JP3727746B2 - β-alumina electroformed refractory - Google Patents

β-alumina electroformed refractory Download PDF

Info

Publication number
JP3727746B2
JP3727746B2 JP03697197A JP3697197A JP3727746B2 JP 3727746 B2 JP3727746 B2 JP 3727746B2 JP 03697197 A JP03697197 A JP 03697197A JP 3697197 A JP3697197 A JP 3697197A JP 3727746 B2 JP3727746 B2 JP 3727746B2
Authority
JP
Japan
Prior art keywords
alumina
total
refractory
less
compressive strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03697197A
Other languages
Japanese (ja)
Other versions
JPH10218676A (en
Inventor
茂男 遠藤
公男 平田
省三 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain TM KK
Original Assignee
Saint Gobain TM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain TM KK filed Critical Saint Gobain TM KK
Priority to JP03697197A priority Critical patent/JP3727746B2/en
Publication of JPH10218676A publication Critical patent/JPH10218676A/en
Application granted granted Critical
Publication of JP3727746B2 publication Critical patent/JP3727746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、βアルミナ質電鋳耐火物に関し、特に酸素燃焼によるガラス溶解炉の天井部分に使用するのに適したβアルミナ質電鋳耐火物に関する。
【0002】
【従来の技術】
ガラス溶解炉に使用されている高アルミナ質電鋳耐火物としては、コランダム質、コランダム−βアルミナ質、βアルミナ質の各種耐火物がある。このうち、βアルミナ質電鋳耐火物は、大部分のAlと、NaOあるいはKOと、僅かなSiOよりなり、発達したβアルミナの結晶と少量のマトリックスガラスで構成されている。このため、アルカリ蒸気に対して不活性であり、電鋳耐火物の中で最大の熱衝撃抵抗を持っている。これらの特性から、βアルミナ質電鋳耐火物はガラス溶解炉の上部構造に多く使用されている。
【0003】
【発明が解決しようとする課題】
ガラス溶解炉の上部構造は、天井部分、側壁部分、その他の部分に大きく分けられる。天井部分は、いくつかのブロックを組み合わせてアーチ状に形成して使用されることが多い。アーチの幅が3〜4mと小さければ、ブロックに働く荷重は小さい。しかし、アーチの幅が7〜8mの大きさになると、ブロックに働く荷重も非常に大きくなる。最近では炉が大型化して、アーチの幅が10mを越えるものもある。ここに使用される耐火物はこの荷重に耐えるだけの大きな圧縮強度が必要である。
【0004】
しかし、従来のβアルミナ質電鋳耐火物は、大部分が発達したβアルミナ結晶で構成されているため、圧縮強度が30MPa程度にすぎず、幅の広い天井部分に使用するには強度が不足していた。
【0005】
例えば、幅が6m程度の天井部分に使用するには、耐火物の機械的強度は、50MPa以上の圧縮強度が必要とされている。幅が10mを越える場合は、耐火物の機械的強度は70MPa以上が必要である。
【0006】
また、最近では、ガラスを溶解する燃焼方法が空気燃焼から酸素燃焼に変わりつつある。酸素燃焼では、燃焼に際して酸素を使用するので、燃焼に必要な気体の量が非常に少なくなる。その結果、炉内の雰囲気、特に溶解室の雰囲気が、空気燃焼の場合と大きく異なる。すなわち、酸素燃焼では、炉内雰囲気は溶解ガラスから揮発するアルカリ濃度が極めて高い。アルカリ濃度の高い雰囲気では、これまで以上にアルカリ雰囲気に強い耐火物が必要となる。
【0007】
本発明の目的は、圧縮強度が大きく、アルカリによって侵食されにくいβアルミナ質電鋳耐火物を提供することである。
【0008】
【課題を解決するための手段】
本発明は、請求項1〜のいずれか1項に記載のβアルミナ質電鋳耐火物、たとえば、重量割合で、Al が85〜95%であり、Na OとK Oの合計が5.0〜7.0%であり、MgOが0.4〜1.5%であり、CaOとSrOとBaOの合計が0.4〜2.0%であり、SiO が0.5%以下であり、Fe とTiO の合計が0.1%以下であり、βアルミナであって、かつ発達していない結晶が互いに交錯した組織であることを特徴とするβアルミナ質電鋳耐火物を要旨としている。
【0009】
【発明の実施の形態】
本発明のβアルミナ質電鋳耐火物の組成について説明する。
【0010】
NaOとKOの合計は4.0〜7.5%好ましくは5.0〜7.0%である。これらの組成は、Alと反応してβアルミナ結晶を生成する。NaOとKOの合計が4.0%未満であると、コランダムが多量に存在し、アルカリ濃度の高い雰囲気では、コランダムがβアルミナに変化して組織が崩壊する。他方、7.5%を越えると、余分なNaOやKOが結晶の間に存在して、湿気や水分によって容易に溶け出して組織が脆くなる。なお、NaO又はKOがゼロのこともありうる。
【0011】
CaO,SrO,BaOは結晶を過度に成長させない作用がある。これらにMgOを添加すると、βアルミナ結晶同志を互いに交錯させ、組織を強固にする働きがある。すなわち、CaO,SrO,BaOなどと共にMgOを添加することによって、βアルミナであって、かつ、発達していない結晶が互いに交錯した組織が得られる。
【0012】
図1は、本発明のβアルミナ質電鋳耐火物の結晶構造の一例を示す模式図である。図2は従来のβアルミナ質電鋳耐火物の結晶構造を示す模式図である。従来のものに比較して、本発明のβアルミナ質電鋳耐火物は、結晶が小さくて、より正方形に近い形状である。MgOは0.2〜2.0%、好ましくは0.4〜1.5%であり、CaOとSrOとBaOの合計は0.2〜3.0%、好ましくは0.4〜2.0%である。これよりも少ないと、前述の効果が不十分であり、多すぎると、Alとのスピネルが生成して、アルカリによる侵食を受けて、クリープ変形が大きくなる。なお、CaO,SrO,BaOのいずれかがゼロのこともありうる。
【0013】
SiOはガラス相を形成する組成である。これが多すぎると、クリープ変形が大きくなるので、0.5%以下が好ましい。
【0014】
FeとTiOは合計で0.1%以下がましい。これらの両組成は低融点ガラスを形成する。低融点ガラスは耐熱性を損なうので好ましくない。この他に、これらの両組成は製品を着色する作用がある。
【0015】
コランダム量は5%以下が好ましい。アルカリ濃度の低い雰囲気に晒されると、βアルミナはコランダムに変化して、これが保護層となって侵食を防ぐ。しかし、アルカリ濃度が高い場合、コランダムがβアルミナに変化する。この変化が起こると急激に体積が膨張してクリープ変形が起きる。コランダム量が5%を越えるとクリープ変形が大きくなる。
【0016】
本発明によれば、重量割合で、Alが85〜95%であり、NaOとKOの合計が.0〜7.%であり、MgOが0.1.5%であり、CaOとSrOとBaOの合計が0..0%であり、SiOが0.5%以下であり、FeとTiOの合計が0.1%以下である構成により、比重を大きく変化させることなく、十分な圧縮強度をもち、かつアルカリ濃度の高い雰囲気に晒されても、クリープ変形が小さく、高い耐食性をもつ極めて優れたβアルミナ質電鋳耐火物が得られる。また、マトリックスガラスを数%以下と少なくでき、1800℃以下の温度であれば、圧縮強度が大きく低下することはない。
【0017】
【実施例】
【0018】
本発明の実施例を説明する。
表1に示す所定の組成割合に配合した原料を、アーク炉を用いて溶解し、溶解物を内寸法230×230×230mmのカーボン製鋳型に流し込んで成形した。成形物はアルミナ粉末の中で徐冷した。得られた製品に外観の欠陥はなかった。これらの製品について、種々の特性を測定した。その結果を同じく表1に示す。
【0019】
【表1】

Figure 0003727746
次に試験および測定方法を説明する。
【0020】
圧縮強度は、製品の底コーナー部から50mmの位置で、かつ側面から50mmの位置から一辺が25mmの立方体を切り出して試料とし、加圧速度を毎秒10〜15kg/cmとして測定した。
【0021】
コランダムの量は、圧縮強度測定後の試料を用いて、X線を使った内部標準法により定量した。
【0022】
アルカリ蒸気による侵食試験は次のように行った。
【0023】
内径80mmのルツボに、重量割合で、SiOが54%、BaOが11%、NaOが15%、KOが13%の侵食剤を入れて、上部を径90mm、厚さ20mmの試料で密封し、電気炉にて1580℃で96時間保持した。その後、試料の中央部分の厚みを測定し、厚みの減量を24時間当りに換算してアルカリ侵食率として示す。
【0024】
クリープ特性は、アルカリ蒸気による侵食試験後の試料において、試料の中央部分が軟化変形して膨らんだ膨らみを測定してクリープ変形として示す。
【0025】
亀裂の数は、アルカリ蒸気による侵食試験後の試料において、この試料を二等分に切断し、その切断面に現われた亀裂を数えた。
【0026】
本発明の実施例は、一部請求項1の数値範囲外のものもあるが、いずれも、圧縮強度が50MPa以上であり、特に、実施例5〜8は、圧縮強度が70MPaを越えている。また、コランダムの量は5%を越えることはなかった。
【0027】
比較例1〜7
組成割合が異なる他は前述の実施例と同様に製品を製造し、同様の試験及び測定を行った。その組成割合および結果を表2に示す。
【0028】
【表2】
Figure 0003727746
比較例1は、NaOとKOの合計が少ない例である。アルカリ侵食率、クリープ変形が大きく、亀裂数が多い。この理由は、コランダムの量が多く、コランダムがβアルミナへ転移したためである。
【0029】
比較例2は、CaOとSrOとBaOが含まれていない例である。圧縮強度が小さくて、侵食率が大きい。
【0030】
比較例3は、FeとTiOの合計が多い例である。クリープ変形が大きい。
【0031】
比較例4は、SiOが多い例である。クリープ変形が大きい。
【0032】
比較例5は、MgOが含まれていない例である。圧縮強度が低く。クリープ変形が大きい。
【0033】
比較例6は、NaOとKOの合計が多い例である。圧縮強度が極めて低く、クリープ変形が大きい。
【0034】
比較例7は、CaOとSrOとBaOの合計が多い例である。侵食率およびクリープ変形が大きい。
【0035】
【発明の効果】
本発明のβアルミナ質電鋳耐火物は、圧縮強度を50MPa以上にするのが容易であり、アルカリ濃度が高い雰囲気に晒されてもクリープが小さく、かつアルカリ蒸気による侵食も少ない。従って、本発明のβアルミナ質電鋳耐火物は、アルカリ濃度が高い雰囲気に晒される、大きな荷重が掛かる部分、例えば酸素燃焼によるガラス溶解炉の天井部分、および生バッチの飛散する部分にも使用可能である。
【図面の簡単な説明】
【図1】 本発明のβアルミナ質電鋳耐火物の結晶構造の一例を示す模式図。
【図2】 従来のβアルミナ質電鋳耐火物の結晶構造を示す模式図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a β-alumina electrocast refractory, and more particularly to a β-alumina electrocast refractory suitable for use in a ceiling portion of a glass melting furnace by oxygen combustion.
[0002]
[Prior art]
High alumina electrocast refractories used in glass melting furnaces include corundum, corundum-β alumina, and β alumina refractories. Of these, β-alumina electrocast refractories consist of most Al 2 O 3 , Na 2 O or K 2 O, and a small amount of SiO 2 , and consist of developed β-alumina crystals and a small amount of matrix glass. Has been. For this reason, it is inactive against alkali vapor and has the highest thermal shock resistance among electrocast refractories. Because of these characteristics, β-alumina electrocast refractories are often used in the superstructure of glass melting furnaces.
[0003]
[Problems to be solved by the invention]
The upper structure of the glass melting furnace is roughly divided into a ceiling part, a side wall part, and other parts. The ceiling part is often used by combining several blocks to form an arch shape. If the width of the arch is as small as 3 to 4 m, the load acting on the block is small. However, when the width of the arch becomes 7 to 8 m, the load acting on the block becomes very large. Recently, some furnaces have become larger and the arch width exceeds 10 m. The refractory used here needs to have a high compressive strength to withstand this load.
[0004]
However, the conventional β-alumina electrocast refractories are mostly composed of developed β-alumina crystals, so the compressive strength is only about 30 MPa, and the strength is insufficient for use in wide ceiling parts. Was.
[0005]
For example, in order to use the ceiling portion having a width of about 6 m, the mechanical strength of the refractory is required to be a compressive strength of 50 MPa or more. When the width exceeds 10 m, the mechanical strength of the refractory must be 70 MPa or more.
[0006]
Recently, the combustion method for melting glass is changing from air combustion to oxyfuel combustion. In oxyfuel combustion, oxygen is used for combustion, so that the amount of gas required for combustion becomes very small. As a result, the atmosphere in the furnace, particularly the atmosphere in the melting chamber, is greatly different from that in air combustion. That is, in oxyfuel combustion, the atmosphere in the furnace has a very high alkali concentration volatilized from the molten glass. In an atmosphere with a high alkali concentration, a refractory material that is stronger than before is required.
[0007]
An object of the present invention is to provide a β-alumina electroformed refractory material that has a high compressive strength and is not easily eroded by alkali.
[0008]
[Means for Solving the Problems]
The present invention provides the β-alumina electrocast refractory according to any one of claims 1 to 3 , for example , Al 2 O 3 is 85 to 95% by weight , Na 2 O and K 2 O Is 5.0 to 7.0%, MgO is 0.4 to 1.5%, CaO, SrO, and BaO are 0.4 to 2.0%, and SiO 2 is 0. 0.5% or less, the total of Fe 2 O 3 and TiO 2 being 0.1% or less, β-alumina, and a structure in which undeveloped crystals are interlaced with each other The main point is alumina electrocast refractories .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The composition of the β-alumina electrocast refractory of the present invention will be described.
[0010]
The total of Na 2 O and K 2 O is 4.0 to 7.5% , preferably 5.0 to 7.0%. These compositions react with Al 2 O 3 to produce β alumina crystals. When the total of Na 2 O and K 2 O is less than 4.0%, a large amount of corundum is present, and in an atmosphere having a high alkali concentration, corundum is changed to β-alumina and the structure is collapsed. On the other hand, if it exceeds 7.5%, excess Na 2 O and K 2 O are present between the crystals, and are easily dissolved by moisture and moisture, and the structure becomes brittle. Note that Na 2 O or K 2 O may be zero.
[0011]
CaO, SrO, and BaO have the effect of preventing the crystals from growing excessively. When MgO is added to these, β-alumina crystals are interlaced with each other to strengthen the structure. That is, by adding MgO together with CaO, SrO, BaO, etc., a structure in which crystals that are β-alumina and have not developed are interlaced with each other can be obtained.
[0012]
FIG. 1 is a schematic diagram showing an example of the crystal structure of the β-alumina electrocast refractory of the present invention. FIG. 2 is a schematic diagram showing the crystal structure of a conventional β-alumina electroformed refractory. Compared to the conventional one, the β-alumina electrocast refractory of the present invention has a smaller crystal and a shape closer to a square. MgO is 0.2 to 2.0%, preferably 0.4 to 1.5%, and the total of CaO, SrO and BaO is 0.2 to 3.0%, preferably 0.4 to 2.0. %. If the amount is less than this, the above-described effects are insufficient, and if the amount is too large, spinel with Al 2 O 3 is generated and eroded by alkali, resulting in large creep deformation. Note that any of CaO, SrO, and BaO may be zero.
[0013]
SiO 2 is a composition that forms a glass phase. If this is too much, creep deformation becomes large, so 0.5% or less is preferable.
[0014]
Fe 2 O 3 and TiO 2 0.1% in total less favorable preferable. Both these compositions form a low melting glass. Low melting point glass is not preferable because it impairs heat resistance. In addition, both these compositions have the effect of coloring the product.
[0015]
The corundum amount is preferably 5% or less. When exposed to an atmosphere with a low alkali concentration, β-alumina changes corundum and this acts as a protective layer to prevent erosion. However, when the alkali concentration is high, corundum changes to β alumina. When this change occurs, the volume suddenly expands and creep deformation occurs. When the corundum amount exceeds 5%, the creep deformation increases.
[0016]
According to the present invention, by weight, Al 2 O 3 is 85-95% and the total of Na 2 O and K 2 O is 5 . 0-7. 0 %, and MgO is 0. 4 to 1.5 %, and the total of CaO, SrO, and BaO is 0.00. 4-2. The composition of 0%, SiO 2 of 0.5% or less, and the total of Fe 2 O 3 and TiO 2 of 0.1% or less has sufficient compressive strength without greatly changing the specific gravity. Moreover, even when exposed to an atmosphere with a high alkali concentration, an extremely excellent β-alumina electrocast refractory having low creep deformation and high corrosion resistance can be obtained. Further, the matrix glass can be reduced to a few percent or less, and the compression strength does not significantly decrease at a temperature of 1800 ° C. or less.
[0017]
【Example】
[0018]
Examples of the present invention will be described.
The raw materials blended in the predetermined composition ratios shown in Table 1 were melted using an arc furnace, and the melt was poured into a carbon mold having an inner size of 230 × 230 × 230 mm and molded. The molded product was gradually cooled in alumina powder. The obtained product was free from defects in appearance. Various properties were measured for these products. The results are also shown in Table 1.
[0019]
[Table 1]
Figure 0003727746
Next, the test and measurement method will be described.
[0020]
The compressive strength was measured by cutting a cube with a side of 25 mm from the position of 50 mm from the bottom corner of the product and a side of 50 mm from the side as a sample, and the pressing speed was 10 to 15 kg / cm 2 per second.
[0021]
The amount of corundum was quantified by an internal standard method using X-rays using a sample after measurement of compressive strength.
[0022]
The erosion test with alkali vapor was performed as follows.
[0023]
An crucible having an inner diameter of 80 mm is filled with an erodant containing 54% SiO 2 , 11% BaO, 15% Na 2 O and 13% K 2 O in a weight ratio, and the upper part has a diameter of 90 mm and a thickness of 20 mm. The sample was sealed and held at 1580 ° C. for 96 hours in an electric furnace. Thereafter, the thickness of the central portion of the sample is measured, and the reduction in thickness is converted per 24 hours and indicated as the alkali erosion rate.
[0024]
Creep characteristics are shown as creep deformation in a sample after an erosion test with an alkali vapor by measuring a bulge in which the central portion of the sample is softened and deformed.
[0025]
Regarding the number of cracks, in the sample after the erosion test with alkali vapor, this sample was cut into two equal parts, and the cracks that appeared on the cut surface were counted.
[0026]
Some examples of the present invention are outside the numerical range of claim 1, but all have a compressive strength of 50 MPa or more, and in particular, Examples 5 to 8 have a compressive strength exceeding 70 MPa. . Further, the amount of corundum did not exceed 5%.
[0027]
Comparative Examples 1-7
Except for the different composition ratios, products were manufactured in the same manner as in the previous examples, and the same tests and measurements were performed. The composition ratios and results are shown in Table 2.
[0028]
[Table 2]
Figure 0003727746
Comparative Example 1 is an example in which the total of Na 2 O and K 2 O is small. Alkaline erosion rate and creep deformation are large, and the number of cracks is large. This is because the amount of corundum is large and corundum is transferred to β-alumina.
[0029]
Comparative Example 2 is an example in which CaO, SrO, and BaO are not included. Low compressive strength and high erosion rate.
[0030]
Comparative Example 3 is an example total more of Fe 2 O 3 and TiO 2. Creep deformation is large.
[0031]
Comparative Example 4 is a SiO 2 are many cases. Creep deformation is large.
[0032]
Comparative Example 5 is an example in which MgO is not included. Low compressive strength. Creep deformation is large.
[0033]
Comparative Example 6 is an example in which the total of Na 2 O and K 2 O is large. Compressive strength is extremely low and creep deformation is large.
[0034]
Comparative Example 7 is an example in which the total of CaO, SrO, and BaO is large. High erosion rate and creep deformation.
[0035]
【The invention's effect】
The β-alumina electrocast refractory of the present invention can easily have a compressive strength of 50 MPa or more, has low creep even when exposed to an atmosphere having a high alkali concentration, and is less eroded by alkali vapor. Therefore, the β-alumina electrocast refractory of the present invention is also used in parts that are exposed to a high alkali concentration and subjected to a large load, for example, the ceiling part of a glass melting furnace by oxygen combustion, and the part where raw batches are scattered. Is possible.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of the crystal structure of a β-alumina electrocast refractory according to the present invention.
FIG. 2 is a schematic diagram showing the crystal structure of a conventional β-alumina electroformed refractory.

Claims (3)

重量割合で、Alが85〜95%であり、NaOとKOの合計が5.0〜7.0%であり、MgOが0.4〜1.5%であり、CaOとSrOとBaOの合計が0.4〜2.0%であり、SiOが0.5%以下であり、FeとTiOの合計が0.1%以下であり、βアルミナであって、かつ発達していない結晶が互いに交錯した組織であることを特徴とするβアルミナ質電鋳耐火物。In terms of weight ratio, Al 2 O 3 is 85 to 95%, the total of Na 2 O and K 2 O is 5.0 to 7.0%, MgO is 0.4 to 1.5%, The total of CaO, SrO, and BaO is 0.4 to 2.0%, SiO 2 is 0.5% or less, the total of Fe 2 O 3 and TiO 2 is 0.1% or less, and β alumina A β-alumina electrocast refractory, characterized in that the undeveloped crystals are interwoven structures. 圧縮強度が70MPa以上であることを特徴とする請求項に記載のβアルミナ質電鋳耐火物。The β-alumina electroformed refractory according to claim 1 , wherein the compressive strength is 70 MPa or more. コランダム結晶が5重量%以下であることを特徴とする請求項1または2に記載のβアルミナ質電鋳耐火物。The β-alumina electrocast refractory according to claim 1 or 2 , wherein the corundum crystal is 5% by weight or less.
JP03697197A 1997-02-06 1997-02-06 β-alumina electroformed refractory Expired - Fee Related JP3727746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03697197A JP3727746B2 (en) 1997-02-06 1997-02-06 β-alumina electroformed refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03697197A JP3727746B2 (en) 1997-02-06 1997-02-06 β-alumina electroformed refractory

Publications (2)

Publication Number Publication Date
JPH10218676A JPH10218676A (en) 1998-08-18
JP3727746B2 true JP3727746B2 (en) 2005-12-14

Family

ID=12484642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03697197A Expired - Fee Related JP3727746B2 (en) 1997-02-06 1997-02-06 β-alumina electroformed refractory

Country Status (1)

Country Link
JP (1) JP3727746B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2853897B1 (en) 2003-04-17 2007-05-11 Saint Gobain Ct Recherches REFRACTORY PRODUCT FOR STACKING MEMBER OF A REGENERATOR OF A GLUE FURNACE
JP2012111667A (en) * 2010-11-26 2012-06-14 Nippon Electric Glass Co Ltd Apparatus for manufacturing glass, and method for manufacturing glass using the same
HUE055268T2 (en) 2011-03-11 2021-11-29 Saint Gobain Ceramics & Plastics Inc Refractory object
EP2694452A4 (en) * 2011-03-30 2015-03-11 Saint Gobain Ceramics Refractory object, glass overflow forming block, and process of forming and using the refractory object
CN103492327A (en) 2011-04-13 2014-01-01 圣戈本陶瓷及塑料股份有限公司 Refractory object including beta alumina and processes of making and using the same
KR102037046B1 (en) 2012-01-11 2019-10-29 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Refractory object and process of forming a glass sheet using the refractory object
CN115806439A (en) 2015-02-24 2023-03-17 圣戈本陶瓷及塑料股份有限公司 Refractory article and method of making
FR3032962A1 (en) * 2015-02-24 2016-08-26 Saint-Gobain Centre De Rech Et D'Etudes Europeen REFRACTORY BLOCK AND GLASS FUSION OVEN

Also Published As

Publication number Publication date
JPH10218676A (en) 1998-08-18

Similar Documents

Publication Publication Date Title
KR101205394B1 (en) Reduced sweating AZS product
US7910508B2 (en) Zirconium-base sintered product
EP1288177B1 (en) Porous high alumina cast refractory and method for its production
JP5774135B2 (en) Sintered materials based on doped chromium oxide
JP4944610B2 (en) Green component for manufacturing sintered refractory products with improved bubble generation behavior
JP3727746B2 (en) β-alumina electroformed refractory
JP3667403B2 (en) β-alumina electroformed refractory
JPH0848573A (en) High zirconia melting refractory
JP3524629B2 (en) High zirconia molten refractory
US3132954A (en) Fused cast refractory and method of making
US4435514A (en) Chromia magnesia refractory
JP2004099441A (en) Zirconia-rich fused refractory
TWI733332B (en) High alumina fusion casting refractory and manufacturing method thereof
US4226629A (en) Electrofusion method of producing boron aluminum oxide refractory
JP7274590B2 (en) Refractory products with high content of zirconia
US3540899A (en) Basic fused refractory material
US3416938A (en) Mgo-zr-o2 fused cast refractory
JPH0639483A (en) Ceramic core
JPH07315913A (en) Magnesia refractory brick
JP2003292382A (en) High zirconia fused refractory material
JP2975849B2 (en) Refractories for steelmaking
US3337353A (en) Mgo-b2o3 fused cast refractory
US3230101A (en) Fused cast refractory and method of making
US3600206A (en) Mgo-p2o5 fused cast refractory
JPH022823B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050712

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees