくなり、コンデンサのスイッチ素子側の電圧がほぼゼロであることから、反対側は負の入力電圧の値になる。また、スイッチ素子がオフ状態のときに、コンデンサのスイッチ素子側の電圧は入力電圧にフライバック電圧を足した値になり、反対側はフライバック電圧の値になるので、コンデンサ両端の電圧は入力電圧に等しい。すなわち、コンデンサ両端の電圧は理論的には常に一定であることから、スイッチ素子がターンオンする瞬間でもコンデンサの電荷が放電して電力損失を生じることはない。
【0008】
電流不連続モードで発振するフライバックコンバータやデットタイムを持つフォワードコンバータの場合に、オン状態でもオフ状態でもない期間が生じる。この期間においては、コンデンサと1次巻線とリセット巻線の直列回路で共振を起こすが、1次巻線とリセット巻線の極性が互いに反対向きとなるため、インダクタンスが打ち消され、リーケージインダクタンスのみが残り、共振周期はコンデンサの容量とリーケージインダクタンスによって決まる。リーケージインダクタンスは1次巻線のインダクタンスに比べて小さな値なので、コンデンサを十分大きくしても共振周期はそれ程長くならない。
【0009】
スイッチ素子のターンオフ時に1次巻線を流れる電流の立ち下がりの傾きは、コンデンサの容量とリーケージインダクタンスによって決まるので、コンデンサの容量を大きくする程傾きはゆるくなって、ノイズが小さくなる。
【0010】
請求項2記載の発明において、1次巻線にインダクタを直列に接続することに

Figure 0003728575
れる固有インピーダンスが大きくなることから、コンデンサを流れる共振電流のピーク値が下がり、コンデンサの内部直列抵抗成分による電力損失を小さくすることができる。
【0011】
【実施例】
図1は請求項1記載の発明の実施例に係る低損失スナバ回路付きスイッチング電源装置を示す回路図である。
【0012】
図2は請求項2記載の発明の実施例に係る低損失スナバ回路付きスイッチング電源装置を示す回路図である。
【0013】
図3は図1の回路の主要部の波形を示した波形図である。
【0014】
図1の回路において、スイッチングトランジスタ4両端の電圧は図3(A)に示した波形のように変化し、またリセット巻線1C両端の電圧は図3(B)に示した波形のように変化している。コンデンサ3両端の電圧はスイッチングトランス4両端の電圧とリセット巻線1C両端の電圧の差であり、その値は図3(C)に示した波形となる。また、コンデンサ3に流れる電流は図3(D)に示した波形となる。
【0015】
図3(D)に示したように、コンデンサ3にはスイッチングトランジスタ4がターンオフした瞬間に電流が流れ、これがスイッチングトランジスタ4に加わるサージ電圧を吸収すると同時に、1次巻線1Aに流れる電流の変化率を小さくしてノイズの発生を抑えている。また、このターンオフ時にコンデンサに充電された電荷は、その後に生じる共振によって入力側の直流電源9に戻され、スイッチングトランジスタ4がターンオンするときに、このスイッチングトランジスタ4を通って放電することはない。すなわち、電力損失は生じない。
【0016】
図1及び図2に示した回路は、フライバックコンバータに本発明を実施した例を示しているが、フォワードコンバータにおいて実施することもできる。また、自励方式と他励方式のどちらも応用できる。スイッチングトランジスタ4の代わりにMOSFETやIGBT等の他のスイッチ素子を応用することも可能である。
【0017】
【発明の効果】
以上のように、本発明によれば、従来のリセット巻線によるスナバ回路の接続を少し変えることによって、ノイズの発生をより効率よく抑えることができるので応用範囲は広い。
【図面の簡単な説明】
【図1】請求項1記載の発明の実施例に係る低損失スナバ回路付きスイッチング電源装置を示す回路図である。
【図2】請求項2記載の発明の実施例に係る低損失スナバ回路付きスイッチング電源装置を示す回路図である。
【図3】図1の回路図の主要部の波形を示す波形図である。
【図4】従来方式の例を示す回路図である。
【符号の説明】
1、11 トランス
2、12 ダイオード
3、13 コンデンサ
4、14 スイッチ素子
5、15 発振制御回路
6、16 ダイオード
7、17 コンデンサ
8、18 負荷
9、19 直流電源
10 インダクタ
1A、11A 1次巻線
1B、11B 2次巻線
1C、11C リセット巻線[0001]
[Industrial application fields]
The present invention relates to a switching power supply device.
[0002]
[Prior art]
Conventionally, the circuit shown in FIG. 4 is well known as a circuit that absorbs a surge voltage generated when the switch element is turned off. When the switch element 14 is turned off, the voltage generated in the reset winding 11C is clamped by the voltage across the DC power supply 19, so that the surge voltage indirectly generated in the voltage of the primary winding 11A is also suppressed. Since the energy absorbed by the voltage clamp is regenerated by the DC power supply 19, the loss due to absorption of the surge voltage is small.
[0003]
[Problems to be solved by the invention]
The snubber circuit shown in FIG. 4 can absorb the surge voltage generated when the switch element 14 is turned off, but cannot suppress the noise generated by the rapid change in the current flowing through the primary winding 11A. Therefore, a capacitor 13 is connected to both ends of the switch element 14 to attenuate noise. Even if the switch element 14 is turned off at high speed, the current flowing through the primary winding 11A is slowly reduced to zero for the time to charge the capacitor 13, so that the noise is reduced. However, when the switch element 14 is turned on, the electric charge charged in the capacitor 13 flows through the switch element 14 and is discharged, causing power loss.
[0004]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a circuit that attenuates both surge voltage and noise without causing power loss by reducing power loss due to discharge of the capacitor, which reduces noise, to zero.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a reset winding and diode series circuit at both ends of the primary winding and switch element series circuit, the diode end at the primary winding end, and reset. The winding side ends were connected so as to be connected to the switching element side ends, and a capacitor was connected between the connection point of the reset winding and the diode and the connection point of the primary winding and the switching element.
[0006]
[Action]
In the present invention, the polarities of the primary winding and the reset winding are the same at the capacitor side terminals, and the diode becomes conductive when the flyback voltage generated at the reset winding is higher than the input voltage. Therefore, the upper limit voltage is clamped by the value of the input voltage, and the flyback voltage of the primary winding is also clamped, so that the surge voltage applied to the switch element is also limited.
[0007]
For ease of explanation, assuming that the turns ratio of the primary winding and the reset winding is 1: 1, the voltage generated in the reset winding when the switch element is on is equal to the input voltage, Since the voltage on the switch element side of the capacitor is almost zero, the opposite side has a negative input voltage value. Also, when the switch element is off, the voltage on the switch element side of the capacitor is the input voltage plus the flyback voltage, and the other side is the flyback voltage value. Equal to voltage. That is, the voltage across the capacitor is theoretically always constant, so that even when the switch element is turned on, the capacitor charge is not discharged and no power loss occurs.
[0008]
In the case of a flyback converter that oscillates in a current discontinuous mode or a forward converter that has a dead time, a period that is neither an on state nor an off state occurs. During this period, resonance occurs in the series circuit of the capacitor, primary winding, and reset winding, but the polarity of the primary winding and reset winding are opposite to each other, so the inductance is canceled out and only the leakage inductance is The resonance period is determined by the capacitance of the capacitor and the leakage inductance. Since the leakage inductance is a small value compared to the inductance of the primary winding, the resonance period does not become so long even if the capacitor is made sufficiently large.
[0009]
Since the falling slope of the current flowing through the primary winding when the switch element is turned off is determined by the capacitance of the capacitor and the leakage inductance, the slope becomes gentler and the noise becomes smaller as the capacitance of the capacitor is increased.
[0010]
In the invention according to claim 2, the inductor is connected in series to the primary winding.
Figure 0003728575
Since the inherent impedance of the capacitor increases, the peak value of the resonance current flowing through the capacitor decreases, and the power loss due to the internal series resistance component of the capacitor can be reduced.
[0011]
【Example】
FIG. 1 is a circuit diagram showing a switching power supply device with a low loss snubber circuit according to an embodiment of the present invention.
[0012]
FIG. 2 is a circuit diagram showing a switching power supply device with a low loss snubber circuit according to an embodiment of the present invention.
[0013]
FIG. 3 is a waveform diagram showing waveforms of main parts of the circuit of FIG.
[0014]
In the circuit of FIG. 1, the voltage across the switching transistor 4 changes as shown in the waveform shown in FIG. 3A, and the voltage across the reset winding 1C changes as shown in the waveform shown in FIG. are doing. The voltage across the capacitor 3 is the difference between the voltage across the switching transformer 4 and the voltage across the reset winding 1C, and the value has the waveform shown in FIG. Further, the current flowing through the capacitor 3 has a waveform shown in FIG.
[0015]
As shown in FIG. 3D, a current flows through the capacitor 3 at the moment when the switching transistor 4 is turned off. This absorbs a surge voltage applied to the switching transistor 4 and simultaneously changes in the current flowing through the primary winding 1A. The rate is reduced to reduce noise. Further, the electric charge charged in the capacitor at the time of turn-off is returned to the DC power supply 9 on the input side by the resonance that occurs thereafter, and is not discharged through the switching transistor 4 when the switching transistor 4 is turned on. That is, no power loss occurs.
[0016]
The circuit shown in FIGS. 1 and 2 shows an example in which the present invention is implemented in a flyback converter, but it can also be implemented in a forward converter. In addition, both the self-excitation method and the separate excitation method can be applied. Instead of the switching transistor 4, other switching elements such as MOSFET and IGBT can be applied.
[0017]
【The invention's effect】
As described above, according to the present invention, since the generation of noise can be more efficiently suppressed by slightly changing the connection of the snubber circuit by the conventional reset winding, the application range is wide.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a switching power supply device with a low loss snubber circuit according to an embodiment of the present invention.
FIG. 2 is a circuit diagram showing a switching power supply device with a low loss snubber circuit according to an embodiment of the invention as set forth in claim 2;
3 is a waveform diagram showing waveforms of main parts of the circuit diagram of FIG. 1. FIG.
FIG. 4 is a circuit diagram showing an example of a conventional method.
[Explanation of symbols]
1, 11 Transformer 2, 12 Diode 3, 13 Capacitor 4, 14 Switch element 5, 15 Oscillation control circuit 6, 16 Diode 7, 17 Capacitor 8, 18 Load 9, 19 DC power supply 10 Inductor 1A, 11A Primary winding 1B 11B Secondary winding 1C, 11C Reset winding

Claims (2)

1次巻線と2次巻線を有するトランスと、前記トランスの1次巻線に直列に接続されたスイッチ素子と、前記スイッチ素子の制御電極に接続された発振制御回路を備えたスイッチング電源装置において、前記トランスにリセット巻線を巻いて、その一方の端子を前記スイッチ素子の前記1次巻線が接続されている電極と反対側の電極に接続し、別の一方の端子をダイオードを介して前記1次巻線の前記スイッチ素子が接続されている端子と反対側の端子に接続し、前記ダイオードの前記リセット巻線側電極と前記スイッチ素子の前記1次巻線側電極の間にコンデンサを接続し、これによってスイッチ素子がターンオフする際に生じるサージ電圧とノイズを電力損失を伴わないで減衰することを特徴とする低損失スナバ回路付きスイッチング電源装置。A switching power supply comprising a transformer having a primary winding and a secondary winding, a switch element connected in series to the primary winding of the transformer, and an oscillation control circuit connected to a control electrode of the switch element A reset winding is wound around the transformer, one terminal thereof is connected to an electrode on the opposite side of the electrode to which the primary winding of the switch element is connected, and the other terminal is connected via a diode. And a capacitor connected between the reset winding side electrode of the diode and the primary winding side electrode of the switch element. Is used to attenuate the surge voltage and noise generated when the switch element is turned off without any power loss. Apparatus. 前記1次巻線にインダクタを直列に挿入した請求項1記載の低損失スナバ回路付きスイッチング電源装置。The switching power supply with a low loss snubber circuit according to claim 1, wherein an inductor is inserted in series with the primary winding.
JP30141697A 1997-09-25 1997-09-25 Switching power supply with low loss snubber circuit Expired - Fee Related JP3728575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30141697A JP3728575B2 (en) 1997-09-25 1997-09-25 Switching power supply with low loss snubber circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30141697A JP3728575B2 (en) 1997-09-25 1997-09-25 Switching power supply with low loss snubber circuit

Publications (2)

Publication Number Publication Date
JPH1198832A JPH1198832A (en) 1999-04-09
JP3728575B2 true JP3728575B2 (en) 2005-12-21

Family

ID=17896620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30141697A Expired - Fee Related JP3728575B2 (en) 1997-09-25 1997-09-25 Switching power supply with low loss snubber circuit

Country Status (1)

Country Link
JP (1) JP3728575B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070121827A (en) 2005-04-08 2007-12-27 지멘스 악티엔게젤샤프트 외스터라이히 Method for operating a switched mode power supply with the recovery of primary scattered energy
CN104871421B (en) * 2012-12-21 2018-07-13 陈威伦 Mono-pole switch power supply
CN106849669B (en) * 2017-03-10 2021-07-13 广州金升阳科技有限公司 Forward switching power supply
CN107196515A (en) * 2017-06-30 2017-09-22 广州金升阳科技有限公司 A kind of active clamp positive activation type switching power circuit
CN107395018A (en) * 2017-06-30 2017-11-24 广州金升阳科技有限公司 A kind of positive exciting switching voltage regulator
CN107196516B (en) * 2017-06-30 2020-02-14 广州金升阳科技有限公司 Flyback switching power supply circuit
CN116345919B (en) * 2023-05-29 2023-08-04 江苏大秦新能源科技有限公司 Double-circuit flyback DCDC auxiliary power supply with low cross adjustment rate and lossless absorption

Also Published As

Publication number Publication date
JPH1198832A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
JPH0865884A (en) Booster converter using energy regenerating snubber circuit
JP3199423B2 (en) Resonant type forward converter
US5075838A (en) Energy efficient voltage snubber circuit
JP3728575B2 (en) Switching power supply with low loss snubber circuit
US20020000923A1 (en) Switching power supply circuit
JPH01268451A (en) Overvoltage suppressing circuit for semiconductor device
JP3426070B2 (en) Resonant forward converter
JP3124921B2 (en) DC-DC converter
JPH10146048A (en) Chopper type dc-dc converter
JP2002119055A (en) Dc-dc converter
JP2021145528A (en) Snubber circuit and power supply unit
JP4352165B2 (en) Low-loss circuit for partially resonant self-excited switching power supply
JP2021170867A (en) Snubber circuit and power supply device
JP4182306B2 (en) Forward converter with active snubber
JP4725697B2 (en) Switching power supply
JP4304751B2 (en) Ringing choke converter with improved turn-on loss
JP3593837B2 (en) Flyback type DC-DC converter
JP2604668B2 (en) Switching circuit snubber circuit
JPS6137982Y2 (en)
JPH11146648A (en) Dc-dc converter
JP2000184710A (en) Dc-dc converter insulated by transformer
JP2781978B2 (en) Switching power supply
JPH09252576A (en) Sunbber circuit of dc-dc converter
JP2001186759A (en) Dc-dc converter
JP2001169543A (en) Switching power supply unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050916

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees