JP3726619B2 - Hot water storage water heater - Google Patents

Hot water storage water heater Download PDF

Info

Publication number
JP3726619B2
JP3726619B2 JP2000045822A JP2000045822A JP3726619B2 JP 3726619 B2 JP3726619 B2 JP 3726619B2 JP 2000045822 A JP2000045822 A JP 2000045822A JP 2000045822 A JP2000045822 A JP 2000045822A JP 3726619 B2 JP3726619 B2 JP 3726619B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
heating
flow rate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000045822A
Other languages
Japanese (ja)
Other versions
JP2001235231A (en
Inventor
良彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2000045822A priority Critical patent/JP3726619B2/en
Publication of JP2001235231A publication Critical patent/JP2001235231A/en
Application granted granted Critical
Publication of JP3726619B2 publication Critical patent/JP3726619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control For Baths (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は貯湯式給湯装置に関し、詳しくは、いわゆるセミ貯湯式の貯湯槽を燃焼缶体内に設けて、該セミ貯湯槽を利用して温水給湯や温水暖房或いは風呂の追い焚きを行うことができるようにされた貯湯式給湯装置に関する。
【0002】
【従来の技術】
従来、温水を台所やその他の場所に供給する給湯回路の他に、暖房回路や風呂追い焚き回路を1つのセミ貯湯層を用いて運転する、いわゆる1缶2回路或いは1缶3回路のセミ貯湯式給湯装置が提供されている。このような給湯装置においては、例えば暖房運転を同時に行っている場合の給湯回路側の過流出防止の制御は、暖房運転の使用能力を仮想の固定の一定号数として行っていた。即ち同時運転中は、暖房運転の使用号数を常に固定の一定号数として扱い、その給湯装置のバーナの最大燃焼号数から前記暖房の一定号数を差し引いた残りの号数をもって、給湯運転の過流出防止制御を行っていた。
【0003】
【発明が解決しようとする課題】
ところが実際の暖房使用号数は一定ではないため、例えば暖房運転の使用初期には暖房能力が必要であり、長時間使用していれば暖房能力はあまり必要でなくなる。従って、従来のように暖房運転の使用号数を仮想の一定号数に固定して給湯運転の過流出防止制御を行うと、燃焼号数に過不足を生じ、必要以上に給湯側の総流量を絞って過流出防止をしたり、或いは給湯側の総流量の絞り具合が不足して所望温度を下回る温水が給湯され得る可能性もあった。
【0004】
そこで本発明は上記従来の貯湯式給湯装置の欠点を解消し、給湯運転を暖房運転或いは風呂追い焚き運転と同時に行う場合においても、それら使用中の暖房運転や風呂追い焚き運転の使用能力(号数)を把握して、給湯運転に使用できる能力(号数)を適切に得て、過不足のない過流出防止制御を行うことができる貯湯式給湯装置の提供を課題とする。
【0005】
【課題を解決するための手段】
上記課題を達成するため、本発明の貯湯式給湯装置は、バーナによって加熱される貯湯槽を備えると共に、給湯回路の他に暖房回路を設けた貯湯式給湯装置であって、前記給湯回路側には給湯の総流量を制限する総流量調節手段を設けると共に、コントローラには給湯と暖房の同時運転中における前記暖房回路側の使用能力を計算する暖房能力計算手段を設け、該暖房能力計算手段で予め計算された暖房回路側の使用能力を用いて同時運転時における給湯回路側の使用可能最大能力を求めてこれを過流出防止用補正号数 とし、該過流出防止用補正号数 と設定給湯温度と入水温度とから過流出防止流量 を下記の式により求めて、給湯回路の総流量が前記過流出防止流量 以上とならないように過流出防止制御を行うことを第1の特徴としている。
式:R =G ×25℃/(設定給湯温度−入水温度)
また本発明の貯湯式給湯装置は、上記第1の特徴に加えて、暖房能力計算手段による暖房回路側の使用能力の計算は、少なくともバーナの燃焼号数、給湯出力号数を基に算出することを第2の特徴としている。
また本発明の貯湯式給湯装置は、バーナによって加熱される貯湯槽を備えると共に、給湯回路の他に暖房回路を設けた貯湯式給湯装置であって、前記給湯回路側には給湯の総流量を制限する総流量調節手段を設けると共に、コントローラには暖房単独運転中における前記暖房回路側の使用能力を計算する暖房能力計算手段を設け、該暖房能力計算手段で予め計算された暖房回路側の使用能力を用いて給湯と暖房の同時運転時における給湯回路側の使用可能最大能力を求めてこれを過流出防止用補正号数 とし、該過流出防止用補正号数 と設定給湯温度と入水温度とから過流出防止流量 を下記の式により求めて、給湯回路の総流量が前記過流出防止流量 以上とならないように過流出防止制御を行うことを第3の特徴としている。
式:R =G ×25℃/(設定給湯温度−入水温度)
また本発明の貯湯式給湯装置は、バーナによって加熱される貯湯槽を備えると共に、給湯回路の他に風呂追い焚き回路を設けた貯湯式給湯装置であって、前記給湯回路側には給湯の総流量を制限する総流量調節手段を設けると共に、コントローラには風呂温度から風呂追い焚き回路側の使用能力を計算する風呂追い焚き能力計算手段を設け、該風呂追い焚き能力計算手段で予め計算された風呂追い焚き回路側の使用能力を用いて給湯と風呂追い焚きの同時運転時における給湯回路側の使用可能最大能力を求めてこれを過流出防止用補正号数G とし、該過流出防止用補正号数G と設定給湯温度と入水温度とから過流出防止流量R を下記の式により求めて、給湯回路の総流量が前記過流出防止流量R 以上とならないように過流出防止制御を行うことを第4の特徴としている。
式:R =G ×25℃/(設定給湯温度−入水温度)
【0006】
上記第1の特徴によれば、給湯運転と暖房運転の同時運転中において、例えば両運転が安定した状態になったときに、暖房能力計算手段で暖房回路側の実際の使用能力が計算される。そしてこの計算された暖房回路側の使用能力を用いて、給湯回路側での使用可能な最大能力が求められて過流出防止用補正号数とされる。この過流出防止用補正号数と設定給湯温度と入水温度とから過流出防止流量が求められ、給湯回路の総流量が前記過流出防止流量以上とならないように給湯の過流出防止制御が行われる。
よって第1の特徴によれば、給湯運転と暖房運転が同時に行われる場合に、暖房回路側で実際に使用されている能力を用いて、過流出防止用補正号数、過流出防止流量が求められ、所望の温度の温水を、不必要に絞ることなく、最大限の流量で供給することが可能となる。
【0007】
上記第2の特徴によれば、第1の特徴による作用効果に加えて、暖房能力計算手段による同時運転中の暖房回路側の実際の使用能力の計算は、例えば両運転が安定した状況になったときに、そのときのバーナの燃焼号数から給湯出湯号数を差し引いて計算される。
【0008】
上記第3の特徴によれば、暖房運転の単独運転中において、暖房能力計算手段で暖房回路側の実際の使用能力が計算される。そしてこの予め計算された暖房回路側の使用能力を用いて、次に同時運転がなされた際における給湯回路側での使用可能な最大能力が求められて過流出防止用補正号数とされる。この過流出防止用補正号数と設定給湯温度と入水温度とから過流出防止流量が求められ、給湯回路の総流量が前記過流出防止流量以上とならないように給湯の過流出防止制御が行われる。
よって第3の特徴によれば、暖房単独運転中において計算された暖房回路側での実際の使用能力を用いて、同時運転中における給湯回路側での過流出防止制御を現に使用可能な最大能力である過流出防止用補正号数から過流出防止流量を求めることで、所望の温度の温水を、不必要に絞ることなく、最大限の流量で供給することが可能となる。
【0009】
上記第4の特徴によれば、例えば給湯運転と風呂追い焚き運転の同時運転中において、風呂追い焚き能力計算手段で風呂追い焚き回路側の実際の使用能力が計算される。そしてこの計算された風呂追い焚き回路側の使用能力を用いて、同時運転の際における給湯回路側での使用可能な最大能力が求められて過流出防止用補正号数とされる。この過流出防止用補正号数と設定給湯温度と入水温度とから過流出防止流量が求められ、給湯回路の総流量が前記過流出防止流量以上とならないように給湯の過流出防止制御が行われる。
よって第4の特徴によれば、給湯運転と風呂追い焚き運転が同時に行われる場合に、風呂追い焚き回路側で実際に使用される能力を用いて、給湯回路側での過流出防止制御を現に使用可能な最大能力である過流出防止用補正号数から過流出防止流量を求めることで、所望の温度の温水を、不必要に絞ることなく、最大限の流量で供給することが可能となる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しながら説明する。
図1は本発明の実施形態に係る貯湯式給湯装置の概略構成図、図2は本発明の第1の実施形態に係る貯湯式給湯装置の過流出防止のための制御のフロー図、図3は本発明の第2の実施形態を説明する過流出防止のための制御のフロー図、図4は本発明の更に第3の実施形態に貯湯式給湯装置の概略構成図、図5は第3の実施形態に係る過流出防止のための制御のフロー図、図6は第3の実施形態において風呂温度と風呂出力との関係を示す図である。
【0011】
図1を参照して、先ず貯湯式給湯装置の全体を説明する。
符号10は燃焼缶体で、燃焼室11の上部にいわゆるセミ貯湯槽といわれる貯湯槽12を備え、また燃焼室11に対しては、送風機13aや石油噴霧ノズル13bを備えた石油バーナ13が臨まされて設けられている。
前記貯湯槽12は熱交換媒体槽としての機能を果たすもので、その貯湯槽12の温水が給湯に供されるものではない。貯湯槽12には複数本の排ガス通路14が縦方向に貫通する形で設けられている。また前記貯湯槽12には貯湯温度センサ12aが設けられている。
【0012】
前記貯湯槽12に対しては、給湯運転のための給湯回路20が設けられている。給湯回路20は、入水路21と、給湯用熱交換部としての給湯用熱交換コイル22と、出湯路23と、前記入水路21から出湯路23へのバイパス路24と、前記出湯路23とバイパス路24とからの湯水を混合する湯水混合手段25と、該湯水混合手段25から流出する温水を更に下流の給湯栓等の給湯端末29に導く給湯路26と、該給湯路26から分岐された浴槽専用給湯路27とを有する。前記給湯用熱交換コイル22は貯水槽12内に浸漬された形で、貯水槽12内の外周近くの位置で多数回大きく巻回されて構成されている。
前記入水路21には入水温度センサ21aと入水流量センサ21bが設けられ、出湯路23には出湯温度センサ23aが設けられ、給湯路26には給湯温度センサ26aが設けられている。
また前記給湯路26には総流量調節手段28が設けられている。この総流量調節手段28は、入水路21からの通水の全量が熱交換加熱されてもその出湯温度が設定給湯温度に達することができないようなことがないように、該給湯路26に流れる通水の総流量を規制するために設けられる流量制御弁である。
【0013】
前記貯湯槽12に対して、風呂追い焚き運転のための風呂追い焚き回路30も設けられている。該風呂追い焚き回路30は、風呂往路31と、前記燃焼缶体10の貯湯槽12内に前記給湯用熱交換コイル22の場合よりも内側の位置で多数回巻回された風呂加熱用熱交換コイル32と、風呂復路33とを有する。図示しない浴槽内の水は循環ポンプ34により、貯湯槽12内に導かれ、加熱される。前記風呂往路31と風呂復路33との間に三方弁35を介してバイパス路36が設けられ、該バイパス路36に前記浴槽専用給湯路27が、開閉弁27a、流量センサ27b、逆止弁27cを介して接続している。
また前記風呂復路33には、風呂温度センサ33aと風呂水流スイッチ33bが設けられている。
【0014】
また前記貯湯槽12に対して温水暖房運転のための暖房回路40が構成されている。暖房回路40は、貯湯槽12の温水を直接使用して行うことができるように、貯湯槽12に対して、暖房高温往路41が貯湯槽12の最上部に直接接続され、暖房復路43が貯湯槽12の下部に直接接続されている。暖房復路43には循環ポンプ44が設けられ、その下流の途中からは暖房低温往路42が分岐して設けられている。貯湯槽12の上部からバイパス弁45を介してバイパス路46が暖房復路43に接続している。バイパス路46が接続する暖房復路43の途中には小さな貯水部47が設けられ、該貯水部47に前記燃焼缶体10の貯水槽12の水位を検出する水位検出センサ47a、暖房圧力逃し弁47bが設けられている。48はリザーブタンクで、貯湯槽12の水位が低下する等、水量が減った際に貯水部47を介して水を補給する。
【0015】
50はコントローラで、給湯リモコン51、風呂リモコン52、暖房リモコン53と通信接続されており、装置各部の制御を行う。
【0016】
以上の構成に基づいて給湯動作を説明する。今、給湯リモコン51等により給湯装置のメインスイッチがオンされた状態では、実際の給湯運転による給湯が行われているか否かにかかわらず、石油バーナ13が必要に応じて燃焼され、燃焼缶体10の貯湯槽12内の水が加熱される。そして給湯端末29が開かれ、実際の給湯が開始されると、入水路21からの水は、給湯用熱交換コイル22を通過することで貯湯槽12内の温水によって加熱され、出湯路23に出湯し、更に湯水混合手段25を通って給湯路26に流れて給湯端末29から流出する。
また暖房リモコン53によって暖房運転が指令されると、循環ポンプ44が駆動され、必要に応じて石油バーナ13が燃焼されて、貯湯槽12内の温水が暖房回路40を循環して暖房が行われる。
同様に風呂リモコン52によって風呂追い焚き運転が指令されると、循環ポンプ34が駆動され、必要に応じて石油バーナ13が燃焼され、浴槽水が風呂追い焚き回路30を循環して加熱される。
【0017】
図2を参照して、本発明の第1の実施形態に係る貯湯式給湯装置の過流出防止のための制御について説明する。
今、暖房運転が行われており(ステップS1でイエス)、且つ給湯運転が行われている(ステップS2でイエス)場合、即ち給湯運転と暖房運転とが同時運転されている場合において、コントローラ50は、貯湯槽12の貯湯温度センサ12aが検出する貯湯温度Tが1分以内に1℃以上変化せず(ステップS3でイエス)、且つバーナ13の燃焼号数が1分以内に0.5号以上変化せず(ステップS4でイエス)、更に給湯回路20の出湯路23の出湯温度センサ23aの検出する出湯温度Tが1分以内に1℃以上変化しない(ステップS5でイエス)ことを条件に、その状態にあるときの暖房回路40側の実際の使用能力を暖房使用号数Gとして計算する(ステップS6)。
そして暖房回路40での使用能力(暖房使用号数G)が計算されると、コントローラ50は更にその計算された暖房使用号数Gを用いて、給湯回路20側での使用可能な最大能力(号数)を求め、これを過流出防止用補正号数Gとして、この得られた過流出防止用補正号数Gに基いて、総流量調節手段28による給湯回路20側の過流出防止制御を行う(ステップS7)。
上記において号数とは、その1号が1リットルの水を1分間に25℃加熱させる熱量をいう。
【0018】
上記において暖房回路40側の使用能力の計算は、コントローラ50内に構成される暖房能力計算手段により計算される。即ち、先ず給湯回路20の出湯温度センサ23aが検出する出湯温度Tと、入水温度センサ21aが検出する入水温度Tと、入水流量センサ21bと湯水混合手段25による混合割合から算出される出湯路23に流れる出湯流量Rとから、給湯出力号数Gを次の式1で計算する。
=((T−T)/25℃)×R・・・式1
そして運転中におけるバーナ13の燃焼号数(バーナ出力号数)Gと前記給湯出力号数Gとから、暖房使用号数Gを式2で引き算して計算する。
=G−G・・・式2
ここで、例えばバーナ出力号数Gを24号、給湯出力号数Gを20号としたら、暖房使用号数Gは4号(24号−20号)と計算される。
即ち、同時運転中において暖房回路40側で実際に使用されている使用号数が暖房使用号数Gとして計算される。
従って上記暖房使用号数Gが計算された後においては、給湯と暖房の同時運転においてバーナ13が燃焼することが可能な最大出力号数Gbmaxが決まると、過流出防止用補正号数Gは次の式3で計算され、その計算された過流出防止用補正号数Gに対応する最大可能流量が過流出防止流量Rとして式4で計算され、総流量調節手段28によりそれ以上の流量が出ないように制御される。
=Gbmax−G・・・式3
ここで、例えばバーナ最大出力号数Gbmaxを25号とし、暖房使用号数Gを4号とすれば、過流出防止用補正号数Gは21号(25号−4号)と計算される。
=G×25℃/(設定給湯温度−入水温度)・・・式4
【0019】
なお上記ステップS3における条件は、貯湯槽12内の貯湯温度が安定していることを条件としたもので、ステップS3に具体的に示す条件に限定されるものではない。同様に上記ステップS4に示す条件は、バーナ13の燃焼号数が安定していることを条件としたもので、ステップS4に具体的に示す条件に限定されるものではない。更に上記ステップS5に示す条件は、給湯回路20の出湯路23の出湯温度が安定していることを条件としたもので、ステップS5に具体的に示す条件に限定されるものではない。
上記のステップS3、S4、S5の各条件は、それらの総合として、要するに給湯と暖房の同時運転中における運転の状況が安定しているという条件を課したものである。同時運転が安定して行われている状態で給湯回路20側の実際の使用号数を得ることによって、より正確な暖房使用号数Gを計算することができ、よってより正確な過流出防止用補正号数Gを得て、より適切な過流出防止を行うことができる。
【0020】
図3を参照して、本発明の第2の実施形態に係る貯湯式給湯装置の過流出防止のための制御について説明する。
今、暖房運転が単独で行われている(ステップS11でイエス)場合において、コントローラ50は、貯湯温度Tが75℃以下の場合には(ステップS12でイエス)、バーナ13の燃焼を開始すると共に、コントローラ50内蔵の燃焼タイマをスタートさせる(ステップS13)。この暖房運転の単独運転の場合においては、バーナ13の燃焼は一定のバーナ出力号数G(燃焼能力)、例えば10号に固定して行う。そして貯湯温度Tが85℃以上になれば(ステップS14でイエス)、バーナ13の燃焼を停止し、その間の燃焼時間Honを記憶し、コントローラ50内蔵の燃焼停止タイマをスタートさせる(ステップS15)。
そして燃焼停止により貯湯温度Tが再び75℃以下になると(ステップS16でイエス)、その間の燃焼停止時間Hoffを記憶し(ステップS17)、暖房使用号数Gを計算して、更新して記憶させる(ステップS18)。
前記において、バーナ13の出力号数Gを前記10号に固定、燃焼時間Honを例えば3分、燃焼停止時間Hoffを例えば3分とすると、実際の暖房使用号数Gは次の式5で計算できる。
=G×Hon/(Hon+Hoff)・・・式5
即ち、実際の暖房使用号数Gは5号(10×3/3+3)として計算される。
【0021】
上記暖房使用号数Gが計算された後においては、次回の給湯と暖房の同時運転時には、同時運転時においてバーナ13が燃焼することができるバーナ最大出力号数Gbmax(例えば25号)が決まると、過流出防止用補正号数Gは上記式3で計算され、その計算された過流出防止用補正号数Gに対応する最大可能流量が過流出防止流量Rとして上記式4で計算され、総流量調節手段28によりそれ以上の流量が出ないように制御される。
なお上記ステップS12、S14における貯湯槽12の温度条件は、そこに示される具体的な数値に限定されるものではなく、貯湯槽12を好ましい高温に保持するための条件温度として、他の適当な温度を採用することができる。
また、ステップS18における暖房使用号数の計算は、複数回の計算の平均としてもよい。
更にステップS18における暖房使用号数Gの更新については、前回と今回との値が大きく離れている場合には、値を更新しない措置を採るようにしてもよい。
暖房単独運転時における暖房回路40側の実際の暖房使用号数Gを計算することによって、次回からの給湯と暖房の同時運転時に、より正確な過流出防止用補正号数Gを得て、より適切な過流出防止を行うことができる。
【0022】
図4〜図6に沿って、本発明の第3の実施形態を説明する。先ず図4に従ってこの実施形態の貯湯式給湯装置そのものの構成を説明する。
60は燃焼缶体、61は燃焼室、62は貯湯槽である。貯湯槽62の温度は貯湯温度センサ62aで検出される。64は排ガス通路、65は安全弁である。
給湯回路70は、入水路71と出湯路73とバイパス路74と、前記出湯路73と前記バイパス路74との湯水を混合する湯水混合手段75を介して接続する給湯路76とからなる。
前記入水路71には入水温度センサ71aと入水流量センサ71bが、前記出湯路73には出湯温度センサ73aが、前記給湯路76には給湯温度センサ76aが設けられている。また総流量調節手段78が給湯路76に設けられている。
この実施形態では給湯は、貯湯槽62の温水が直接給湯に供され、貯湯槽62の温水の減少した分だけ水が入水路71を通って補給される。
風呂追い焚き回路80は、風呂往路81と、前記燃焼缶体60の貯湯槽62内に設けられた風呂加熱用熱交換コイル82と、風呂復路83とを有する。浴槽85内の水は循環ポンプ84により、貯湯槽62内に導かれ、加熱される。
前記風呂復路83には、風呂温度センサ83aが設けられている。
90はコントローラで、給湯リモコン91、風呂リモコン92と通信接続されており、装置各部の制御を行う。
【0023】
以上の構成に基づいて給湯動作を説明する。今、給湯リモコン91等により給湯装置のメインスイッチがオンされた状態では、実際の給湯運転による給湯が行われているか否かにかかわらず、石油バーナ63が必要に応じて燃焼され、燃焼缶体60の貯湯槽62内の水が加熱される。そして図示しない給湯端末が開かれ、実際の給湯が開始されると、貯湯槽62内の温水が出湯路73に出湯され、必要に応じてバイパス路74からの水と混合されて給湯路76に供給される。貯湯槽62内の温水量が低下すると、入水路71から水が貯湯槽62に補充される。
同様に風呂リモコン92によって風呂追い焚き運転が指令されると、循環ポンプ84が駆動され、必要に応じて石油バーナ63が燃焼され、浴槽水が風呂追い焚き回路80を循環して加熱される。
【0024】
図5を参照して、本発明の第3の実施形態に係る貯湯式給湯装置の過流出防止のための制御について説明する。
今、風呂追い焚き運転中において(ステップS21でイエス)、給湯端末が開かれ給湯運転が開始された(ステップS22でイエス)場合には、コントローラ90は、その給湯運転の開始時における風呂温度Tを検出する(ステップS23)。そして該検出された風呂温度Tを基にして、その時の風呂追い焚き回路80での使用号数、即ち風呂使用号数Gを計算する(ステップS24)。
そして風呂追い焚き回路80での使用能力(風呂使用号数G)が計算されると、コントローラ90は更にその計算された実際の使用能力(風呂使用号数G)を用いて、給湯回路70側での使用可能な最大能力(過流出防止用補正号数G)を求め、この得られた使用可能最大能力(過流出防止用補正号数G)に基づいて、給湯回路70に流すことができる最大可能流量、即ち過流出防止流量Rを計算する(ステップS25)。
そして得られた過流出防止流量Rに基づいて総流量調節手段78による給湯回路70側の過流出防止制御を行う(ステップS26)。給湯運転が停止されると(ステップS27でイエス)、ステップS21に戻る。
【0025】
上記ステップS24で検出された風呂温度Tからの風呂使用号数Gの計算は、図6を参照して、予め実験等により風呂温度Tと風呂使用号数Gとの関係を得ておき、この関係を関係式やテーブルとしてコントローラ90に記憶させておくことにより行う。即ち、給湯運転を開始した時点で風呂温度Tを検出し、該検出風呂温度Tからコントローラ90で対応する風呂使用号数Gを得る。
次にステップS25での過流出防止流量Rの計算は、先ず前記計算された風呂使用号数Gを用いて、同時運転時に給湯回路70側で実際に使用することが可能な最大給湯出力号数である過流出防止用補正号数Gを式6で求める。式6の計算でGbmaxは、風呂と給湯の同時運転の際にバーナ63が燃焼出力することができるバーナの最大出力号数である。
=Gbmax−G・・・式6
ここで、例えばバーナ最大出力号数Gbmaxを25号とし、前記計算された風呂使用号数Gを8号とすれば、過流出防止用補正号数Gは17号(25号−8号)と計算される。
そしてその計算された過流出防止用補正号数Gから前記過流出防止流量Rの計算は、上記式4によって計算できる。
よって総流量調節手段78により、給湯回路70に流れることができる最大給湯流量が前記過流出防止流量Rになるように制御される。
【0026】
上記において、風呂追い焚き運転中に給湯運転が開始されると、給湯運転が終了するまでは風呂使用号数Gを変更しないようにすることで、給湯回路70側において、使用中に流量が増えたり或いはミキシングしていて湯量が増えたりすることによってミキシング湯温が上昇するのを防止し、給湯を安定して行うことができる。
また上記において、コントローラ90に記憶させておく風呂温度Tと風呂使用号数Gとの関係データを、浴槽85からの距離が一定で且つ浴槽85に近い位置に設けた風呂温度センサ83aで検出した風呂温度Tデータを用いることで、実際の風呂の状態により即した状態をとらえることができ、風呂の配管施工状態にかかわらず、計算上の給湯出力が不足するといったことを防止することができる。
【0027】
なお上記第1、第2の実施形態では、図1に示す1缶3回路の給湯装置において、給湯運転と暖房運転との2つの運転が同時運転される場合の給湯回路側での過流出防止制御について述べたが、給湯運転と暖房運転との代わりに、給湯運転と風呂追い焚き運転とが同時運転される場合も同様である。
即ち、第1の実施形態や第2の実施形態において、図2、図3のフローチャートや式1〜式6において使用される暖房運転に関する各言葉、数値、記号、その他を対応する風呂追い焚き運転の言葉、数値、記号に置き換えれば、そのまま給湯運転と風呂追い焚き運転との同時運転での給湯回路側の過流出防止制御となる。
【0028】
更に図1に示す給湯装置において、給湯運転と暖房運転と風呂追い焚き運転とを同時運転する場合における給湯回路での過流出防止制御も、同様に行うが可能である。
この場合、第1の実施形態では、給湯運転と暖房運転と風呂追い焚き運転が同時運転されている場合に、その運転が安定状態になった時点で、バーナ出力号数Gと給湯出力号数Gとから、残る暖房運転と風呂追い焚き運転とにおける合計の使用号数を得て、この合計使用号数を暖房使用号数Gの代わりに用いて式2〜式4に当てはめ、過流出防止用補正号数Gや過流出防止流量Rを求め、総流量調節手段28による過流出防止を行えばよい。
また第2の実施形態では、暖房運転が単独でなされている場合に暖房使用号数Gを計算して、これをコントローラ50に記憶させておく他、同様に風呂追い焚き運転が単独でなされている場合における風呂温度Tと風呂使用号数Gとの関係を、例えば第3の実施形態において図6で説明したような関係式或いはテーブルとして得てコントローラ50に記憶させておくことで、給湯運転と暖房運転と風呂追い焚き運転との3運転が同時運転された場合には、前記暖房使用号数Gと風呂使用号数Gの合計号数を、暖房使用号数Gの代わりに用いて式2〜式6に当てはめて、過流出防止用補正号数Gや過流出防止流量Rを求め、総流量調節手段28による過流出防止を行えばよい。
【0029】
【発明の効果】
本発明は以上の構成、作用からなり、請求項1に記載の貯湯式給湯装置によれば、バーナによって加熱される貯湯槽を備えると共に、給湯回路の他に暖房回路を設けた貯湯式給湯装置であって、前記給湯回路側には給湯の総流量を制限する総流量調節手段を設けると共に、コントローラには給湯と暖房の同時運転中における前記暖房回路側の使用能力を計算する暖房能力計算手段を設け、該暖房能力計算手段で予め計算された暖房回路側の使用能力を用いて同時運転時における給湯回路側の使用可能最大能力を求めてこれを過流出防止用補正号数 とし、該過流出防止用補正号数 と設定給湯温度と入水温度とから過流出防止流量 を下記の式により求めて、給湯回路の総流量が前記過流出防止流量 以上とならないように過流出防止制御を行うようにしたので、
式:R =G ×25℃/(設定給湯温度−入水温度)
給湯運転と暖房運転が同時に行われる場合に、暖房回路側で実際に使用されている能力を用いて、過流出防止用補正号数、過流出防止流量が求められ、所望の温度の温水を、不必要に絞ることなく、最大限の流量で供給することが可能となる。
また請求項2に記載の貯湯式給湯装置によれば、上記請求項1に記載の構成による効果に加えて、暖房能力計算手段による暖房回路側の使用能力の計算は、少なくともバーナの燃焼号数、給湯出力号数を基に算出するようにしたので、
暖房能力計算手段による同時運転中の暖房回路側の実際の使用能力の計算は、例えば両運転が安定した状態になった時に、その時のバーナの燃焼号数から給湯出湯号数を差し引いて計算することが容易にできる。
また請求項3に記載の貯湯式給湯装置によれば、バーナによって加熱される貯湯槽を備えると共に、給湯回路の他に暖房回路を設けた貯湯式給湯装置であって、前記給湯回路側には給湯の総流量を制限する総流量調節手段を設けると共に、コントローラには暖房単独運転中における前記暖房回路側の使用能力を計算する暖房能力計算手段を設け、該暖房能力計算手段で予め計算された暖房回路側の使用能力を用いて給湯と暖房の同時運転時における給湯回路側の使用可能最大能力を求めてこれを過流出防止用補正号数 とし、該過流出防止用補正号数 と設定給湯温度と入水温度とから過流出防止流量 を下記の式により求めて、給湯回路の総流量が前記過流出防止流量 以上とならないように過流出防止制御を行うようにしたので、
式:R =G ×25℃/(設定給湯温度−入水温度)
暖房単独運転中において計算された暖房回路側での実際の使用能力を用いて、同時運転中における給湯回路側での過流出防止制御を、現に使用可能な最大能力である過流出防止用補正号数から過流出防止流量を求めることで、所望の温度の温水を、不必要に絞ることなく、最大限の流量で供給することが可能となる。
また請求項4に記載の貯湯式給湯装置によれば、バーナによって加熱される貯湯槽を備えると共に、給湯回路の他に風呂追い焚き回路を設けた貯湯式給湯装置であって、前記給湯回路側には給湯の総流量を制限する総流量調節手段を設けると共に、コントローラには風呂温度から風呂追い焚き回路側の使用能力を計算する風呂追い焚き能力計算手段を設け、該風呂追い焚き能力計算手段で予め計算された風呂追い焚き回路側の使用能力を用いて給湯と風呂追い焚きの同時運転時における給湯回路側の使用可能最大能力を求めてこれを過流出防止用補正号数 とし、該過流出防止用補正号数 と設定給湯温度と入水温度とから過流出防止流量 を下記の式により求めて、給湯回路の総流量が前記過流出防止流量 以上とならないように過流出防止制御を行うようにしたので、
式:R =G ×25℃/(設定給湯温度−入水温度)
給湯運転と風呂追い焚き運転が同時に行われる場合に、風呂追い焚き回路側で実際に使用される能力を用いて、給湯回路側での過流出防止制御を、現に使用可能な最大能力である過流出防止用補正号数から過流出防止流量を求めることで、所望の温度の温水を、不必要に絞ることなく、最大限の流量で供給することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る貯湯式給湯装置の概略構成図である。
【図2】本発明の第1の実施形態に係る貯湯式給湯装置の過流出防止のための制御のフロー図である。
【図3】本発明の第2の実施形態を説明する過流出防止のための制御のフロー図である。
【図4】本発明の更に第3の実施形態に貯湯式給湯装置の概略構成図である。
【図5】第3の実施形態に係る過流出防止のための制御のフロー図である。
【図6】第3の実施形態において風呂温度と風呂出力との関係を示す図である。
【符号の説明】
10 燃焼缶体
11 燃焼室
12 貯湯槽
12a 貯湯温度センサ
13 石油バーナ
20 給湯回路
21 入水路
21a 入水温度センサ
21b 入水流量センサ
22 給湯用熱交換コイル
23 出湯路
23a 出湯温度センサ
24 バイパス路
25 湯水混合手段
26 給湯路
26a 給湯温度センサ
28 総流量調節手段
29 給湯端末
30 風呂追い焚き回路
40 暖房回路
50 コントローラ
51 給湯リモコン
52 風呂リモコン
53 暖房リモコン
60 燃焼缶体
61 燃焼室
62 貯湯槽
63 石油バーナ
70 給湯回路
71 入水路
71a 入水温度センサ
71b 入水流量センサ
73 出湯路
73a 出湯温度センサ
76 給湯路
76a 給湯温度センサ
78 総流量調節手段
80 風呂追い焚き回路
83a 風呂温度センサ
90 コントローラ
91 給湯リモコン
92 風呂リモコン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot water storage type hot water supply apparatus, and more specifically, a so-called semi hot water storage type hot water storage tank is provided in a combustion can body, and hot water hot water supply, hot water heating, or reheating of a bath can be performed using the semi hot water storage tank. The present invention relates to a hot water storage type hot water supply apparatus.
[0002]
[Prior art]
Conventionally, in addition to a hot water supply circuit for supplying hot water to the kitchen or other places, a heating circuit or a bath reheating circuit is operated using one semi-hot water storage layer, so-called one can two circuits or one can three circuits semi hot water storage. A hot water supply apparatus is provided. In such a hot water supply apparatus, for example, the control for preventing excessive outflow on the hot water supply circuit side when the heating operation is performed at the same time is performed with the use capacity of the heating operation as a virtual fixed constant number. That is, during simultaneous operation, the number used for heating operation is always treated as a fixed constant number, and the remaining number obtained by subtracting the constant number for heating from the maximum combustion number of the burner of the hot water supply device, Overflow prevention control was performed.
[0003]
[Problems to be solved by the invention]
However, since the actual number of heating use is not constant, for example, the heating capacity is required in the initial stage of heating operation, and if it is used for a long time, the heating capacity is not so necessary. Therefore, if the number of used heating operation is fixed to a virtual constant number and the overflow prevention control of hot water supply operation is performed as before, the combustion number will become excessive and insufficient, and the total flow rate on the hot water supply side will be more than necessary. There is a possibility that hot water having a temperature lower than the desired temperature may be supplied due to lack of restriction of the total flow rate on the hot water supply side due to the restriction of excessive outflow.
[0004]
Therefore, the present invention eliminates the drawbacks of the conventional hot water storage type hot water supply apparatus, and even when the hot water supply operation is performed simultaneously with the heating operation or the bath reheating operation, the use capability (No. It is an object of the present invention to provide a hot water storage type hot water supply apparatus capable of grasping the number) and appropriately obtaining the ability (number) that can be used for hot water supply operation, and performing overflow prevention control without excess or deficiency.
[0005]
[Means for Solving the Problems]
  In order to achieve the above object, a hot water storage type hot water supply apparatus of the present invention is a hot water storage type hot water supply apparatus provided with a hot water storage tank heated by a burner and provided with a heating circuit in addition to a hot water supply circuit, on the hot water supply circuit side. Is provided with total flow rate adjusting means for limiting the total flow rate of hot water supply, and the controller is provided with heating capacity calculation means for calculating the use capacity on the heating circuit side during simultaneous operation of hot water supply and heating. Using the pre-calculated capacity on the heating circuit side, the maximum usable capacity on the hot water supply circuit side at the time of simultaneous operation is obtained, and this is corrected for overflow prevention.G k And the number of corrections for preventing excessive outflowG k Overflow prevention flow rate from the set hot water temperature and incoming water temperatureR k By the following formulaThe total flow rate of the hot water supply circuitR k The first feature is to perform overflow prevention control so as not to become above.
                Formula: R k = G k × 25 ° C / (Set hot water temperature-incoming water temperature)
  In addition to the first feature, the hot water storage type hot water supply apparatus of the present invention calculates the use capacity on the heating circuit side by the heating capacity calculation means based on at least the burner combustion number and the hot water supply output number. This is the second feature.
  The hot water storage type hot water supply apparatus of the present invention includes a hot water storage tank heated by a burner, and a hot water storage type hot water supply apparatus provided with a heating circuit in addition to the hot water supply circuit, wherein a total flow rate of hot water is supplied to the hot water supply circuit side. The controller is provided with a total flow rate control means for limiting, and the controller is provided with a heating capacity calculation means for calculating the use capacity on the heating circuit side during the single heating operation, and the heating circuit side use calculated in advance by the heating capacity calculation means Using the capacity, find the maximum usable capacity on the hot water supply circuit side during simultaneous operation of hot water supply and heating, and calculate this as the correction number for overflow preventionG k And the number of corrections for preventing excessive outflowG k Overflow prevention flow rate from the set hot water temperature and incoming water temperatureR k By the following formulaThe total flow rate of the hot water supply circuitR k The third feature is to perform overflow prevention control so as not to become above.
                Formula: R k = G k × 25 ° C / (Set hot water temperature-incoming water temperature)
  The hot water storage type hot water supply apparatus of the present invention includes a hot water storage tank heated by a burner, and a hot water storage type hot water supply apparatus provided with a bath replenishment circuit in addition to the hot water supply circuit. In addition to providing a total flow rate adjusting means for limiting the flow rate, the controller is provided with a bath replenishment capacity calculating means for calculating the use capacity of the bath reheating circuit side from the bath temperature. Obtain the maximum usable capacity on the hot water supply circuit side during simultaneous operation of hot water supply and bath reheating using the use capacity on the bath reheating circuit sideCorrection number G for overflow prevention k And the correction number G for overflow prevention k Overflow prevention flow rate R from the set hot water temperature and incoming water temperature k Is obtained by the following equation, and the total flow rate of the hot water supply circuit is the overflow prevention flow rate R: k Overflow prevention control so that it does not exceed the aboveThe fourth feature is to perform the above.
                Formula: R k = G k × 25 ° C / (Set hot water temperature-incoming water temperature)
[0006]
  According to the first feature, during the simultaneous operation of the hot water supply operation and the heating operation, for example, when both operations become stable, the actual use capacity on the heating circuit side is calculated by the heating capacity calculation means. . Then, using this calculated use capacity on the heating circuit side, the maximum usable capacity on the hot water supply circuit side is obtained.This is the correction number for preventing excessive outflow. The overflow prevention flow rate is obtained from this overflow prevention correction number, the set hot water temperature, and the incoming water temperature so that the total flow rate of the hot water supply circuit does not exceed the overflow prevention flow rate.Hot water overflow prevention control is performed.
  Therefore, according to the first feature, when the hot water supply operation and the heating operation are performed at the same time, using the ability actually used on the heating circuit side,Correction number for overflow prevention and overflow prevention flow rate are required,It is possible to supply hot water at a desired temperature at the maximum flow rate without unnecessarily squeezing.
[0007]
According to the second feature, in addition to the function and effect of the first feature, the calculation of the actual use capacity on the heating circuit side during the simultaneous operation by the heating capacity calculation means is, for example, a situation where both operations are stable. Is calculated by subtracting the number of hot water supply and hot water from the number of burners burned at that time.
[0008]
  According to the third feature, during the single operation of the heating operation, the actual use capacity on the heating circuit side is calculated by the heating capacity calculation means. Then, using the pre-calculated capacity on the heating circuit side, the maximum usable capacity on the hot water supply circuit side when the next simultaneous operation is performed is obtained.This is the correction number for preventing excessive outflow. The overflow prevention flow rate is obtained from this overflow prevention correction number, the set hot water temperature, and the incoming water temperature so that the total flow rate of the hot water supply circuit does not exceed the overflow prevention flow rate.Hot water overflow prevention control is performed.
  Therefore, according to the third feature, the overuse prevention control on the hot water supply circuit side during the simultaneous operation is performed using the actual use capacity on the heating circuit side calculated during the heating independent operation.,Maximum capacity currently availableBy calculating the overflow prevention flow rate from the overflow prevention correction numberIt is possible to supply hot water at a desired temperature at the maximum flow rate without unnecessarily squeezing.
[0009]
  According to the fourth feature, for example, during the simultaneous operation of the hot water supply operation and the bath chase operation, the actual use capacity on the bath chase circuit side is calculated by the bath chase capacity calculation means. Then, the maximum usable capacity on the hot water supply circuit side during simultaneous operation is calculated using the calculated usable capacity on the bath reheating circuit side.This is the correction number for preventing excessive outflow. The overflow prevention flow rate is obtained from this overflow prevention correction number, the set hot water temperature, and the incoming water temperature so that the total flow rate of the hot water supply circuit does not exceed the overflow prevention flow rate.Hot water overflow prevention control is performed.
  Therefore, according to the fourth feature, when the hot water supply operation and the bath reheating operation are performed simultaneously, the overflow prevention control on the hot water supply circuit side is performed using the ability actually used on the bath reheating circuit side.,Maximum capacity currently availableBy calculating the overflow prevention flow rate from the overflow prevention correction numberIt is possible to supply hot water at a desired temperature at the maximum flow rate without unnecessarily squeezing.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
1 is a schematic configuration diagram of a hot water storage type hot water supply apparatus according to an embodiment of the present invention, FIG. 2 is a flow chart of control for preventing excessive outflow of the hot water storage type hot water supply apparatus according to the first embodiment of the present invention, FIG. FIG. 4 is a flow chart of control for preventing an excessive outflow, explaining a second embodiment of the present invention, FIG. 4 is a schematic configuration diagram of a hot water storage type hot water supply apparatus according to a third embodiment of the present invention, and FIG. FIG. 6 is a diagram showing the relationship between bath temperature and bath output in the third embodiment.
[0011]
With reference to FIG. 1, the whole hot water storage type hot water supply apparatus is demonstrated first.
Reference numeral 10 denotes a combustion can body. The combustion chamber 11 includes a hot water storage tank 12 called a semi-hot water storage tank, and an oil burner 13 including a blower 13a and an oil spray nozzle 13b faces the combustion chamber 11. Has been provided.
The hot water storage tank 12 serves as a heat exchange medium tank, and the hot water in the hot water storage tank 12 is not provided for hot water supply. The hot water storage tank 12 is provided with a plurality of exhaust gas passages 14 penetrating in the vertical direction. The hot water storage tank 12 is provided with a hot water storage temperature sensor 12a.
[0012]
A hot water supply circuit 20 for hot water supply operation is provided for the hot water tank 12. The hot water supply circuit 20 includes a water inlet 21, a hot water heat exchange coil 22 as a hot water heat exchanger, a hot water outlet 23, a bypass 24 from the water inlet 21 to the hot water outlet 23, and the hot water outlet 23. A hot water mixing means 25 for mixing hot water from the bypass path 24, a hot water supply path 26 for leading the hot water flowing out from the hot water mixing means 25 to a hot water supply terminal 29 such as a hot water tap further downstream, and the hot water supply path 26 are branched. And a hot water supply passage 27 dedicated to the bathtub. The hot water supply heat exchanging coil 22 is soaked in the water storage tank 12 and is configured to be wound many times at a position near the outer periphery of the water storage tank 12.
The water inlet channel 21 is provided with a water inlet temperature sensor 21a and a water inlet flow rate sensor 21b, the hot water outlet channel 23 is provided with a hot water temperature sensor 23a, and the hot water supply channel 26 is provided with a hot water temperature sensor 26a.
The hot water supply passage 26 is provided with a total flow rate adjusting means 28. The total flow rate adjusting means 28 flows into the hot water supply passage 26 so that the hot water temperature does not reach the set hot water supply temperature even when the total amount of water flowing from the water inlet passage 21 is heat exchange heated. It is a flow control valve provided in order to regulate the total flow of water flow.
[0013]
A bath reheating circuit 30 for bath reheating operation is also provided for the hot water storage tank 12. The bath reheating circuit 30 has a bath heating path 31 and a heat exchange for heating the bath which is wound many times in the hot water storage tank 12 of the combustion can body 10 at a position inside the case of the heat exchange coil 22 for hot water supply. A coil 32 and a bath return path 33 are provided. The water in the bathtub (not shown) is guided into the hot water tank 12 by the circulation pump 34 and heated. A bypass path 36 is provided between the bath outward path 31 and the bath return path 33 via a three-way valve 35, and the bathtub dedicated hot water supply path 27 is provided in the bypass path 36 with an on-off valve 27 a, a flow sensor 27 b, and a check valve 27 c. Connected through.
The bath return path 33 is provided with a bath temperature sensor 33a and a bath water flow switch 33b.
[0014]
A heating circuit 40 for hot water heating operation is configured for the hot water storage tank 12. The heating circuit 40 is connected directly to the uppermost part of the hot water storage tank 12 with respect to the hot water storage tank 12 so that the hot water in the hot water storage tank 12 can be used directly. It is directly connected to the lower part of the tank 12. A circulation pump 44 is provided in the heating return path 43, and a heating low-temperature forward path 42 is branched from the middle of the downstream. A bypass passage 46 is connected to the heating return passage 43 from the upper part of the hot water storage tank 12 through a bypass valve 45. A small water storage section 47 is provided in the middle of the heating return path 43 to which the bypass path 46 is connected. The water storage section 47 has a water level detection sensor 47a for detecting the water level of the water storage tank 12 of the combustion can body 10, and a heating pressure relief valve 47b. Is provided. A reserve tank 48 replenishes water via the water storage section 47 when the amount of water decreases, for example, when the water level in the hot water tank 12 decreases.
[0015]
A controller 50 is connected to the hot water remote controller 51, the bath remote controller 52, and the heating remote controller 53, and controls each part of the apparatus.
[0016]
The hot water supply operation will be described based on the above configuration. Now, when the main switch of the hot water supply device is turned on by the hot water remote controller 51 or the like, the oil burner 13 is combusted as necessary regardless of whether the hot water supply is actually performed or not, and the combustion can body The water in the ten hot water storage tanks 12 is heated. Then, when the hot water supply terminal 29 is opened and the actual hot water supply is started, the water from the water inlet 21 is heated by the hot water in the hot water storage tank 12 by passing through the heat exchange coil 22 for hot water supply, and enters the hot water outlet 23. The hot water is discharged, and further flows through the hot water mixing means 25 to the hot water supply passage 26 and flows out from the hot water supply terminal 29.
When a heating operation is commanded by the heating remote controller 53, the circulation pump 44 is driven, the oil burner 13 is combusted as necessary, and the hot water in the hot water tank 12 circulates through the heating circuit 40 to perform heating. .
Similarly, when a bath reheating operation is commanded by the bath remote controller 52, the circulation pump 34 is driven, the oil burner 13 is burned as necessary, and the bath water circulates through the bath reheating circuit 30 and is heated.
[0017]
With reference to FIG. 2, the control for preventing the excessive outflow of the hot water storage type hot water supply apparatus according to the first embodiment of the present invention will be described.
When the heating operation is being performed (Yes in Step S1) and the hot water supply operation is being performed (Yes in Step S2), that is, when the hot water supply operation and the heating operation are simultaneously performed, the controller 50 Is the hot water storage temperature T detected by the hot water storage temperature sensor 12a of the hot water storage tank 12.cDoes not change more than 1 ° C. within 1 minute (Yes in Step S3), and the combustion number of the burner 13 does not change more than 0.5 within 1 minute (Yes in Step S4). Hot water temperature T detected by the hot water temperature sensor 23a of the hot water channel 23sOn the condition that the temperature does not change by 1 ° C. or more within 1 minute (Yes in step S5), the actual usage capacity on the heating circuit 40 side in that state is the heating usage number Gd(Step S6).
And the capacity of use in the heating circuit 40 (number of heating use Gd) Is calculated, the controller 50 further calculates the calculated heating usage number G.dIs used to obtain the maximum capacity (number) that can be used on the hot water supply circuit 20 side, and this is calculated as a correction number G for overflow prevention.kThe obtained correction number G for overflow prevention obtained askOn the basis of this, overflow prevention control on the hot water supply circuit 20 side by the total flow rate adjusting means 28 is performed (step S7).
In the above, the number refers to the amount of heat that heats 1 liter of water at 25 ° C. per minute.
[0018]
In the above description, the usage capacity on the heating circuit 40 side is calculated by the heating capacity calculation means configured in the controller 50. That is, first, the hot water temperature T detected by the hot water temperature sensor 23a of the hot water supply circuit 20 is detected.sAnd the incoming water temperature T detected by the incoming water temperature sensor 21a.nAnd the hot water flow rate R flowing in the hot water outlet 23 calculated from the mixing ratio of the incoming water flow rate sensor 21b and the hot water mixing means 25.sAnd hot water supply output number GsIs calculated by the following equation 1.
Gs= ((Ts-Tn) / 25 ° C) x Rs... Formula 1
And the burner number of burner 13 during operation (burner output number) GbAnd the hot water supply output number GsAnd the number G of heating usedIs subtracted by Equation 2 and calculated.
Gd= Gb-Gs... Formula 2
Here, for example, the burner output number GbNo. 24, hot water supply output number GsIf the number is 20, the number G of heating usedIs calculated as No. 4 (No. 24-20).
That is, during the simultaneous operation, the number actually used on the heating circuit 40 side is the heating number GdIs calculated as
Therefore, the heating use number GdIs calculated, the maximum output number G that can be burned by the burner 13 in the simultaneous operation of hot water supply and heating.bmaxIs determined, the overflow prevention correction number GkIs calculated by the following formula 3, and the calculated correction number G for overflow prevention is calculated.kThe maximum possible flow rate corresponding tokAnd is controlled by the total flow rate adjusting means 28 so that no further flow rate is generated.
Gk= Gbmax-Gd... Formula 3
Here, for example, burner maximum output number GbmaxNo. 25 and the number G of heating used4 is the correction number G for overflow prevention.kIs calculated as No. 21 (No. 25-4).
Rk= GkX 25 ° C / (set hot water temperature-incoming water temperature) ... Formula 4
[0019]
The condition in step S3 is a condition that the hot water storage temperature in the hot water tank 12 is stable, and is not limited to the condition specifically shown in step S3. Similarly, the condition shown in step S4 is a condition that the combustion number of the burner 13 is stable, and is not limited to the condition specifically shown in step S4. Furthermore, the condition shown in step S5 is that the temperature of the hot water in the hot water path 23 of the hot water supply circuit 20 is stable, and is not limited to the condition specifically shown in step S5.
Each of the above conditions of steps S3, S4, and S5 imposes a condition that, as a sum of them, the operation status during simultaneous operation of hot water supply and heating is stable. By obtaining the actual number of use on the hot water supply circuit 20 side in a state where the simultaneous operation is stably performed, a more accurate heating use number GdTherefore, the more accurate correction number G for overflow prevention can be calculated.kThus, more appropriate overflow prevention can be performed.
[0020]
With reference to FIG. 3, the control for preventing the excessive outflow of the hot water storage type hot water supply apparatus according to the second embodiment of the present invention will be described.
When the heating operation is being performed independently (Yes in step S11), the controller 50 determines the hot water storage temperature T.cWhen the temperature is 75 ° C. or lower (Yes in step S12), combustion of the burner 13 is started and a combustion timer built in the controller 50 is started (step S13). In the case of this heating operation alone, the burner 13 burns at a constant burner output number G.b(Combustion capacity), for example, fixed to No. 10. And hot water storage temperature TcWhen the temperature reaches 85 ° C. or higher (Yes in step S14), the combustion of the burner 13 is stopped, and the combustion time H during that timeonIs stored, and a combustion stop timer built in the controller 50 is started (step S15).
And the hot water storage temperature TcWhen the temperature falls below 75 ° C. again (Yes in step S16), the combustion stop time H during that timeoffIs stored (step S17), and the heating use number GdIs updated and stored (step S18).
In the above, the output number G of the burner 13bFixed to No. 10 above, burning time HonFor example, 3 minutes, combustion stop time HoffFor example, assuming that 3 minutes, the actual number of heating use GdCan be calculated by the following equation (5).
Gd= Gb× Hon/ (Hon+ Hoff) ... Formula 5
That is, the actual heating use number GdIs calculated as No. 5 (10 × 3/3 + 3).
[0021]
Number of heating use GdIs calculated, the maximum output number G of the burner that can burn the burner 13 during the simultaneous operation of the next hot water supply and heating.bmaxWhen (for example, No. 25) is determined, the correction number G for excessive outflow preventionkIs calculated by Equation 3 above, and the calculated correction number G for overflow prevention is calculated.kThe maximum possible flow rate corresponding tokThe total flow rate adjusting means 28 controls the flow rate so that no further flow rate is generated.
In addition, the temperature conditions of the hot water storage tank 12 in the said step S12, S14 are not limited to the specific numerical value shown there, Other suitable temperature is used as the condition temperature for holding the hot water storage tank 12 at a preferable high temperature. Temperature can be employed.
Moreover, the calculation of the heating usage number in step S18 may be an average of a plurality of calculations.
Furthermore, the number G of heating use in step S18dAs for the update of, when the values of the previous time and the current time are largely different, a measure not to update the values may be taken.
Number of actual heating use G on the heating circuit 40 side when heating alonedBy calculating, the more accurate correction number G for overflow prevention at the time of simultaneous hot water supply and heating operation from the next timekThus, more appropriate overflow prevention can be performed.
[0022]
A third embodiment of the present invention will be described with reference to FIGS. First, the configuration of the hot water storage type hot water supply apparatus of this embodiment will be described with reference to FIG.
60 is a combustion can body, 61 is a combustion chamber, and 62 is a hot water storage tank. The temperature of the hot water tank 62 is detected by a hot water temperature sensor 62a. 64 is an exhaust gas passage, and 65 is a safety valve.
The hot water supply circuit 70 includes a water inlet passage 71, a hot water outlet passage 73, a bypass passage 74, and a hot water supply passage 76 connected via hot water mixing means 75 for mixing hot water from the outlet hot water passage 73 and the bypass passage 74.
A water temperature sensor 71 a and a water flow rate sensor 71 b are provided in the water inlet path 71, a hot water temperature sensor 73 a is provided in the hot water path 73, and a hot water temperature sensor 76 a is provided in the hot water path 76. A total flow rate adjusting means 78 is provided in the hot water supply passage 76.
In this embodiment, the hot water is supplied directly from the hot water in the hot water storage tank 62 to the hot water supply, and water is replenished through the water inlet 71 by the amount of the reduced hot water in the hot water storage tank 62.
The bath reheating circuit 80 includes a bath forward path 81, a heat exchange coil 82 for heating a bath provided in the hot water storage tank 62 of the combustion can body 60, and a bath return path 83. The water in the bathtub 85 is led into the hot water storage tank 62 by the circulation pump 84 and heated.
The bath return path 83 is provided with a bath temperature sensor 83a.
A controller 90 is connected to the hot water remote controller 91 and the bath remote controller 92 for communication, and controls each part of the apparatus.
[0023]
The hot water supply operation will be described based on the above configuration. Now, in a state where the main switch of the hot water supply device is turned on by the hot water remote controller 91 or the like, the oil burner 63 is combusted as necessary regardless of whether hot water supply is actually performed or not, and a combustion can body The water in the 60 hot water storage tanks 62 is heated. Then, when a hot water supply terminal (not shown) is opened and actual hot water supply is started, hot water in the hot water storage tank 62 is discharged into the hot water supply passage 73 and mixed with water from the bypass passage 74 as necessary to the hot water supply passage 76. Supplied. When the amount of hot water in the hot water storage tank 62 decreases, water is replenished to the hot water storage tank 62 from the water inlet 71.
Similarly, when a bath reheating operation is commanded by the bath remote controller 92, the circulation pump 84 is driven, the oil burner 63 is combusted as necessary, and the bath water circulates through the bath reheating circuit 80 and is heated.
[0024]
With reference to FIG. 5, the control for preventing the excessive outflow of the hot water storage type hot water supply apparatus according to the third embodiment of the present invention will be described.
If the hot water supply terminal is opened and the hot water supply operation is started (Yes in Step S22) during the bath chasing operation (Yes in Step S21), the controller 90 determines the bath temperature T at the start of the hot water supply operation.fIs detected (step S23). And the detected bath temperature Tf, The number of use numbers in the bath chase circuit 80 at that time, that is, the number of bath use numbers GfIs calculated (step S24).
And use capacity in bath chasing circuit 80 (number of bath use number Gf) Is calculated, the controller 90 further calculates the calculated actual use capacity (number of bath use G).f), The maximum capacity that can be used on the hot water supply circuit 70 side (correction number G for overflow prevention)k), And the obtained maximum usable capacity (correction number G for overflow prevention)k) Based on the maximum possible flow rate that can be passed through the hot water supply circuit 70, that is, the excessive outflow prevention flow rate RkIs calculated (step S25).
And the obtained overflow prevention flow rate RkBased on the above, the excessive flow prevention control on the hot water supply circuit 70 side by the total flow rate adjusting means 78 is performed (step S26). When the hot water supply operation is stopped (Yes in step S27), the process returns to step S21.
[0025]
Bath temperature T detected in step S24fNumber of bath use from GfReferring to FIG. 6, the bath temperature T is calculated in advance by experiments or the like.fAnd bath use number GfThis relationship is obtained by storing the relationship in the controller 90 as a relational expression or table. That is, when the hot water supply operation is started, the bath temperature Tf, And the detected bath temperature TfThe number of bath use G corresponding to the controller 90fGet.
Next, an excessive flow prevention flow rate R in step S25kFirst, calculate the number of bath use numbers GfIs used to correct the excessive outflow prevention correction number G, which is the maximum number of hot water supply outputs that can be actually used on the hot water supply circuit 70 side during simultaneous operation.kIs determined by Equation 6. G in the calculation of Equation 6bmaxIs the maximum output number of the burner that the burner 63 can burn out during simultaneous operation of the bath and hot water supply.
Gk= Gbmax-Gf... Formula 6
Here, for example, burner maximum output number GbmaxNo. 25 and the calculated number of bath use GfIf the number is 8, the correction number G for overflow preventionkIs calculated as No. 17 (No. 25-8).
And the calculated correction number G for overflow preventionkTo prevent excessive outflow RkCan be calculated by the above equation 4.
Therefore, the maximum flow rate of the hot water flow that can flow to the hot water supply circuit 70 by the total flow rate adjusting means 78 is the excessive outflow prevention flow rate R.kIt is controlled to become.
[0026]
In the above, when the hot water supply operation is started during the bath chasing operation, the number of bath use numbers G until the hot water supply operation is completed.fBy preventing the change in the temperature, the hot water supply circuit 70 side prevents the temperature of the mixing hot water from rising due to an increase in the flow rate during mixing or an increase in the amount of hot water during mixing, thereby stabilizing the hot water supply. It can be carried out.
In the above, the bath temperature T stored in the controller 90fAnd bath use number GfThe bath temperature T detected by the bath temperature sensor 83a provided at a position near the bathtub 85 with a constant distance from the bathtub 85.fBy using the data, it is possible to capture a state that is more appropriate to the actual state of the bath, and it is possible to prevent a shortage of calculated hot water supply output regardless of the state of piping installation of the bath.
[0027]
In the first and second embodiments described above, in the hot water supply apparatus having one can and three circuits shown in FIG. 1, excessive outflow prevention on the hot water supply circuit side when two operations of the hot water supply operation and the heating operation are simultaneously performed. Although the control has been described, the same applies to the case where the hot water supply operation and the bath reheating operation are performed simultaneously instead of the hot water supply operation and the heating operation.
That is, in the first embodiment and the second embodiment, the bath rebirth operation corresponding to each word, numerical value, symbol, etc. regarding the heating operation used in the flowcharts of FIG. 2 and FIG. If it is replaced with the words, numerical values, and symbols, the overflow prevention control on the hot water supply circuit side in the simultaneous operation of the hot water supply operation and the bath chasing operation is performed as it is.
[0028]
Further, in the hot water supply apparatus shown in FIG. 1, the excessive outflow prevention control in the hot water supply circuit when the hot water supply operation, the heating operation, and the bath reheating operation are simultaneously performed can be similarly performed.
In this case, in the first embodiment, when the hot water supply operation, the heating operation, and the bath reheating operation are simultaneously performed, the burner output number G is obtained when the operation becomes stable.bAnd hot water supply output number GsFrom the above, the total number of use in the remaining heating operation and bathing operation is obtained, and this total number is used as the heating use number G.dIs used in place of, and is applied to Equations 2 to 4 to correct overflow prevention correction number GkAnd overflow prevention flow rate RkAnd the overflow prevention by the total flow rate adjusting means 28 may be performed.
In the second embodiment, the heating use number G is used when the heating operation is performed alone.dAnd the temperature is stored in the controller 50. Similarly, the bath temperature T in the case where the bath chasing operation is performed independently.fAnd bath use number GfIs obtained as a relational expression or table as described in FIG. 6 in the third embodiment, for example, and stored in the controller 50, so that three operations of a hot water supply operation, a heating operation, and a bath retreat operation are performed. Are operated at the same time, the heating use number GdAnd bath use number GfThe total number of heating, the number of heating use GdIs used in place of, and is applied to Equations 2 to 6 to prevent overrun prevention correction number GkAnd overflow prevention flow rate RkAnd the overflow prevention by the total flow rate adjusting means 28 may be performed.
[0029]
【The invention's effect】
  The present invention has the above-described configuration and operation, and according to the hot water storage type hot water supply apparatus according to claim 1, the hot water storage type hot water supply apparatus includes a hot water storage tank heated by a burner and is provided with a heating circuit in addition to the hot water supply circuit. The hot water supply circuit side is provided with total flow rate adjusting means for limiting the total flow rate of hot water supply, and the controller has a heating capacity calculation means for calculating the use capacity of the heating circuit side during simultaneous operation of hot water supply and heating. The maximum usable capacity on the hot water supply circuit side during simultaneous operation is obtained by using the use capacity on the heating circuit side calculated in advance by the heating capacity calculation means, and this is corrected for overflow preventionG k And the number of corrections for preventing excessive outflowG k Overflow prevention flow rate from the set hot water temperature and incoming water temperatureR k By the following formulaThe total flow rate of the hot water supply circuitR k Since the overrun prevention control was performed so as not to exceed the above,
                Formula: R k = G k × 25 ° C / (Set hot water temperature-incoming water temperature)
  When hot water supply operation and heating operation are performed at the same time, using the capacity actually used on the heating circuit side, the correction number for overflow prevention and the overflow prevention flow rate are obtained, and hot water at a desired temperature is It is possible to supply at the maximum flow rate without reducing it unnecessarily.
  Further, according to the hot water storage type hot water supply apparatus of claim 2, in addition to the effect of the configuration of claim 1, the calculation of the use capacity on the heating circuit side by the heating capacity calculation means is at least the number of burners burned Because it was calculated based on the hot water supply output number,
  Calculation of the actual usage capacity on the heating circuit side during simultaneous operation by the heating capacity calculation means is calculated by subtracting the number of hot water and hot water from the burner combustion number at that time, for example, when both operations become stable Can be easily done.
  Further, according to the hot water storage type hot water supply apparatus according to claim 3, the hot water storage type hot water supply apparatus includes a hot water storage tank heated by a burner and provided with a heating circuit in addition to the hot water supply circuit. A total flow rate adjusting means for limiting the total flow rate of the hot water supply is provided, and the controller is provided with a heating capacity calculation means for calculating the use capacity on the heating circuit side during the single heating operation, and is calculated in advance by the heating capacity calculation means. Using the use capacity on the heating circuit side, find the maximum usable capacity on the hot water supply circuit side during simultaneous operation of hot water supply and heating, and calculate this as a correction number for overflow preventionG k And the number of corrections for preventing excessive outflowG k Overflow prevention flow rate from the set hot water temperature and incoming water temperatureR k By the following formulaThe total flow rate of the hot water supply circuitR k Since the overrun prevention control was performed so as not to exceed the above,
                Formula: R k = G k × 25 ° C / (Set hot water temperature-incoming water temperature)
  Using the actual use capacity on the heating circuit side calculated during heating independent operation, the overflow prevention control on the hot water supply circuit side during simultaneous operation is the maximum capacity that can be used at present. By obtaining the excessive outflow prevention flow rate from the number, it becomes possible to supply hot water at a desired temperature at the maximum flow rate without unnecessarily restricting it.
  Further, according to the hot water storage type hot water supply apparatus according to claim 4, the hot water storage type hot water supply apparatus includes a hot water storage tank heated by a burner and provided with a bath reheating circuit in addition to the hot water supply circuit. Is provided with a total flow rate adjusting means for limiting the total flow rate of hot water supply, and the controller is provided with a bath replenishment capacity calculating means for calculating the use capacity on the side of the bath reheating circuit from the bath temperature. Calculate the maximum usable capacity on the hot water supply circuit side at the time of simultaneous operation of hot water supply and bath reheating using the pre-calculated use capacity on the hot water supply circuit side, and calculate this as the correction number for overflow preventionG k And the number of corrections for preventing excessive outflowG k Overflow prevention flow rate from the set hot water temperature and incoming water temperatureR k By the following formulaThe total flow rate of the hot water supply circuitR k Since the overrun prevention control was performed so as not to exceed the above,
                Formula: R k = G k × 25 ° C / (Set hot water temperature-incoming water temperature)
  When hot water supply operation and bath reheating operation are performed at the same time, the overflow prevention control on the hot water supply circuit side is the maximum capacity that is actually usable. By obtaining the excessive outflow prevention flow rate from the correction number for outflow prevention, it becomes possible to supply hot water at a desired temperature at the maximum flow rate without unnecessary restriction.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a hot water storage type hot water supply apparatus according to an embodiment of the present invention.
FIG. 2 is a flow chart of control for preventing excessive outflow of the hot water storage type hot water supply apparatus according to the first embodiment of the present invention.
FIG. 3 is a flow chart of control for preventing excessive outflow, explaining a second embodiment of the present invention.
FIG. 4 is a schematic configuration diagram of a hot water storage type hot water supply apparatus according to a third embodiment of the present invention.
FIG. 5 is a flowchart of control for preventing excessive outflow according to the third embodiment.
FIG. 6 is a diagram showing a relationship between bath temperature and bath output in the third embodiment.
[Explanation of symbols]
10 Combustion can body
11 Combustion chamber
12 Hot water tank
12a Hot water storage temperature sensor
13 Oil burner
20 Hot water supply circuit
21 waterway
21a Water temperature sensor
21b Incoming water flow sensor
22 Heat exchange coil for hot water supply
23 Hot Spring
23a Hot water temperature sensor
24 Bypass
25 Hot water mixing means
26 Hot water supply path
26a Hot water temperature sensor
28 Total flow control means
29 Hot water supply terminal
30 Bath chasing circuit
40 Heating circuit
50 controller
51 Hot water remote control
52 Bath remote control
53 Heating remote control
60 Burning can
61 Combustion chamber
62 Hot water tank
63 Oil burner
70 Hot water supply circuit
71 waterway
71a Water temperature sensor
71b Incoming water flow sensor
73 Hot Spring
73a Hot water temperature sensor
76 Hot water supply path
76a Hot water temperature sensor
78 Total flow control means
80 Bath chasing circuit
83a Bath temperature sensor
90 controller
91 Hot water remote control
92 Bath remote control

Claims (4)

バーナによって加熱される貯湯槽を備えると共に、給湯回路の他に暖房回路を設けた貯湯式給湯装置であって、前記給湯回路側には給湯の総流量を制限する総流量調節手段を設けると共に、コントローラには給湯と暖房の同時運転中における前記暖房回路側の使用能力を計算する暖房能力計算手段を設け、該暖房能力計算手段で予め計算された暖房回路側の使用能力を用いて同時運転時における給湯回路側の使用可能最大能力を求めてこれを過流出防止用補正号数 とし、該過流出防止用補正号数 と設定給湯温度と入水温度とから過流出防止流量 を下記の式により求めて、給湯回路の総流量が前記過流出防止流量 以上とならないように過流出防止制御を行うことを特徴とする貯湯式給湯装置。
式:R =G ×25℃/(設定給湯温度−入水温度)
A hot water storage type hot water supply apparatus provided with a hot water storage tank heated by a burner, and provided with a heating circuit in addition to the hot water supply circuit, provided with a total flow rate adjusting means for limiting the total flow rate of hot water supply on the hot water supply circuit side, The controller is provided with a heating capacity calculation means for calculating the usage capacity on the heating circuit side during simultaneous operation of hot water supply and heating, and at the time of simultaneous operation using the usage capacity on the heating circuit side calculated in advance by the heating capacity calculation means This seeking maximum usable capacity of the hot water supply circuit side is corrected scale number G k for preventing excessive runoff in, over-spill prevention and a correction scale number G k for該過outflow prevention configuration hot water supply temperature and the incoming water temperature flow R k the seeking from the following formula, storage type hot water supply apparatus total flow rate of the hot water supply circuit and performing an over-spill prevention control so as not to be the over-spill prevention rate R k or more.
Formula: R k = G k × 25 ° C./(set hot water supply temperature−incoming water temperature)
暖房能力計算手段による暖房回路側の使用能力の計算は、少なくともバーナの燃焼号数、給湯出力号数を基に算出することを特徴とする請求項1に記載の貯湯式給湯装置。  The hot water storage type hot water supply apparatus according to claim 1, wherein the calculation of the usage capacity on the heating circuit side by the heating capacity calculation means is calculated based on at least the combustion number of the burner and the hot water supply output number. バーナによって加熱される貯湯槽を備えると共に、給湯回路の他に暖房回路を設けた貯湯式給湯装置であって、前記給湯回路側には給湯の総流量を制限する総流量調節手段を設けると共に、コントローラには暖房単独運転中における前記暖房回路側の使用能力を計算する暖房能力計算手段を設け、該暖房能力計算手段で予め計算された暖房回路側の使用能力を用いて給湯と暖房の同時運転時における給湯回路側の使用可能最大能力を求めてこれを過流出防止用補正号数 とし、該過流出防止用補正号数 と設定給湯温度と入水温度とから過流出防止流量 を下記の式により求めて、給湯回路の総流量が前記過流出防止流量 以上とならないように過流出防止制御を行うことを特徴とする貯湯式給湯装置。
式:R =G ×25℃/(設定給湯温度−入水温度)
A hot water storage type hot water supply apparatus provided with a hot water storage tank heated by a burner, and provided with a heating circuit in addition to the hot water supply circuit, provided with a total flow rate adjusting means for limiting the total flow rate of hot water supply on the hot water supply circuit side, The controller is provided with a heating capacity calculation means for calculating the usage capacity on the heating circuit side during the heating independent operation, and the hot water supply and the heating are simultaneously operated using the usage capacity on the heating circuit side calculated in advance by the heating capacity calculation means. This seeking maximum usable capacity of the hot water supply circuit side is corrected scale number G k for preventing excessive runoff when, over-spill prevention and a correction scale number G k for該過outflow prevention configuration hot water supply temperature and the incoming water temperature flow R the k and calculated by the following equation, storage type hot water supply apparatus and performs over-spill prevention control such that the total flow rate of the hot water supply circuit does not become the over spill prevention rate R k or more.
Formula: R k = G k × 25 ° C./(set hot water supply temperature−incoming water temperature)
バーナによって加熱される貯湯槽を備えると共に、給湯回路の他に風呂追い焚き回路を設けた貯湯式給湯装置であって、前記給湯回路側には給湯の総流量を制限する総流量調節手段を設けると共に、コントローラには風呂温度から風呂追い焚き回路側の使用能力を計算する風呂追い焚き能力計算手段を設け、該風呂追い焚き能力計算手段で予め計算された風呂追い焚き回路側の使用能力を用いて給湯と風呂追い焚きの同時運転時における給湯回路側の使用可能最大能力を求めてこれを過流出防止用補正号数 とし、該過流出防止用補正号数 と設定給湯温度と入水温度とから過流出防止流量 を下記の式により求めて、給湯回路の総流量が前記過流出防止流量 以上とならないように過流出防止制御を行うことを特徴とする貯湯式給湯装置。
式:R =G ×25℃/(設定給湯温度−入水温度)
A hot water storage type hot water supply apparatus provided with a hot water storage tank heated by a burner and provided with a bath reheating circuit in addition to the hot water supply circuit, and provided with a total flow rate adjusting means for limiting the total flow rate of the hot water supply on the hot water supply circuit side In addition, the controller is provided with a bath replenishment capacity calculation means for calculating the use capacity on the side of the bath reheating circuit from the bath temperature, and the use capacity on the side of the bath reheating circuit calculated in advance by the bath replenishment capacity calculation means is used. hot water supply and the over-spill prevention correction scale number G k this seeking maximum usable capacity of the hot water supply circuit side at the time of simultaneous operation of the bath reheating, a correction scale number G k for該過outflow prevention configuration hot water supply temperature and Te excessive outflow preventing flow R k from the incoming water temperature determined by the following equation, storage-type total flow rate of the hot water supply circuit and performing an over-spill prevention control so as not to be the over-spill prevention rate R k over Hot water supply device.
Formula: R k = G k × 25 ° C./(set hot water supply temperature−incoming water temperature)
JP2000045822A 2000-02-23 2000-02-23 Hot water storage water heater Expired - Fee Related JP3726619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000045822A JP3726619B2 (en) 2000-02-23 2000-02-23 Hot water storage water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000045822A JP3726619B2 (en) 2000-02-23 2000-02-23 Hot water storage water heater

Publications (2)

Publication Number Publication Date
JP2001235231A JP2001235231A (en) 2001-08-31
JP3726619B2 true JP3726619B2 (en) 2005-12-14

Family

ID=18568353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000045822A Expired - Fee Related JP3726619B2 (en) 2000-02-23 2000-02-23 Hot water storage water heater

Country Status (1)

Country Link
JP (1) JP3726619B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4771132B2 (en) * 2005-11-30 2011-09-14 株式会社ノーリツ Liquid heating device
JP4831404B2 (en) * 2005-11-30 2011-12-07 株式会社ノーリツ Liquid heating device
JP4711129B2 (en) * 2005-11-30 2011-06-29 株式会社ノーリツ Liquid heating device
JP4840642B2 (en) * 2005-11-30 2011-12-21 株式会社ノーリツ Liquid heating device

Also Published As

Publication number Publication date
JP2001235231A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
JP5200842B2 (en) Water heater
JP3726619B2 (en) Hot water storage water heater
JP5135318B2 (en) Water heater
JP5385649B2 (en) Bathroom heating equipment
JP5083552B2 (en) Hot water system
JP6143092B2 (en) Hot water storage system
JP3480390B2 (en) Water heater
KR101636130B1 (en) Device for supplying hot water
JP3754474B2 (en) Combined water heater
JP3814376B2 (en) Water direct pressure water heater
JP4126282B2 (en) Water heater
JP4029249B2 (en) Circulating water heating control method and circulating water heating control device
JP3695244B2 (en) Water heater
JP3726620B2 (en) Hot water storage water heater
JP3536299B2 (en) Hot water storage system
JP3848874B2 (en) Forced circulation bath
JP3536735B2 (en) Water heater
JP2005249340A (en) Hot-water supply system
JP3702759B2 (en) Heat source machine
JP3536736B2 (en) Water heater
JP3536740B2 (en) Water heater
JP3952485B2 (en) Bath water heater
JP3855852B2 (en) Hot water storage water heater
JP2004354012A (en) Hot water supply device
JP5254894B2 (en) Bath equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees