JP3727021B2 - Crevice seal structure of heat exchanger - Google Patents

Crevice seal structure of heat exchanger Download PDF

Info

Publication number
JP3727021B2
JP3727021B2 JP2002149181A JP2002149181A JP3727021B2 JP 3727021 B2 JP3727021 B2 JP 3727021B2 JP 2002149181 A JP2002149181 A JP 2002149181A JP 2002149181 A JP2002149181 A JP 2002149181A JP 3727021 B2 JP3727021 B2 JP 3727021B2
Authority
JP
Japan
Prior art keywords
heat exchanger
combustion gas
comb
case member
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002149181A
Other languages
Japanese (ja)
Other versions
JP2003343924A (en
Inventor
一幸 後藤
晴彦 玉田
卓治 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2002149181A priority Critical patent/JP3727021B2/en
Publication of JP2003343924A publication Critical patent/JP2003343924A/en
Application granted granted Critical
Publication of JP3727021B2 publication Critical patent/JP3727021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱交換装置の隙間シール構造に関し、特に、燃焼ガスが積層型熱交換器をバイパスして外部へ流れるのを防いで、熱交換装置の熱交換効率を向上させることが可能なものに関する。
【0002】
【従来の技術】
従来より、給湯器等の種々の燃焼機器に設けられ、バーナで発生した高温の燃焼ガスにより温水などの流体を加熱する熱交換装置には、種々の型式のものが用いられているが、例えば、内部に流路を有する複数の流路形成板を積層した構造の積層型熱交換器を備えたものがある。この積層型熱交換器は、必要な伝熱面積を確保しつつコンパクトに構成することができ、熱交換装置を小型化することが可能になる。
【0003】
この熱交換装置において、積層型熱交換器を収容するケース部材の内部に導入された燃焼ガスは、複数の流路形成板の流路を流れる流体を加熱しつつそれら流路形成板の間を通って、ケース部材の燃焼ガス排出口から熱交換装置の外部へ排出される。
ここで、熱交換装置の製作上、ケース部材と積層型熱交換器との間に隙間ができるのは避けられないが、この隙間から燃焼ガスが熱交換器をバイパスして燃焼ガス排出口へ流れると、燃焼ガスの一部が流体と熱交換を行わずに外部へ排出されることになるため、熱交換効率がかなり低下することになる。
【0004】
このため、この隙間を何らかの手段により塞ぐ必要があるが、前述のように積層型熱交換器は、複数の流路形成板を積層した構造であるため、これら複数の流路形成板により、積層型熱交換器の外周部には必然的に複数の溝部が形成されることになる。しかしながら、従来の積層型熱交換器では、このような溝部まで塞ぐように構成されておらず、燃焼ガスの一部が溝部から積層型熱交換器をバイパスして外部へ排出されることになり、熱交換効率が低下するという問題があった。
【0005】
この対策として、まず、合成樹脂製のシール部材で溝部を塞ぐことが容易に想到される。また、ケース部材と熱交換装置との間の隙間を塞ぐ閉塞板を設け、前記複数の溝部をも気密状に塞ぐ為に、閉塞板の積層型熱交換器側の先端部分にほぼ櫛歯状に複数の突出片を形成した櫛歯形状部を設け、溝部から燃焼ガスが燃焼ガス排出口へ流れ出るのを防止するように、櫛歯形状部の複数の突出片を夫々複数の溝部内に突出させて複数の溝部を塞ぐように構成することなども考えられる。
【0006】
【発明が解決しようとする課題】
しかし、シール部材で溝部を塞ぐように構成したとき、熱交換装置が燃焼ガス内の水蒸気の潜熱をも回収することが可能な潜熱回収式熱交換装置である場合には、ケース部材内部で水蒸気が凝縮して水が生成されるが、この凝縮水は、燃焼ガス中の窒素酸化物、硫黄酸化物を含むため、酸性を示す。そのため、溝部を塞ぐシール部材は耐腐食性の高い材質のものを使用しなくてはならず、製作コスト的に不利である。
【0007】
また、閉塞板の櫛歯形状部で溝部を塞ぐように構成した場合、複数の溝部の幅は、製作誤差等の要因から必ずしも一定ではなく、複数の溝部内に夫々突出させる複数の突出片の幅を溝部の幅とほぼ同じになるように形成すると、複数の溝部の幅がばらついている場合には、突出片を溝部内に突出させて溝部を塞ぐことができなくなるため、突出片の幅を溝部の幅よりも狭く形成する必要がある。
【0008】
しかし、この場合、溝部を全く塞がない場合に比べれば溝部から流れ出る燃焼ガスの量を突出片により少なく抑えることができるものの、突出片と溝部の間の隙間から燃焼ガスが積層型熱交換器をバイパスして燃焼ガス排出口へ流れるのを完全に防止することはできないため、熱交換効率が低下する。
本発明の目的は、積層型熱交換器の外周部に形成された溝部をほぼ気密状に塞いで燃焼ガスが積層型熱交換器をバイパスして排出されるのを防ぐこと、それにより熱交換効率を向上させること、等である。
【0009】
【課題を解決するための手段】
請求項1の熱交換装置の隙間シール構造は、燃焼ガス導入口と燃焼ガス排出口を有するケース部材と、このケース部材の内部に配設され且つ複数の流路形成板を積層した構造の積層型熱交換器とを備えた熱交換装置において、ケース部材と積層型熱交換器との間を塞ぐ閉塞板を設け、前記閉塞板の積層型熱交換器側に、積層型熱交換器の外周部の複数の溝部内へ突出する複数の突出片を櫛歯状に形成した櫛歯形状部を設け、前記閉塞板は、前記櫛歯形状部の複数の突出片の間に位置する複数のスリットと、これら複数のスリットの延長上の位置にスリットと平行に形成された複数の屈曲部であって交互に反対側へ屈曲された複数の屈曲部とを有することを特徴とするものである。
【0010】
燃焼ガス導入口からケース部材の内部に導入された燃焼ガスは、複数の流路形成板の内部に形成された流路を流れる流体との間で熱交換を行って流体を加熱しながら、複数の流路形成板の間を通過して、燃焼ガス排出口から熱交換装置の外部へ排出される。
ここで、熱交換装置の製作上、ケース部材と積層型熱交換器との間に隙間が生じるのは避けられないが、この隙間から燃焼ガスの一部が積層型熱交換器をバイパスして燃焼ガス排出口に流れるのを防ぐために、ケース部材と積層型熱交換器との間を塞ぐ閉塞板が設けられている。
【0011】
ここで、積層型熱交換器の外周部には、積層した複数の流路形成板により、複数の溝部が形成されており、燃焼ガスの一部が複数の溝部から積層型熱交換器をバイパスして排出されてしまうことになるが、閉塞板の積層型熱交換器側の先端部分に、これら複数の溝部内へ突出する突出片をほぼ櫛歯状に形成した櫛歯形状部を設けたので、これら突出片により複数の溝部も塞ぐことができ、ケース部材と積層型熱交換器との間をほぼ気密状に塞ぐことができる。従って、燃焼ガスが積層型熱交換器をバイパスして燃焼ガス排出口へ流れるのを抑えて、熱交換効率を向上させることができる。
しかも、前記閉塞板は、前記櫛歯形状部の複数の突出片の間に位置する複数のスリットと、これら複数のスリットの延長上の位置にスリットと平行に形成された複数の屈曲部であって交互に反対側へ屈曲された複数の屈曲部とを有するため、スリットと平行に形成された屈曲部により、突出片は流路形成板の積層方向に対して傾斜することができる。つまり、櫛歯形状部を積層方向に伸ばした状態で突出片の積層方向の幅が溝部の幅よりも少し広くなるように形成しておき、櫛歯形状部を屈曲部において屈曲させて突出片を積層方向に対して傾斜させれば、溝部よりも幅の広い突出片を溝部内に突出させて溝部をほぼ完全に塞ぐことができる。
【0012】
請求項2の熱交換装置の隙間シール構造は、燃焼ガス導入口と燃焼ガス排出口を有するケース部材と、このケース部材の内部に配設され且つ複数の流路形成板を積層した構造の積層型熱交換器とを備えた熱交換装置において、ケース部材と積層型熱交換器との間を塞ぐ複数の閉塞板を設け、複数の閉塞板の積層型熱交換器側に、積層型熱交換器の外周部の複数の溝部内へ突出する複数の突出片を櫛歯状に形成した櫛歯形状部を夫々設けたことを特徴とするものである。
【0013】
この熱交換装置のシール構造も、請求項1の発明と同様に、複数の溝部内へ突出する複数の突出片をほぼ櫛歯状に形成した櫛歯形状部で溝部を塞いで、閉塞板によりケース部材と積層型熱交換器との間を塞ぐように構成されている。ここで、製作誤差等の要因により、複数の溝部の幅は必ずしも一定ではないため、それら溝部の幅がばらついても複数の突出片を複数の溝部内に突出させて溝部を塞ぐことができるように、突出片の幅は溝部の幅よりも狭くする必要がある。しかしながら、1枚の閉塞板の櫛歯形状部だけでは、溝部と突出片との間に隙間ができてしまうため、その隙間から燃焼ガスの一部が積層型熱交換器をバイパスして燃焼ガス排出口へ流れることになる。
【0014】
そこで、このような閉塞板を複数設け、これら複数の閉塞板の櫛歯形状部が流路形成板の積層方向にずれるように複数の閉塞板を配設すれば、何れかの櫛歯形状部の突出片と溝部との間に隙間ができても、別の櫛歯形状部の突出片によりその隙間を塞ぐことができるため、溝部から燃焼ガスが積層型熱交換器をバイパスして燃焼ガス排出口へ流れるのをほぼ完全に防止することができる。
【0015】
請求項3の熱交換装置の隙間シール構造は、請求項2の発明において、前記複数の閉塞板は2枚の閉塞板からなり、各溝部において一方の閉塞板の櫛歯形状部の突出片と他方の 閉塞板の櫛歯形状部の突出片とが少なくとも部分的に密着する状態に配設され且つ2枚の閉塞板の2つの櫛歯形状部が前記流路形成板の積層方向にずれた位置に位置するように配設されたことを特徴とするものである。突出片の幅は溝部の幅よりも狭くする必要があるため、ある1つの櫛歯形状部の突出片と溝部との間には隙間が存在することになるが、2枚の閉塞板の2つの櫛歯形状部は流路形成板の積層方向にずれているので、その櫛歯形状部とずれて配設された他の櫛歯形状部の突出片により、前記の隙間を塞ぐことができる。
【0016】
【0017】
請求項の熱交換装置の隙間シール構造は、請求項2又は3の発明において、前記複数の閉塞板のうちの少なくとも1つは、燃焼ガスのガス圧上昇時に弾性変形可能な薄金属板で構成されたことを特徴とするものである。前述のように、ケース部材と積層型熱交換器との間をほぼ気密状に塞ぐことで熱交換効率の向上を図れるが、一方で、ケース部材と積層型熱交換器との間を常に気密状に塞いでしまうと、バーナの出力が変動する場合等、燃焼機器の非定常状態において、ケース部材内で燃焼ガスの圧力変動が増幅することによりバーナの火炎が不安定になり、熱交換装置及びこの熱交換装置を備えた機器自体が共振して振動する、いわゆる振動燃焼という現象が生じる虞がある。
【0018】
そこで、複数の閉塞板のうち、少なくとも1つを薄金属板で構成することで、非定常状態でガス圧が上昇した際には、その上昇したガス圧により薄金属板で構成された閉塞板が弾性変形し、櫛歯形状部が溝部から離隔する。従って、一時的に溝部から燃焼ガスの一部が積層型熱交換器をバイパスして燃焼ガス排出口へ流れることになり、上昇したガス圧が低下するため、ガス圧が大きく変動するのを抑制して振動燃焼の発生を防止することができる。尚、ガス圧が低下すれば、閉塞板は元の状態に戻って櫛歯形状部で溝部を塞ぐ状態となり、ガス圧低下後に引き続いて燃焼ガスが溝部から漏れることはない。
【0019】
請求項の熱交換装置の隙間シール構造は、燃焼ガス導入口と燃焼ガス排出口を有するケース部材と、このケース部材の内部に配設され且つ複数の流路形成板を積層した構造の積層型熱交換器とを備えた熱交換装置において、燃焼ガスが積層型熱交換器をバイパスして燃焼ガス排出口に流れるのを防ぐ為にケース部材と積層型熱交換器との間を塞ぐ閉塞板を設け、前記流路形成板の積層方向に伸長可能なコイルばねであって、前記積層型熱交換器の外周部の複数の溝部をほぼ気密状に塞ぐコイルばねを設け、前記閉塞板の積層型熱交換器側の先端部を前記コイルばねに当接させたことを特徴とするものである。
【0020】
請求項1の発明のように閉塞板に櫛歯形状部を設ける代わりに、ケース部材と積層型熱交換器との間において複数の溝部をほぼ気密状に塞ぐ複数巻のコイルばねを設け、このコイルばねに閉塞板の積層型熱交換器側の先端部を当接させることで、ケース部材と積層型熱交換器との間をほぼ気密状に塞ぐことができる。その他の作用は請求項1と同様であり、説明を省略する。
【0021】
【発明の実施の形態】
本発明の実施の形態について説明する。本実施形態は、給湯器の潜熱回収式熱交換装置(2次熱交換装置)に本発明を適用した一例である。
まず、給湯器1について簡単に説明する。
図1に示すように、給湯器1は、バーナ2と、このバーナ2からの燃焼ガスの顕熱を回収する1次熱交換装置3と、燃焼ガス中の水蒸気の潜熱をも回収可能な2次熱交換装置4と、バーナ2に燃焼空気を供給する送風ファン5等を備えている。バーナ2には燃料ガスを供給するガス供給管10が接続されている。
【0022】
図1、図2に示すように、2次熱交換装置4の給水口32には給水管11が接続され、一方、温水送出口33には1次熱交換装置3と2次熱交換装置4を接続する接続管12が接続されている。給水管11から2次熱交換装置4に供給された水は、2次熱交換装置4で1次熱交換装置3から流れ込む低温の燃焼ガスとの間で熱交換されて加熱され、接続管12を介して1次熱交換装置3へ送られる。1次熱交換装置3に流入した温水は、さらに、バーナ2からの高温の燃焼ガスとの間で熱交換されて加熱されて、出湯管13から台所や風呂などの種々の設備へ給湯される。
【0023】
次に、2次熱交換装置4について詳細に説明する。この2次熱交換装置4は、1次熱交換装置3で温水と熱交換した後の温度の低下した燃焼ガスと、1次熱交換装置3に入る前の水との間で熱交換を行って、燃焼ガス中の水蒸気の潜熱をも回収して熱交換効率を向上させるために設けられるものである。
図3、図4に示すように、2次熱交換装置4は、燃焼ガス導入口20aと燃焼ガス排出口20bを有するケース部材20と、このケース部材20の内部に配設され且つ複数の流路形成板30を積層した構造の積層型熱交換器21(以下、熱交換器21という)とを備えている。
【0024】
ケース部材20の後端部には、1次熱交換装置3から燃焼ガスを導入する為の燃焼ガス導入口20aが形成され、ケース部材20の前端部には、燃焼ガスを外へ排出する為の燃焼ガス排出口20bが形成されている。また、ケース部材20の上端は天板22で塞がれている。ケース部材20の底板23は、ケース部材20の内部で水蒸気が凝縮して生成された水が前方へ流れ落ちるように傾斜しており、底板23の前端部には下方へ延びるドレン排出管24が設けられている。ケース部材20の内部で生成された凝縮水は、燃焼ガス中の窒素酸化物、硫黄酸化物を含んで酸性を示すので、ドレン排出管24に接続された中和装置(図示略)で中和された後に外部へ排出される。
【0025】
図3〜図6に示すように、熱交換器21は、内部に温水が流れる流路36を有する複数の流路形成板30を前後に積層した構造を有する。これら複数の流路形成板30は、銅合金のろう材等を用いて真空炉ろう付けにより接合される。図5に示すように、これら積層された複数の流路形成板30は、左右のエンドプレート31の間に挟まれており、左端の流路形成板30には給水口32と温水送出口33が形成されている。積層された複数の流路形成板30の間には、燃焼ガスが上方から下方へ流れるようになっており、これら流路形成板30の間には燃焼ガス側の伝熱面積を大きくするためのアウターフィン34が介装されている。
【0026】
図5、図6に示すように、流路形成板30は、2枚のプレート部材30a,30bを重ね合わせてこれらプレート部材30a,30bを真空炉ろう付けにより接合したものであり、これら2枚のプレート部材30a,30bの間には、給水口32から水が流入する水流入部35と、この水流入部35から流入した水が図6の矢印方向に流れるように形成されたU字形の流路36と、流路36を通りつつ加熱された温水を温水送出口33へ送り出す温水流出部37とが形成されている。流路36には、温水側の伝熱面積を大きくするためのインナーフィン38が設けられている。
図5、図6に示すように、各流路形成板30は、2枚のプレート部材30a,30bの外周部により形成され外側へ突出するカシメ部39を有し、これら複数の流路形成板30のカシメ部39により、熱交換器21の外周部には複数の溝部40が形成されている。
【0027】
この熱交換器21において、給水口32から導入された水は、各流路形成板30の流路36に分岐してその流路36を通りつつ燃焼ガスとの間の熱交換により加熱された後、再び合流して温水送出口33から1次熱交換装置3へ送られる。
一方、燃焼ガス導入口20aからケース部材20の内部に導入された燃焼ガスは、図4の実線の矢印で示すように、流路36を流れる温水を加熱しつつ積層された流路形成板30の間を上方から下方へ流れ、燃焼ガス排出口20bから外部へ排出される。熱交換器21の上側には、燃焼ガスが熱交換器21をバイパスして燃焼ガス排出口20bへ流れないようにケース部材20と熱交換器21との間を隙間を塞ぐ次述の隙間シール構造50が設けられている。
【0028】
次に、本願特有の隙間シール構造50について説明する。この隙間シール構造50は、熱交換器21とケース部材20との間の隙間を塞いで、図4に点線の矢印で示すように、その隙間を通って燃焼ガスの一部が熱交換器21で温水と熱交換せずに燃焼ガス排出口20bへ流れてしまうのを防止するためのものである。
【0029】
図3、図4に示すように、隙間シール構造50は、燃焼ガスが熱交換器21をバイパスして燃焼ガス排出口20bに流れるのを防ぐ為にケース部材20と熱交換器21との間を塞ぐ前後2枚のSUS304製の閉塞板51,52を有する。前側の閉塞板51は比較的板厚が厚く(例えば、0.5mm)、一方、後側の閉塞板52は、その前端部分が容易に弾性変形可能な薄板(例えば、板厚0.05mm)で構成されている。
【0030】
前側の閉塞板51は、ケース部材20に、熱交換器21に対して左右方向の位置を調節可能に取り付けられ、前方から後方へ垂れ下がるように湾曲した状態でケース部材20と熱交換器21との間の隙間を塞ぐように配設されている。一方、後側の閉塞板52は、後方から前方へ垂れ下がるように湾曲した状態でケース部材20と熱交換器21との間の隙間を塞ぐように配設されている。これら2枚の閉塞板51,52は天板22により熱交換器21側へ押し付けられており、ケース部材20の内部で上下方向の位置がずれることはない。
【0031】
ここで、これら2枚の閉塞板51,52により、ケース部材20と熱交換器21との間の隙間の大部分を塞ぐことができるが、前述のように、熱交換器21の外周部に複数の溝部40が形成されているため、これら複数の溝部40も塞がないと、複数の溝部40から燃焼ガスの一部が燃焼ガス排出口20bへ流れ出ることになる。そのために、図7〜図10に示すように、2枚の閉塞板51,52の熱交換器21側の先端部分には、熱交換器21の外周部の複数の溝部40を2枚の閉塞板51,52によりほぼ気密状に塞ぐ為に、複数の溝部40内へ突出する複数の突出片53a,54aをほぼ櫛歯状に形成した櫛歯形状部53,54が夫々設けられている。前側の閉塞板51の櫛歯形状部53の突出片53aの先端部には、後方へ屈曲した屈曲部53bが形成されている。
【0032】
図8〜図10に示すように、複数の溝部40においては、前側の閉塞板51の突出片53aが溝部40内に突出して熱交換器21の外面部に当接した状態で、後側の閉塞板52の突出片54aが突出片53aの屈曲部53bに少なくとも部分的に密着する状態に配設されている。さらに、2つの櫛歯形状部53,54は左右方向(流路形成板30の積層方向)にずれた位置に位置するように配設されている。例えば、図8に示す平面視にて、前側の閉塞板51の櫛歯形状部53を左側に寄せて配設するとともに、後側の閉塞板52の櫛歯形状部54を右側に寄せて配設すればよい。
【0033】
ここで、複数の溝部40の左右方向の幅は、製作誤差等の要因により、複数の溝部40の幅は必ずしも一定ではないため、それら溝部40の幅がばらついても複数の突出片53a,54aを複数の溝部40内に突出させて溝部40を塞ぐことができるように、これら櫛歯形状部53,54の突出片53a,54aの幅は、溝部40の幅よりもやや狭く形成されている。そのため、図10に示すように、片方の櫛歯形状部53の突出片53aを溝部40内に突出させただけでは、溝部40と突出片53aとの間に左右方向の隙間dが生じるため、この隙間dから燃焼ガスが漏れることになる。しかし、もう一方の突出片54aが、突出片53aに対して左右方向にずれた位置に配設されているため、この突出片54aにより隙間dは塞がれる。
【0034】
尚、前述のように、後側の閉塞板52は薄板で構成されているため、バーナ2の出力が変動した場合等、非定常状態における燃焼ガスのガス圧上昇時には、図9の鎖線で示すように、櫛歯形状部54aが浮き上がるように弾性変形する。すると、突出片54aにより塞がれていた隙間dが瞬間的に開放され、この隙間dを通って燃焼ガスの一部が燃焼ガス排出口20bへ流れる。
【0035】
次に、隙間シール構造50の作用及び効果について説明する。
図4に示すように、燃焼ガス導入口20aから2次熱交換装置4に燃焼ガスが導入されると、2枚の閉塞板51,52によりケース部材20と熱交換器21との間がほぼ塞がれているため、大部分の燃焼ガスは、図4の実線の矢印で示すように、温水を加熱しつつ複数の流路形成板30の間を通って燃焼ガス排出口20bから2次熱交換装置4の外部へ排出される。
【0036】
ここで、熱交換器21の外周部には積層された複数の流路形成板30により溝部40が形成されており、これら複数の溝部40を通って燃焼ガスの一部が熱交換器21をバイパスして燃焼ガス排出口20bへ流れてしまうことになるが、複数の溝部40内には櫛歯形状部53,54の突出片53a,54aが突出しているため、溝部40から燃焼ガスが漏れるのを抑えることができる。
【0037】
また、突出片53a,54aの左右方向の幅は溝部40の幅よりも狭く、例えば、図10に示すように、突出片53aが溝部40内に挿入された状態では、突出片53aと溝部40との間に隙間dが生じるが、他方の突出片54aによりこの隙間dを塞ぐことができるので、2つの櫛歯形状部53,54により複数の溝部40をほぼ気密状に塞ぐことができる。従って、燃焼ガスが熱交換器21で熱交換されずに燃焼ガス排出口20bから排出されるのを極力抑えて、熱交換効率を向上させることができる。
【0038】
また、後側の閉塞板52は、燃焼ガスのガス圧上昇時に弾性変形可能な薄板で構成されているため、バーナ2の出力が変動した場合等、非定常状態において燃焼ガスのガス圧が上昇したときに、そのガス圧の上昇により、図9の鎖線で示すように、櫛歯形状部54が浮き上がるように弾性変形し、突出片54aにより塞がれていた隙間dが瞬間的に開放される。
【0039】
従って、隙間dを通って燃焼ガスの一部が燃焼ガス排出口20bへ流れてガス圧が低下するため、ガス圧の変動が増幅するのを抑制し、バーナ2の火炎が不安定になって給湯器1に振動燃焼が生じるのを防止することができる。
尚、燃焼ガスが隙間dを瞬間的に流れるとすぐにガス圧が低下するため、弾性変形した櫛歯形状部54は元に戻って再び隙間dは塞がれた状態となり、ガス圧が低下した後に引き続いて燃焼ガスが溝部40から漏れることはない。
【0040】
次に、前記実施形態に種々の変更を加えた変更形態について説明する。但し、前記実施形態と同じ構成を有するものについては、同じ符号を付して適宜その説明を省略する。
1]図11に示すように、櫛歯形状部53,54が部分的に密着する箇所の上側と下側の何れか1箇所または両方に、図12に示すような、カシメ部39に対応する複数のスリット60aを有し、耐腐食性に優れた合成樹脂製(例えば、PTFE製)のシール部材60を設けてもよい。または、シール部材60を2つの櫛歯形状部53,54の間に介装してもよい。2枚の櫛歯形状部53,54に加え、さらに、このシール部材60により溝部40を塞ぐことで、燃料ガスが溝部40から燃焼ガス排出口20bへ流れるのをほぼ完全に防止することができる。
【0041】
尚、前記実施形態と同様に、振動燃焼を防ぐために、ガス圧上昇時に閉塞板52の櫛歯形状部54が弾性変形して燃焼ガスが瞬間的に溝部40を流れるように構成した場合には、図13に示すように、カシメ部39に対応する複数のスリット61aと、開口61bを有するシール部材61を使用して、閉塞板52が弾性変形して櫛歯形状部54が浮き上がったときには、開口61bを介して燃焼ガスが瞬間的に燃焼ガス排出口20bへ流れるようにすればよい。
【0042】
2]図14に示すように、後側の閉塞板72の櫛歯形状部74の突出片74aに前方へ屈曲する屈曲部74bを形成し、溝部40において、後側の突出片74aを熱交換器21に当接させた状態で、前側の閉塞板71の櫛歯形状部73の突出片73aが後側の突出片74aの屈曲部74bの上面に密着するように配設してもよい。
【0043】
4]2枚の閉塞板51,52のうち片方を省略することもできる。この場合は、1枚の閉塞板の櫛歯形状部で複数の溝部40を塞ぐことになるため、図10に示す隙間dから少量の燃焼ガスが燃焼ガス排出口20bへ流れることになるものの、溝部40を塞がない場合に比べれば、格段に熱交換効率を向上させることができる。
【0044】
さらに、1枚の閉塞板で隙間を塞ぐ場合に、図15、図16に示すように、この閉塞板80が、櫛歯形状部81の複数の突出片81aの間に位置し熱交換器21の複数のカシメ部39に対応する複数のスリット81bと、これら複数のスリット81bの延長上の位置にスリット81bと平行に形成された複数の屈曲部81cであって交互に反対側へ屈曲された複数の屈曲部81cとを有するように構成することもできる。
【0045】
このように構成することで、図16に示すように、スリット81bと平行に形成された屈曲部81cにより、突出片81aは左右方向に対して上下に傾斜することができる。つまり、櫛歯形状部81を左右に伸ばした状態では、突出片81aの左右の幅が溝部40の幅よりも大きくなるように形成しておき、櫛歯形状部81を屈曲部81cにおいて屈曲させて、突出片81aを左右方向に対して傾斜させた状態で突出片81aを溝部40に挿入することができるので、製作誤差等の要因により溝部40の左右方向の幅がばらついている場合でも、突出片81aで溝部40をほぼ気密状に塞ぐことができる。
【0046】
5]図17、図18に示すように、ケース部材20と熱交換器21との間を塞ぐ閉塞板91と、左右方向に伸長可能なコイルばね92であって、熱交換器21の外周部の溝部40をほぼ気密状に塞ぐコイルばね92を設け、閉塞板91の熱交換器21側の先端部をコイルばね92に当接させるように、隙間シール構造90を構成してもよい。従って、製作誤差等の要因により溝部40の左右方向の幅がばらついている場合でも、コイルばね92を伸縮させてコイルばね92の一部を複数の溝部40に押し込むことができるので、溝部40をほぼ気密状に塞いで熱交換効率を向上させることができる。
【0047】
【発明の効果】
請求項1の発明によれば、ケース部材と積層型熱交換器との間から燃焼ガスの一部が積層型熱交換器をバイパスして燃焼ガス排出口に流れるのを防ぐために、閉塞板によりケース部材と積層型熱交換器との間を塞ぐことができる。
さらに、閉塞板の積層型熱交換器側の先端部分に、これら複数の溝部内へ突出する突出片をほぼ櫛歯状に形成した櫛歯形状部を設けたので、これら突出片により積層型熱交換器の外周部の複数の溝部をも塞いで、ケース部材と積層型熱交換器との間をほぼ気密状に塞ぐことができる。従って、溝部から燃焼ガスが積層型熱交換器をバイパスして燃焼ガス排出口へ流れるのを抑えて、熱交換効率を向上させることができる。
しかも、スリットと平行に形成された屈曲部により、突出片は流路形成板の積層方向に対して傾斜することができる。従って、櫛歯形状部を積層方向に伸ばした状態で突出片の前記積層方向の幅が溝部の幅よりも少し広くなるように形成しておき、櫛歯形状部を屈曲部において屈曲させて、突出片を前記積層方向に対して傾斜させることで、幅の広い突出 部を溝部内に突出させて突出片で溝部をほぼ気密状に塞ぐことができる。
【0048】
請求項2の発明によれば、積層型熱交換器の外周部の複数の溝部を複数の閉塞板によりほぼ気密状に塞ぐ為に、複数の閉塞板の積層型熱交換器側の先端部分に、複数の溝部内へ突出する複数の突出片をほぼ櫛歯状に形成した櫛歯形状部を夫々設けたので、以下の効果が得られる。
【0049】
製作誤差等の要因により、複数の溝部の幅は必ずしも一定ではないため、溝部の幅がばらついている場合でも突出片を溝部内に突出させるためには、突出片の幅は溝部の幅よりも狭くしておく必要があるが、複数の閉塞板の櫛歯形状部が流路形成板の積層方向にずれるように複数の閉塞板を配設することで、櫛歯形状部の突出片と溝部との間に生じる隙間を、その櫛歯形状部とずらして配設された別の櫛歯形状部の突出片により塞ぐことができるため、溝部から燃焼ガスが積層型熱交換器をバイパスして燃焼ガス排出口へ流れるのをほぼ完全に防止することができ、熱交換効率を向上させることができる。
【0050】
請求項3の発明によれば、複数の閉塞板は2枚の閉塞板からなり,各溝部において一方の閉塞板の櫛歯形状部の突出片と他方の閉塞板の櫛歯形状部の突出片とが少なくとも部分的に密着する状態に配設され且つ2枚の閉塞板の2つの櫛歯形状部が前記流路形成板の積層方向にずれた位置に位置するように配設されたので、突出片の幅を溝部の幅よりも狭くしたことにより生じる櫛歯形状部の突出片と溝部との間の隙間を、その櫛歯形状部と積層方向にずれた位置に配設された櫛歯形状部の突出片により塞ぐことができる。
【0051】
【0052】
請求項の発明によれば、複数の閉塞板のうちの少なくとも1つは、燃焼ガスのガス圧上昇時に弾性変形可能な薄金属板で構成されたので、バーナの非定常状態において、燃焼ガスのガス圧が上昇した際に、その上昇したガス圧により薄金属板で構成された閉塞板が弾性変形し、櫛歯形状部が溝部から離隔する。従って、一時的に溝部から燃焼ガスが積層型熱交換器をバイパスして燃焼ガス排出口へ抜けることになり、上昇したガス圧が低下して振動燃焼の発生を抑制することができる。また、ガス圧が低下すれば閉塞板は元の状態に戻るため、櫛歯形状部が溝部を塞ぐ状態に戻り、ガス圧が低下した後に引き続いて燃焼ガスが溝部から漏れることはない。その他、請求項2又は3と同様の効果が得られる。
【0053】
請求項の発明によれば、ケース部材と積層型熱交換器との間において、複数の溝部をほぼ気密状に塞ぐ複数巻のコイルばねを設け、このコイルばねに閉塞板の積層型熱交換器側の先端部を当接させることで、ケース部材と積層型熱交換器との間をほぼ気密状に塞ぐことができるので、燃焼ガスが積層型熱交換器をバイパスして燃焼ガス排出口へ流れるのを抑えて、熱交換効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る給湯器の概略構成図である。
【図2】1次及び2次熱交換装置の側面図である。
【図3】2次熱交換装置の正面図である。
【図4】図3の側面図である。
【図5】積層型熱交換器の正面図である。
【図6】図5の側面図である。
【図7】閉塞板の平面図である。
【図8】溝部を塞いでいる状態の櫛歯形状部の一部平面図である。
【図9】図8のIX-IX 線断面図である。
【図10】図9のX-X 線矢視図である。
【図11】変更形態の図9相当図である。
【図12】シール部材の一部平面図である。
【図13】シール部材の一部平面図である。
【図14】変更形態の図9相当図である。
【図15】変更形態の図10相当図である。
【図16】図15のXVI-XVI 線断面図である。
【図17】変更形態におけるコイルばねで溝部を塞いだ状態の熱交換器の要部拡大図である。
【図18】図17のXVIII-XVIII 線断面図である。
【符号の説明】
4 2次熱交換装置
20 ケース部材
20a 燃焼ガス導入口
20b 燃焼ガス排出口
21 積層型熱交換器
30 流路形成板
40 溝部
50,90 隙間シール構造
51,52,71,72,80,91 閉塞板
53,54,73,74,81 櫛歯形状部
53a,54a,73a,74a,81a 突出片
81b スリット
81c 屈曲部
92 コイルばね
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a gap seal structure of a heat exchange device, and in particular, can prevent combustion gas from flowing outside by bypassing a stacked heat exchanger and improve the heat exchange efficiency of the heat exchange device. About.
[0002]
[Prior art]
  Conventionally, various types of heat exchange devices that are provided in various combustion devices such as water heaters and heat fluid such as hot water using high-temperature combustion gas generated in a burner have been used. Some have a stacked heat exchanger having a structure in which a plurality of flow path forming plates having flow paths inside are stacked. This stacked heat exchanger can be configured compactly while securing a necessary heat transfer area, and the heat exchange device can be downsized.
[0003]
  In this heat exchange device, the combustion gas introduced into the case member that houses the stacked heat exchanger passes between the flow path forming plates while heating the fluid flowing through the flow paths of the plurality of flow path forming plates. Then, it is discharged from the combustion gas discharge port of the case member to the outside of the heat exchange device.
  Here, in the production of the heat exchange device, it is inevitable that a gap is formed between the case member and the laminated heat exchanger, but the combustion gas bypasses the heat exchanger from this gap to the combustion gas discharge port. When flowing, a part of the combustion gas is discharged outside without exchanging heat with the fluid, so that the heat exchange efficiency is considerably lowered.
[0004]
  For this reason, it is necessary to close this gap by some means. However, as described above, the stacked heat exchanger has a structure in which a plurality of flow path forming plates are stacked. A plurality of grooves are inevitably formed on the outer periphery of the mold heat exchanger. However, the conventional laminated heat exchanger is not configured to block up to such a groove, and a part of the combustion gas is discharged from the groove to the outside by bypassing the laminated heat exchanger. There was a problem that the heat exchange efficiency was lowered.
[0005]
  As a countermeasure against this, it is easily conceivable to first close the groove with a synthetic resin sealing member. In addition, a closing plate that closes the gap between the case member and the heat exchange device is provided, and the plurality of grooves are also airtightly closed. A comb-tooth shaped portion having a plurality of projecting pieces is provided on the top, and the plurality of projecting pieces of the comb-tooth shaped portion project into the plurality of grooves so as to prevent combustion gas from flowing out from the groove to the combustion gas discharge port. It is also conceivable that the plurality of grooves are closed.
[0006]
[Problems to be solved by the invention]
  However, when the heat exchanger is a latent heat recovery type heat exchanger capable of recovering the latent heat of the water vapor in the combustion gas when the sealing member is configured to close the groove portion, Condensates to produce water, and this condensed water contains nitrogen oxides and sulfur oxides in the combustion gas, and thus shows acidity. For this reason, the sealing member that closes the groove portion must be made of a highly corrosion-resistant material, which is disadvantageous in terms of manufacturing cost.
[0007]
  Further, when the groove portion is configured to be closed by the comb-shaped portion of the closing plate, the width of the plurality of groove portions is not necessarily constant due to factors such as manufacturing errors, and a plurality of protruding pieces that protrude into the plurality of groove portions, respectively. If the width is formed to be approximately the same as the width of the groove, if the width of the plurality of grooves varies, the protruding piece cannot be protruded into the groove to close the groove. Must be formed narrower than the width of the groove.
[0008]
  However, in this case, the amount of combustion gas flowing out of the groove can be reduced by the protruding piece compared to the case where the groove is not blocked at all, but the combustion gas is stacked from the gap between the protruding piece and the groove. Therefore, it is impossible to completely prevent the gas from flowing into the combustion gas discharge port, thereby reducing the heat exchange efficiency.
  The object of the present invention is to close the groove formed in the outer peripheral portion of the laminated heat exchanger in an almost airtight manner to prevent combustion gas from being discharged by bypassing the laminated heat exchanger, thereby heat exchange Improving efficiency, etc.
[0009]
[Means for Solving the Problems]
  The gap seal structure of the heat exchange device according to claim 1 is a laminated structure in which a case member having a combustion gas introduction port and a combustion gas discharge port, and a plurality of flow path forming plates are laminated inside the case member. In the heat exchange device comprising a mold heat exchanger, a closing plate that closes a gap between the case member and the stacked heat exchanger is provided, and the outer periphery of the stacked heat exchanger is provided on the stacked heat exchanger side of the closed plate Provided with a comb-shaped portion formed in a plurality of protruding pieces protruding into a plurality of groove portions of the portion in a comb-tooth shape,The blocking plate includes a plurality of slits positioned between the plurality of protruding pieces of the comb-shaped portion, and a plurality of bent portions formed in parallel with the slits at positions on the extension of the plurality of slits. And a plurality of bent portions bent to the opposite sideIt is characterized by this.
[0010]
  The combustion gas introduced into the case member from the combustion gas inlet port is heated while exchanging heat with the fluid flowing through the flow passages formed in the flow passage forming plates. And is discharged to the outside of the heat exchange device from the combustion gas discharge port.
  Here, in the production of the heat exchange device, it is inevitable that a gap is generated between the case member and the laminated heat exchanger, but a part of the combustion gas bypasses the laminated heat exchanger from this gap. In order to prevent the fuel gas from flowing to the combustion gas discharge port, a closing plate is provided to close the space between the case member and the stacked heat exchanger.
[0011]
  Here, a plurality of grooves are formed in the outer peripheral portion of the stacked heat exchanger by a plurality of stacked flow path forming plates, and a part of the combustion gas bypasses the stacked heat exchanger from the plurality of grooves. In the end portion of the closing plate on the side of the laminated heat exchanger, a comb-shaped portion in which protruding pieces protruding into the plurality of grooves are formed in a substantially comb-tooth shape is provided. Therefore, the plurality of groove portions can be closed by these protruding pieces, and the space between the case member and the laminated heat exchanger can be closed almost in an airtight manner. Accordingly, it is possible to improve the heat exchange efficiency by suppressing the combustion gas from bypassing the stacked heat exchanger and flowing to the combustion gas discharge port.
  In addition, the blocking plate includes a plurality of slits positioned between the plurality of protruding pieces of the comb-shaped portion, and a plurality of bent portions formed in parallel with the slits at positions on the extension of the plurality of slits. Since the plurality of bent portions are alternately bent to the opposite side, the protruding pieces can be inclined with respect to the stacking direction of the flow path forming plates by the bent portions formed in parallel with the slits. That is, the protruding piece is formed so that the width in the stacking direction of the protruding piece is slightly wider than the width of the groove in the state where the comb-shaped portion is extended in the stacking direction, and the protruding portion is bent at the bent portion. Is inclined with respect to the stacking direction, the projecting piece having a width wider than the groove can be projected into the groove so that the groove can be almost completely closed.
[0012]
  The gap seal structure of the heat exchange device according to claim 2 is a laminated structure in which a case member having a combustion gas introduction port and a combustion gas discharge port, and a plurality of flow path forming plates are laminated inside the case member. In a heat exchange device comprising a mold heat exchanger, a plurality of closing plates are provided to block between the case member and the stacked heat exchanger, and the stacked heat exchange is provided on the stacked heat exchanger side of the plurality of closing plates. A comb-tooth-shaped portion is provided in which a plurality of protruding pieces protruding into a plurality of grooves on the outer peripheral portion of the vessel are formed in a comb-tooth shape.
[0013]
  Similarly to the invention of claim 1, the seal structure of this heat exchange device is also formed by closing the groove with a comb-shaped portion in which a plurality of protruding pieces protruding into the plurality of grooves are formed in a substantially comb-like shape, It is comprised so that between a case member and a lamination type heat exchanger may be plugged up. Here, because the width of the plurality of groove portions is not necessarily constant due to factors such as manufacturing errors, the groove portions can be blocked by projecting the plurality of protruding pieces into the plurality of groove portions even if the width of the groove portions varies. In addition, the width of the protruding piece needs to be narrower than the width of the groove. However, a gap is formed between the groove and the projecting piece only by the comb-shaped portion of the single closing plate, so that a part of the combustion gas bypasses the stacked heat exchanger from the gap and burns the combustion gas. It will flow to the outlet.
[0014]
  Therefore, if a plurality of such blocking plates are provided, and a plurality of blocking plates are arranged so that the comb-shaped portions of the plurality of blocking plates are displaced in the stacking direction of the flow path forming plates, any comb-shaped portion Even if there is a gap between the protruding piece and the groove portion, the gap can be closed by the protruding piece of another comb-shaped portion, so that the combustion gas bypasses the stacked heat exchanger from the groove portion and burns the combustion gas. The flow to the discharge port can be almost completely prevented.
[0015]
  The gap seal structure of the heat exchange device according to claim 3 is the invention according to claim 2, wherein the plurality of closing plates areIt consists of two closing plates, and in each groove, the protruding piece of the comb-shaped portion of one closing plate and the other The protruding piece of the comb-shaped part of the closing plateAt least partially in close contact, andOf the two obstruction platesThe two comb-tooth shaped portions are arranged so as to be located at positions shifted in the stacking direction of the flow path forming plate. Since it is necessary to make the width of the protruding piece narrower than the width of the groove portion, there is a gap between the protruding piece of one certain comb-shaped portion and the groove portion,Of the two obstruction platesSince the two comb-shaped portions are displaced in the stacking direction of the flow path forming plate, the gaps can be blocked by the protruding pieces of the other comb-shaped portions disposed so as to be displaced from the comb-shaped portions. it can.
[0016]
[0017]
  Claim4In the invention according to claim 2 or 3, at least one of the plurality of closing plates is formed of a thin metal plate that can be elastically deformed when the gas pressure of the combustion gas rises. It is characterized by this. As described above, it is possible to improve the heat exchange efficiency by closing the space between the case member and the laminated heat exchanger in a substantially airtight manner, but on the other hand, the airtightness between the case member and the laminated heat exchanger is always kept airtight. If the burner output fluctuates, the burner flame becomes unstable due to amplification of fluctuations in the pressure of the combustion gas in the case member in an unsteady state of the combustion equipment, such as when the output of the burner fluctuates. In addition, there is a possibility that a phenomenon called so-called vibration combustion occurs in which the device itself provided with the heat exchange device vibrates in resonance.
[0018]
  Therefore, by configuring at least one of the plurality of blocking plates with a thin metal plate, when the gas pressure increases in an unsteady state, the blocking plate configured with the thin metal plate by the increased gas pressure. Is elastically deformed, and the comb-shaped portion is separated from the groove portion. Accordingly, a part of the combustion gas temporarily flows from the groove portion to the combustion gas discharge port bypassing the stacked heat exchanger, and the increased gas pressure is reduced, so that the gas pressure is prevented from greatly fluctuating. Thus, occurrence of vibration combustion can be prevented. If the gas pressure is reduced, the closing plate returns to its original state and the groove portion is closed by the comb-shaped portion, and combustion gas does not leak from the groove portion continuously after the gas pressure is reduced.
[0019]
  Claim5The gap seal structure of the heat exchange apparatus of the present invention is a stacked heat exchange structure in which a case member having a combustion gas inlet and a combustion gas outlet is disposed, and a plurality of flow path forming plates are stacked inside the case member In order to prevent the combustion gas from bypassing the stacked heat exchanger and flowing to the combustion gas discharge port, a blocking plate that closes the space between the case member and the stacked heat exchanger is provided. A coil spring that is extendable in the laminating direction of the flow path forming plate, and is provided with a coil spring that closes a plurality of grooves on the outer peripheral portion of the laminated heat exchanger in a substantially airtight manner, The tip of the exchanger is in contact with the coil spring.
[0020]
  Instead of providing the comb-shaped portion on the closing plate as in the first aspect of the invention, a plurality of coil springs are provided to close the plurality of grooves in a substantially airtight manner between the case member and the laminated heat exchanger. By bringing the leading end of the closing plate on the side of the laminated heat exchanger into contact with the coil spring, the gap between the case member and the laminated heat exchanger can be closed in an almost airtight manner. Other functions are the same as those of the first aspect, and the description thereof is omitted.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described. This embodiment is an example in which the present invention is applied to a latent heat recovery type heat exchange device (secondary heat exchange device) of a water heater.
  First, the water heater 1 will be briefly described.
  As shown in FIG. 1, the water heater 1 can also recover a burner 2, a primary heat exchange device 3 that recovers sensible heat of the combustion gas from the burner 2, and the latent heat of water vapor in the combustion gas 2. A secondary heat exchange device 4 and a blower fan 5 for supplying combustion air to the burner 2 are provided. A gas supply pipe 10 for supplying fuel gas is connected to the burner 2.
[0022]
  As shown in FIGS. 1 and 2, the water supply pipe 11 is connected to the water supply port 32 of the secondary heat exchange device 4, while the primary heat exchange device 3 and the secondary heat exchange device 4 are connected to the hot water outlet 33. A connecting pipe 12 is connected. The water supplied from the water supply pipe 11 to the secondary heat exchange device 4 is heat-exchanged and heated with the low-temperature combustion gas flowing from the primary heat exchange device 3 by the secondary heat exchange device 4, and the connection pipe 12. To the primary heat exchange device 3. The hot water that has flowed into the primary heat exchange device 3 is further heat-exchanged with the high-temperature combustion gas from the burner 2 and heated, and hot water is supplied from the tap pipe 13 to various facilities such as a kitchen and a bath. .
[0023]
  Next, the secondary heat exchange device 4 will be described in detail. The secondary heat exchange device 4 performs heat exchange between the combustion gas whose temperature has decreased after the heat exchange with the hot water in the primary heat exchange device 3 and the water before entering the primary heat exchange device 3. Thus, it is provided to recover the latent heat of the water vapor in the combustion gas and improve the heat exchange efficiency.
  As shown in FIGS. 3 and 4, the secondary heat exchange device 4 includes a case member 20 having a combustion gas introduction port 20 a and a combustion gas discharge port 20 b, and a plurality of flow members disposed inside the case member 20. A laminated heat exchanger 21 (hereinafter referred to as a heat exchanger 21) having a structure in which a path forming plate 30 is laminated is provided.
[0024]
  A combustion gas inlet 20a for introducing combustion gas from the primary heat exchange device 3 is formed at the rear end of the case member 20, and the front end of the case member 20 discharges combustion gas to the outside. The combustion gas discharge port 20b is formed. Further, the upper end of the case member 20 is closed by the top plate 22. The bottom plate 23 of the case member 20 is inclined so that water generated by condensation of water vapor inside the case member 20 flows down, and a drain discharge pipe 24 extending downward is provided at the front end of the bottom plate 23. It has been. Since the condensed water generated inside the case member 20 shows acidity including nitrogen oxides and sulfur oxides in the combustion gas, it is neutralized by a neutralization device (not shown) connected to the drain discharge pipe 24. And then discharged to the outside.
[0025]
  As shown in FIGS. 3 to 6, the heat exchanger 21 has a structure in which a plurality of flow path forming plates 30 each having a flow path 36 through which hot water flows are stacked in front and back. The plurality of flow path forming plates 30 are joined by vacuum furnace brazing using a copper alloy brazing material or the like. As shown in FIG. 5, the plurality of laminated flow path forming plates 30 are sandwiched between left and right end plates 31, and the left end flow path forming plate 30 has a water supply port 32 and a hot water supply port 33. Is formed. Combustion gas flows from the upper side to the lower side between the plurality of laminated flow path forming plates 30. In order to increase the heat transfer area on the combustion gas side between the flow path forming plates 30. Outer fins 34 are interposed.
[0026]
  As shown in FIGS. 5 and 6, the flow path forming plate 30 is obtained by superposing two plate members 30a and 30b and joining these plate members 30a and 30b by vacuum furnace brazing. Between the plate members 30a and 30b, a water inflow portion 35 into which water flows in from the water supply port 32, and a U-shape formed so that the water flowing in from the water inflow portion 35 flows in the direction of the arrow in FIG. A flow path 36 and a hot water outflow portion 37 for sending hot water heated through the flow path 36 to the warm water outlet 33 are formed. Inner fins 38 for increasing the heat transfer area on the warm water side are provided in the flow path 36.
  As shown in FIGS. 5 and 6, each flow path forming plate 30 has a crimped portion 39 that is formed by the outer peripheral portions of the two plate members 30 a and 30 b and protrudes to the outside, and the plurality of flow path forming plates. A plurality of groove portions 40 are formed on the outer peripheral portion of the heat exchanger 21 by 30 crimping portions 39.
[0027]
  In this heat exchanger 21, the water introduced from the water supply port 32 branches to the flow path 36 of each flow path forming plate 30 and is heated by heat exchange with the combustion gas while passing through the flow path 36. Then, it merges again and is sent to the primary heat exchange device 3 from the hot water outlet 33.
  On the other hand, the combustion gas introduced into the inside of the case member 20 from the combustion gas inlet 20a is a flow path forming plate 30 that is stacked while heating the hot water flowing through the flow path 36, as indicated by the solid line arrows in FIG. The gas flows from above to below and is discharged from the combustion gas discharge port 20b to the outside. On the upper side of the heat exchanger 21, the gap seal described below that closes the gap between the case member 20 and the heat exchanger 21 so that the combustion gas does not bypass the heat exchanger 21 and flow to the combustion gas discharge port 20 b. A structure 50 is provided.
[0028]
  Next, the gap seal structure 50 unique to the present application will be described. The gap seal structure 50 closes the gap between the heat exchanger 21 and the case member 20, and a part of the combustion gas passes through the gap as shown by a dotted arrow in FIG. 4. This prevents the gas from flowing into the combustion gas discharge port 20b without exchanging heat with hot water.
[0029]
  As shown in FIGS. 3 and 4, the gap seal structure 50 is provided between the case member 20 and the heat exchanger 21 to prevent the combustion gas from bypassing the heat exchanger 21 and flowing to the combustion gas discharge port 20 b. Two closing plates 51 and 52 made of SUS304 are provided. The front closing plate 51 is relatively thick (for example, 0.5 mm), while the rear closing plate 52 is a thin plate (for example, 0.05 mm thick) whose front end portion can be easily elastically deformed. It consists of
[0030]
  The front closing plate 51 is attached to the case member 20 so that the position in the left-right direction can be adjusted with respect to the heat exchanger 21, and the case member 20 and the heat exchanger 21 are curved so as to hang down from the front to the rear. It arrange | positions so that the clearance gap between may be closed. On the other hand, the rear closing plate 52 is disposed so as to close the gap between the case member 20 and the heat exchanger 21 while being curved so as to hang down from the rear to the front. These two closing plates 51, 52 are pressed against the heat exchanger 21 by the top plate 22, and the position in the vertical direction does not shift inside the case member 20.
[0031]
  Here, most of the gap between the case member 20 and the heat exchanger 21 can be closed by the two closing plates 51 and 52, but as described above, the outer periphery of the heat exchanger 21 is closed. Since the plurality of groove portions 40 are formed, if the plurality of groove portions 40 are not blocked, a part of the combustion gas flows from the plurality of groove portions 40 to the combustion gas discharge port 20b. For this purpose, as shown in FIGS. 7 to 10, two end portions on the heat exchanger 21 side of the two closing plates 51 and 52 are provided with a plurality of blocking portions 40 on the outer peripheral portion of the heat exchanger 21. In order to close the plates 51 and 52 in an almost airtight manner, comb-shaped portions 53 and 54 in which a plurality of protruding pieces 53a and 54a protruding into the plurality of groove portions 40 are formed in a substantially comb-like shape are provided. A bent portion 53b bent backward is formed at the tip of the protruding piece 53a of the comb-shaped portion 53 of the front closing plate 51.
[0032]
  As shown in FIGS. 8 to 10, in the plurality of groove portions 40, the protruding piece 53 a of the front closing plate 51 protrudes into the groove portion 40 and abuts against the outer surface portion of the heat exchanger 21. The projecting piece 54a of the closing plate 52 becomes a bent portion 53b of the projecting piece 53a.At least partiallyIt is arranged in close contact. Further, the two comb-shaped portions 53 and 54 are disposed so as to be located at positions shifted in the left-right direction (the stacking direction of the flow path forming plate 30). For example,In the plan view shown in FIG.The comb-shaped portion 53 of the front closing plate 51 isleftThe comb-shaped portion 54 of the rear closing plate 52 isRight sideIt suffices if it is arranged close to
[0033]
  Here, the width in the left-right direction of the plurality of groove portions 40 is not necessarily constant due to factors such as manufacturing errors. Therefore, even if the width of the groove portions 40 varies, the plurality of protruding pieces 53a and 54a. The widths of the protruding pieces 53a and 54a of the comb-shaped portions 53 and 54 are formed so as to be slightly narrower than the width of the groove portion 40 so that the groove portions 40 can be blocked by projecting into the plurality of groove portions 40. . Therefore, as shown in FIG. 10, the gap d in the left-right direction is generated between the groove 40 and the protruding piece 53a only by protruding the protruding piece 53a of the one comb-tooth shaped portion 53 into the groove 40. Combustion gas leaks from this gap d. However, since the other protruding piece 54a is disposed at a position shifted in the left-right direction with respect to the protruding piece 53a, the gap d is closed by the protruding piece 54a.
[0034]
  As described above, since the rear closing plate 52 is formed of a thin plate, when the gas pressure of the combustion gas increases in an unsteady state, such as when the output of the burner 2 fluctuates, it is indicated by a chain line in FIG. As described above, the comb-shaped portion 54a is elastically deformed so as to be lifted. Then, the gap d closed by the protruding piece 54a is instantaneously opened, and a part of the combustion gas flows to the combustion gas discharge port 20b through the gap d.
[0035]
  Next, the operation and effect of the gap seal structure 50 will be described.
  As shown in FIG. 4, when the combustion gas is introduced into the secondary heat exchange device 4 from the combustion gas inlet 20 a, the space between the case member 20 and the heat exchanger 21 is substantially reduced by the two closing plates 51 and 52. Since most of the combustion gas is blocked, as shown by the solid line arrows in FIG. 4, the combustion gas passes through the plurality of flow path forming plates 30 while heating the hot water, and is secondary from the combustion gas discharge port 20 b. It is discharged to the outside of the heat exchange device 4.
[0036]
  Here, a groove portion 40 is formed on the outer peripheral portion of the heat exchanger 21 by a plurality of laminated flow path forming plates 30, and a part of the combustion gas passes through the plurality of groove portions 40 and the heat exchanger 21. Although it bypasses and flows into the combustion gas discharge port 20b, since the protruding pieces 53a and 54a of the comb-shaped portions 53 and 54 protrude into the plurality of grooves 40, the combustion gas leaks from the grooves 40. Can be suppressed.
[0037]
  Further, the width in the left-right direction of the protruding pieces 53a and 54a is narrower than the width of the groove portion 40. For example, when the protruding piece 53a is inserted into the groove portion 40 as shown in FIG. However, since the gap d can be closed by the other protruding piece 54a, the plurality of groove portions 40 can be closed almost airtightly by the two comb-shaped portions 53 and 54. Therefore, it is possible to improve the heat exchange efficiency by suppressing the combustion gas from being discharged from the combustion gas discharge port 20b without being heat exchanged by the heat exchanger 21 as much as possible.
[0038]
  Further, since the rear closing plate 52 is made of a thin plate that can be elastically deformed when the gas pressure of the combustion gas increases, the gas pressure of the combustion gas increases in an unsteady state such as when the output of the burner 2 fluctuates. When the gas pressure is increased, the comb-shaped portion 54 is elastically deformed so as to be lifted, as shown by a chain line in FIG. 9, and the gap d closed by the protruding piece 54a is instantaneously opened. The
[0039]
  Therefore, a part of the combustion gas flows through the gap d to the combustion gas discharge port 20b and the gas pressure is lowered, so that the fluctuation of the gas pressure is prevented from being amplified, and the flame of the burner 2 becomes unstable. It is possible to prevent vibration combustion from occurring in the water heater 1.
  As soon as the combustion gas instantaneously flows through the gap d, the gas pressure decreases, so that the elastically deformed comb-tooth shaped portion 54 returns to its original state and the gap d is closed again, and the gas pressure decreases. After that, the combustion gas does not leak from the groove 40 continuously.
[0040]
  Next, modified embodiments in which various modifications are made to the embodiment will be described. However, those having the same configuration as in the above embodiment are given the same reference numerals and description thereof is omitted as appropriate.
  1] As shown in FIG. 11, one or both of the upper side and the lower side of the portion where the comb-shaped portions 53 and 54 partially adhere to each other correspond to the caulking portion 39 as shown in FIG. A sealing member 60 made of synthetic resin (for example, made of PTFE) having a plurality of slits 60a and having excellent corrosion resistance may be provided. Alternatively, the seal member 60 may be interposed between the two comb-shaped portions 53 and 54. In addition to the two comb-shaped portions 53 and 54, the sealing member 60 closes the groove 40, so that the fuel gas can be almost completely prevented from flowing from the groove 40 to the combustion gas discharge port 20b. .
[0041]
  As in the above embodiment, in order to prevent vibration combustion, when the comb-tooth shaped portion 54 of the closing plate 52 is elastically deformed when the gas pressure rises, the combustion gas instantaneously flows through the groove portion 40. As shown in FIG. 13, when the sealing plate 61 having a plurality of slits 61a corresponding to the caulking portion 39 and the opening 61b is used and the closing plate 52 is elastically deformed and the comb-shaped portion 54 is lifted, The combustion gas may be instantaneously flowed to the combustion gas discharge port 20b through the opening 61b.
[0042]
  2] As shown in FIG. 14, a bent portion 74b that bends forward is formed in the protruding piece 74a of the comb-shaped portion 74 of the rear blocking plate 72, and the rear protruding piece 74a is heat-exchanged in the groove 40. The protruding piece 73a of the comb-shaped portion 73 of the front blocking plate 71 may be disposed so as to be in close contact with the upper surface of the bent portion 74b of the rear protruding piece 74a.
[0043]
  4] One of the two closing plates 51 and 52 can be omitted. In this case, since the plurality of groove portions 40 are closed with the comb-shaped portion of one closing plate, a small amount of combustion gas flows from the gap d shown in FIG. 10 to the combustion gas discharge port 20b. Compared with the case where the groove 40 is not blocked, the heat exchange efficiency can be remarkably improved.
[0044]
  Further, when the gap is closed with one closing plate, the closing plate 80 is located between the plurality of protruding pieces 81a of the comb-shaped portion 81 as shown in FIGS. The plurality of slits 81b corresponding to the plurality of crimped portions 39, and the plurality of bent portions 81c formed in parallel with the slits 81b at positions on the extension of the plurality of slits 81b and alternately bent to the opposite side It can also be configured to have a plurality of bent portions 81c.
[0045]
  With this configuration, as shown in FIG. 16, the projecting piece 81a can be tilted up and down with respect to the left-right direction by the bent portion 81c formed in parallel with the slit 81b. That is, when the comb-shaped portion 81 is extended to the left and right, the left and right widths of the protruding piece 81a are formed to be larger than the width of the groove portion 40, and the comb-shaped portion 81 is bent at the bent portion 81c. Thus, since the protruding piece 81a can be inserted into the groove 40 with the protruding piece 81a inclined with respect to the left-right direction, even when the width in the left-right direction of the groove 40 varies due to factors such as manufacturing errors, The groove part 40 can be closed almost airtight with the protruding piece 81a.
[0046]
  5] As shown in FIGS. 17 and 18, a closing plate 91 that closes the space between the case member 20 and the heat exchanger 21, and a coil spring 92 that can extend in the left-right direction, the outer peripheral portion of the heat exchanger 21. The gap seal structure 90 may be configured such that a coil spring 92 that closes the groove 40 in a substantially airtight manner is provided, and the tip of the closing plate 91 on the heat exchanger 21 side is brought into contact with the coil spring 92. Therefore, even when the width of the groove 40 in the left-right direction varies due to factors such as manufacturing errors, the coil spring 92 can be expanded and contracted so that a part of the coil spring 92 can be pushed into the plurality of grooves 40. It is possible to improve the heat exchange efficiency by closing in an almost airtight manner.
[0047]
【The invention's effect】
  According to the invention of claim 1, in order to prevent a part of the combustion gas from flowing between the case member and the laminated heat exchanger from bypassing the laminated heat exchanger and flowing to the combustion gas discharge port, The space between the case member and the stacked heat exchanger can be closed.
  Furthermore, since the comb-shaped portion in which the protruding pieces protruding into the plurality of grooves are formed in a substantially comb-like shape is provided at the tip portion of the closing plate on the laminated heat exchanger side, the laminated heat The plurality of grooves on the outer peripheral portion of the exchanger can also be closed, and the space between the case member and the stacked heat exchanger can be closed in an almost airtight manner. Accordingly, it is possible to improve the heat exchange efficiency by suppressing the combustion gas from flowing from the groove portion to the combustion gas discharge port by bypassing the stacked heat exchanger.
  Moreover, the protruding piece can be inclined with respect to the stacking direction of the flow path forming plate by the bent portion formed in parallel with the slit. Therefore, in a state where the comb-shaped portion is extended in the stacking direction, the protruding piece is formed so that the width in the stacking direction is slightly wider than the width of the groove portion, and the comb-shaped portion is bent at the bent portion, Wide protrusion by tilting the protruding piece with respect to the stacking direction The part can be projected into the groove part, and the groove part can be closed in an almost airtight manner by the protruding piece.
[0048]
  According to the invention of claim 2, in order to close the plurality of grooves on the outer peripheral portion of the laminated heat exchanger in a substantially airtight manner by the plurality of closing plates, the tip of the plurality of closing plates on the side of the stacked heat exchanger is provided. Since the comb-shaped portions in which the plurality of projecting pieces projecting into the plurality of groove portions are formed in a substantially comb-tooth shape are provided, the following effects can be obtained.
[0049]
  The width of the plurality of groove portions is not necessarily constant due to factors such as manufacturing errors.In order to project the protruding piece into the groove portion even when the width of the groove portion varies, the width of the protruding piece is larger than the width of the groove portion. Although it is necessary to keep it narrow, the protruding pieces and the groove portions of the comb-shaped portion are arranged by arranging the plurality of closing plates so that the comb-shaped portions of the plurality of closing plates are displaced in the stacking direction of the flow path forming plate. Can be closed by the protruding piece of another comb-shaped portion disposed so as to be shifted from the comb-shaped portion, so that the combustion gas bypasses the stacked heat exchanger from the groove portion. The flow to the combustion gas discharge port can be prevented almost completely, and the heat exchange efficiency can be improved.
[0050]
  According to the invention of claim 3, the plurality of closing plates areIt consists of two closing plates, and in each groove, the protruding piece of the comb-shaped portion of one closing plate and the protruding piece of the comb-shaped portion of the other closing plateAt least partially in close contact, andOf the two obstruction platesSince the two comb-shaped portions are disposed at positions shifted in the stacking direction of the flow path forming plate, the comb-shaped portion of the comb-shaped portion generated by making the width of the protruding piece narrower than the width of the groove portion The gap between the protruding piece and the groove portion can be closed by the protruding piece of the comb-shaped portion disposed at a position shifted from the comb-shaped portion in the stacking direction.
[0051]
[0052]
  Claim4According to the invention, since at least one of the plurality of closing plates is formed of a thin metal plate that can be elastically deformed when the gas pressure of the combustion gas increases, the gas pressure of the combustion gas in the unsteady state of the burner. When the pressure rises, the closed gas plate made of a thin metal plate is elastically deformed by the increased gas pressure, and the comb-shaped portion is separated from the groove. Accordingly, the combustion gas temporarily bypasses the stacked heat exchanger and escapes from the groove portion to the combustion gas discharge port, and the increased gas pressure is reduced to suppress the occurrence of vibration combustion. Further, since the closing plate returns to the original state when the gas pressure is lowered, the comb-shaped portion returns to the state of closing the groove portion, and combustion gas does not leak from the groove portion after the gas pressure is lowered. In addition, the same effects as those of the second or third aspect can be obtained.
[0053]
  Claim5According to the invention, a plurality of coil springs are provided between the case member and the stacked heat exchanger to close the plurality of grooves in a substantially airtight manner, and the coil spring is provided on the stacked heat exchanger side of the closing plate. By contacting the tip, the space between the case member and the laminated heat exchanger can be closed in an almost airtight manner, so that the combustion gas bypasses the laminated heat exchanger and flows to the combustion gas discharge port. And the heat exchange efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a water heater according to an embodiment of the present invention.
FIG. 2 is a side view of the primary and secondary heat exchange devices.
FIG. 3 is a front view of a secondary heat exchange device.
4 is a side view of FIG. 3. FIG.
FIG. 5 is a front view of a stacked heat exchanger.
6 is a side view of FIG. 5. FIG.
FIG. 7 is a plan view of a closing plate.
FIG. 8 is a partial plan view of a comb-shaped portion in a state where a groove portion is closed.
9 is a cross-sectional view taken along line IX-IX in FIG.
10 is a view taken along line X-X in FIG. 9;
FIG. 11 is a diagram corresponding to FIG.
FIG. 12 is a partial plan view of a seal member.
FIG. 13 is a partial plan view of a seal member.
FIG. 14 is a diagram corresponding to FIG.
FIG. 15 is a diagram corresponding to FIG.
16 is a cross-sectional view taken along line XVI-XVI in FIG.
FIG. 17 is an enlarged view of a main part of a heat exchanger in a state where a groove is closed with a coil spring in a modified embodiment.
18 is a cross-sectional view taken along line XVIII-XVIII in FIG.
[Explanation of symbols]
4 Secondary heat exchanger
20 Case member
20a Combustion gas inlet
20b Combustion gas outlet
21 Stacked heat exchanger
30 flow path forming plate
40 groove
50,90 Gap seal structure
51, 52, 71, 72, 80, 91 Blocking plate
53, 54, 73, 74, 81 Comb-shaped part
53a, 54a, 73a, 74a, 81a Projecting piece
81b slit
81c bent part
92 Coil spring

Claims (5)

燃焼ガス導入口と燃焼ガス排出口を有するケース部材と、このケース部材の内部に配設され且つ複数の流路形成板を積層した構造の積層型熱交換器とを備えた熱交換装置において、
ケース部材と積層型熱交換器との間を塞ぐ閉塞板を設け、
前記閉塞板の積層型熱交換器側に、積層型熱交換器の外周部の複数の溝部内へ突出する複数の突出片を櫛歯状に形成した櫛歯形状部を設け
前記閉塞板は、前記櫛歯形状部の複数の突出片の間に位置する複数のスリットと、これら複数のスリットの延長上の位置にスリットと平行に形成された複数の屈曲部であって交互に反対側へ屈曲された複数の屈曲部とを有する
ことを特徴とする熱交換装置の隙間シール構造。
In a heat exchange device comprising a case member having a combustion gas inlet and a combustion gas outlet, and a stacked heat exchanger having a structure in which a plurality of flow path forming plates are stacked inside the case member,
Providing a blocking plate to block between the case member and the laminated heat exchanger,
Provided on the laminated heat exchanger side of the closing plate is a comb-shaped portion in which a plurality of protruding pieces projecting into a plurality of grooves on the outer peripheral portion of the laminated heat exchanger are formed in a comb shape ,
The blocking plate includes a plurality of slits positioned between the plurality of protruding pieces of the comb-shaped portion, and a plurality of bent portions formed in parallel with the slits at positions on the extension of the plurality of slits. And a plurality of bent portions bent in the opposite direction to the gap seal structure of the heat exchange device.
燃焼ガス導入口と燃焼ガス排出口を有するケース部材と、このケース部材の内部に配設され且つ複数の流路形成板を積層した構造の積層型熱交換器とを備えた熱交換装置において、
ケース部材と積層型熱交換器との間を塞ぐ複数の閉塞板を設け、
複数の閉塞板の積層型熱交換器側に、積層型熱交換器の外周部の複数の溝部内へ突出する複数の突出片を櫛歯状に形成した櫛歯形状部を夫々設けた、
ことを特徴とする熱交換装置の隙間シール構造。
In a heat exchange device comprising a case member having a combustion gas inlet and a combustion gas outlet, and a stacked heat exchanger having a structure in which a plurality of flow path forming plates are stacked inside the case member,
Providing a plurality of blocking plates that block between the case member and the laminated heat exchanger,
Provided on each side of the stacked heat exchanger of the plurality of closing plates are comb-tooth shaped portions each having a plurality of protruding pieces protruding into a plurality of grooves on the outer peripheral portion of the stacked heat exchanger in a comb-tooth shape
A gap seal structure for a heat exchanging device.
前記複数の閉塞板は2枚の閉塞板からなり、各溝部において一方の閉塞板の櫛歯形状部の突出片と他方の閉塞板の櫛歯形状部の突出片とが少なくとも部分的に密着する状態に配設され且つ2枚の閉塞板の2つの櫛歯形状部が前記流路形成板の積層方向にずれた位置に位置するように配設されたことを特徴とする請求項2に記載の熱交換装置の隙間シール構造。The plurality of blocking plates are composed of two blocking plates, and the protruding pieces of the comb-shaped portion of one closing plate and the protruding pieces of the comb-shaped portion of the other closing plate are at least partially in close contact with each other in each groove portion. The two comb-tooth-shaped portions of the two blocking plates that are disposed in a state are disposed so as to be located at positions shifted in the stacking direction of the flow path forming plates. The gap seal structure of the heat exchange device. 前記複数の閉塞板のうちの少なくとも1つは、燃焼ガスのガス圧上昇時に弾性変形可能な薄金属板で構成されたことを特徴とする請求項2又は3に記載の熱交換装置の隙間シール構造。  4. The gap seal of the heat exchange device according to claim 2, wherein at least one of the plurality of closing plates is formed of a thin metal plate that can be elastically deformed when the gas pressure of the combustion gas increases. Construction. 燃焼ガス導入口と燃焼ガス排出口を有するケース部材と、このケース部材の内部に配設され且つ複数の流路形成板を積層した構造の積層型熱交換器とを備えた熱交換装置において、
燃焼ガスが積層型熱交換器をバイパスして燃焼ガス排出口に流れるのを防ぐ為にケース部材と積層型熱交換器との間を塞ぐ閉塞板を設け、
前記流路形成板の積層方向に伸長可能なコイルばねであって、前記積層型熱交換器の外周部の複数の溝部をほぼ気密状に塞ぐコイルばねを設け、
前記閉塞板の積層型熱交換器側の先端部を前記コイルばねに当接させた、
ことを特徴とする熱交換装置の隙間シール構造。
In a heat exchange device comprising a case member having a combustion gas inlet and a combustion gas outlet, and a stacked heat exchanger having a structure in which a plurality of flow path forming plates are stacked inside the case member,
In order to prevent the combustion gas from bypassing the laminated heat exchanger and flowing to the combustion gas outlet, a blocking plate is provided to block between the case member and the laminated heat exchanger,
A coil spring that is extendable in the laminating direction of the flow path forming plate, and provided with a coil spring that closes a plurality of grooves in the outer peripheral portion of the laminated heat exchanger substantially in an airtight manner;
The front end of the closing plate on the laminated heat exchanger side was brought into contact with the coil spring,
A gap seal structure for a heat exchanging device.
JP2002149181A 2002-05-23 2002-05-23 Crevice seal structure of heat exchanger Expired - Fee Related JP3727021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002149181A JP3727021B2 (en) 2002-05-23 2002-05-23 Crevice seal structure of heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002149181A JP3727021B2 (en) 2002-05-23 2002-05-23 Crevice seal structure of heat exchanger

Publications (2)

Publication Number Publication Date
JP2003343924A JP2003343924A (en) 2003-12-03
JP3727021B2 true JP3727021B2 (en) 2005-12-14

Family

ID=29767429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002149181A Expired - Fee Related JP3727021B2 (en) 2002-05-23 2002-05-23 Crevice seal structure of heat exchanger

Country Status (1)

Country Link
JP (1) JP3727021B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4079115B2 (en) * 2004-04-28 2008-04-23 株式会社デンソー Heat exchanger
KR101765173B1 (en) 2015-07-07 2017-08-04 주식회사 두발 Boiler having parallel coupled multi heat exchanger
JP7162471B2 (en) * 2018-08-30 2022-10-28 リンナイ株式会社 heat exchanger

Also Published As

Publication number Publication date
JP2003343924A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
CN106537059B (en) Fin-tube heat exchanger and hot-water supply with the fin-tube heat exchanger
JP6848303B2 (en) Heat exchanger and water heater
JP5771519B2 (en) Latent heat exchanger and hot water supply device
JP6834296B2 (en) Hot water device
US7267163B2 (en) Heat exchanger
JP5182570B2 (en) Water heater
US20100101755A1 (en) Heat exchanger for a boiler
JP2013011409A (en) Water heater
JP2008144997A (en) Pressure-proof heat exchanger
JP3727021B2 (en) Crevice seal structure of heat exchanger
US11624526B2 (en) Heat exchanger and water heating device including the same
JP4180935B2 (en) Heat exchanger and hot water heater
US11306943B2 (en) Tube assembly for tubular heat exchanger, and tubular heat exchanger comprising same
JP5467039B2 (en) Latent heat exchanger and hot water supply device
KR100650520B1 (en) Heat exchanger by using conduct between two liquids
JP2013079743A (en) Latent heat exchanger and water heater
JP6254341B2 (en) Combustion device
JP2005315520A (en) Heat exchanger
WO2018037857A1 (en) Heat exchanger and warm water device
CN111322755A (en) Heat source machine
JP2007064551A (en) Combustion apparatus
JP2006153375A (en) Heat exchanging device and combustion device
JP7256525B2 (en) Water heater
JP4134520B2 (en) Heat exchanger
JP2004125189A (en) Heat exchanger for water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees