JP3726603B2 - Manufacturing method of resin molding - Google Patents

Manufacturing method of resin molding Download PDF

Info

Publication number
JP3726603B2
JP3726603B2 JP35023899A JP35023899A JP3726603B2 JP 3726603 B2 JP3726603 B2 JP 3726603B2 JP 35023899 A JP35023899 A JP 35023899A JP 35023899 A JP35023899 A JP 35023899A JP 3726603 B2 JP3726603 B2 JP 3726603B2
Authority
JP
Japan
Prior art keywords
molded body
resin molded
resin
temperature
thermoforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35023899A
Other languages
Japanese (ja)
Other versions
JP2000238120A (en
Inventor
公司 小倉
八郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP35023899A priority Critical patent/JP3726603B2/en
Publication of JP2000238120A publication Critical patent/JP2000238120A/en
Application granted granted Critical
Publication of JP3726603B2 publication Critical patent/JP3726603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂成形体の製造方法に関する。
【0002】
【従来の技術】
樹脂板を熱成形することにより目的とする形状に賦形する樹脂成形体の製造方法は、広く様々な分野において使用されている。
【0003】
かかる製造方法においては、樹脂板を加熱したのち賦形するため、賦形直後の加熱された状態にある樹脂成形体は室温まで冷却される。この樹脂成形体には熱成形における歪みが緩和されておらず、耐久性が低下する傾向にある。
そのため、熱成形後により得られた樹脂成形体は、樹脂板を熱成形する際の温度よりも低い所定の温度に保持して歪みを緩和した後、冷却する、いわゆるアニール処理を施す必要がある。
【0004】
この樹脂成形体を所定の温度に保持した後冷却する処理は、一般には所定時間、所定温度に保持することにより行われている。所定温度に保持するには、例えば熱風循環型オーブンなどの加熱炉が用いられている。
従来からのアニールにおいては、例えば荷重たわみ温度(T0)よりも15℃〜25℃低い温度である所定温度に保持されているのが一般的であった。
しかし、かかるアニールの方法では、下記計算式(3)
0=8 × d ÷ 25 (時間) (3)
〔式中、dは樹脂成形体の厚み(mm)を示す。〕
で示される基準時間(t0)よりも長時間の間、上記所定温度(T0−15℃〜T0−25℃)に保持する必要があった。
【0005】
【発明が解決しようとする課題】
そこで、本発明者は、アニールに必要な時間を短縮し得る樹脂成形体の製造方法を開発するべく鋭意検討した結果、熱成形により得られた樹脂成形体をある特定の温度に保持した後、さらにそれよりも低い特定の温度に冷却する製造方法では、短時間であっても熱成形における歪みを緩和し得ることを見出し、本発明に至った。
【0006】
【課題を解決するための手段】
すなわち、本発明は、樹脂板を熱成形して得た樹脂成形体を加熱後冷却する樹脂成形体の製造方法であり、
熱成形後の冷却状態にある樹脂成形体を、条件式(1)
0 −15℃ ≦ TA ≦ T0 −10℃ (1)
〔式中、T0は荷重たわみ温度を示す。〕
を満足する温度(TA)に保持した後、条件式(2)
0 −80℃ ≦ TB ≦ T0 −40℃ (2)
〔式中、T0は荷重たわみ温度を示す。〕
を満足する温度(TB)に冷却することを特徴とする樹脂成形体の製造方法を提供するものである。
【0007】
【発明の実施の形態】
本発明の製造方法に適用される樹脂板は、通常の熱成形に使用されると同様の樹脂板が適用でき、具体的にはアクリル樹脂板、塩化ビニル樹脂板、アクリロニトリル−ブタジエン−スチレン共重合体樹脂板、ポリカ−ボネ−ト樹脂板、ポリスチレン樹脂板、ポリエチレン樹脂板、ポリプロピレン樹脂板などのポリオレフィン樹脂板などが例示される。これらの樹脂板は熱成形し得るのであれば、架橋されていてもよい。
【0008】
熱成形の方法は特に限定されるものではなく、例えば真空成形、圧空成形、プラグアシスト成形、プレス成形などが挙げられる。
【0009】
本発明の製造方法においては、熱成形により得られた樹脂成形体を、先ず上記条件式(1)で示される温度(TA)に保持する。条件式(1)における荷重たわみ温度(T0)は、JIS K 7207 に記載の方法により測定される温度である。
Aが荷重たわみ温度(T0)よりも15℃低い温度未満である場合、即ちTAが条件式(4)
A < T0 −15℃ (4)
を満足する場合には、熱成形における歪みが十分に緩和されない傾向にある。また、TAが荷重たわみ温度(T0)よりも10℃低い温度を越える温度である場合、即ちTAが条件式(5)
0 −10℃ < TA (5)
を満足する場合には、成形体に巨視的な変形が生ずる傾向にある。
【0010】
樹脂成形体をかかる温度(TA)に保持するには、例えば成形体を熱風循環型オーブンの中で保温すればよい。樹脂成形体は、上記温度(TA)に保持する前に、TAとTBとの中間の温度、すなわち(T0 − 15℃)よりも低い温度に保持されてもよい。温度(TA)に保持する保持時間は通常20分〜40分程度である。
【0011】
その後、前記条件式(2)を満足する温度(TB)に冷却する。この温度(TB)は、通常の樹脂成形体においては、室温程度であるか、またはそれ以上の温度である。
冷却方法は特に限定されるものではなく、例えば熱風循環型オーブンの加熱を止めてもよいし、冷却プログラムに沿って徐々に冷却してもよい。
上記温度(TB)まで冷却したのち、目的とする樹脂成形体を室温の雰囲気下に取出すことができる。
【0012】
かくして得られる樹脂成形体は、歪みが緩和されており、巨視的な変形も殆ど観察されないので、例えば下記計算式(5)
R=(S−S0)/S×100(%) (5)
〔式中、Rは成形面積展開率を、S0は熱成形前の樹脂板の成形に関与する部分の面積を、Sは熱成形後の樹脂成形体の成形部分の面積を、それぞれ示す。〕
により算出される成形面積展開率〔R(%)〕が30〜900%である樹脂成形体を製造する場合に特に有効である。
【0013】
【発明の効果】
本発明の製造方法によれば、樹脂板を熱成形して得られる樹脂成形体の歪みを短時間で緩和し得、しかも得られる樹脂成形体の巨視的変形も殆ど観察されることなく、樹脂成形体を得ることができる。
【0014】
【実施例】
以下、実施例により本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0015】
なお、各実施例で得た樹脂成形体は以下の方法により評価した。
(1)歪み量(εX、εY
得られた樹脂成形体(1)のコーナー部に2軸用歪みゲージ〔「KGF−5−120−D16−11L3M2S」、(株)共和電業製〕(2)を瞬間接着剤で貼り付け、稜線部に上記と同様の2軸歪みゲージ(3)を瞬間接着剤で貼り付け、アニールにおけるX軸方向の歪み量(εX)、Y軸方向の歪み量(εY)をそれぞれ測定した(図1)。なお、アニールにおける線膨張による変位は、実施例と同一条件で熱成形したのち温度(TA−5℃)で18時間保持して得た樹脂成形体(ダミー)に同様にして2軸用歪みゲージを貼り付け、温度補償法(アクティブダミー法)により、補償した。
(2)コーナー部の曲率変化率(rc
緩和歪み率を測定したコーナー部におけるアニール前の曲率半径(rc0)とアニール後の曲率半径(rc1)とをそれぞれ測定し、その比(rc=rc1/rc0)を求めた。
(3)稜線部の曲率変化率(rL
緩和歪み率を測定した稜線部におけるアニール前の曲率半径(rL0)とアニール後の曲率半径(rL1)とをそれぞれ測定し、その比(rL=rL1/rL0)を求めた。
(4)成形品中心部の凹み量(Δh)
アニール前の成形品の底面中心部分の高さ(h0)とアニール後の成形体中心部の高さ(h1)とをそれぞれ測定し、その差(Δh=h1−h0)を求めた。
(5)樹脂板および樹脂成形体の厚み(dc0、dL0、dc、dL
成形前の樹脂板における樹脂成形体のコーナー部に相当する部分の厚み(dc0)および稜線部に相当する部分の厚み(dL0)、並びに成形後の樹脂成形体のコーナー部の厚み(dc)および稜線部の厚み(dL)をそれぞれ測定した。
【0016】
実施例1
樹脂板〔架橋アクリル系樹脂板、メタクリル酸メチル(94.5重量%)と2−エチルヘキシルアクリレート(5.5重量%)との共重合体であって、膨潤度は12でありゲル化率は73.2%、荷重たわみ温度(T0)は98℃、1515mm×985mm、厚みは約5mm〕を、真空圧空成形機〔CUPF1015−PWB、布施真空(株)製〕と真空成形用雌型〔内寸は幅1190mm×長さ545mm×高さ470mm、バスタブ状〕とを用いて真空成形して樹脂成形体を得た。なお、樹脂板は、樹脂成形体のコーナー部に相当する部分における表面温度が140℃になり、中心部に相当する部分における温度が165℃になり、側面部に相当する部分の温度が180℃になり、フランジに相当する部分の温度が200℃になるまで加熱したのち成形した(成形面積展開率は65%)。
この樹脂成形体を、熱風循環炉内に投入し、60℃で30分加熱後、直ちに85℃で30分間保持し、次いで65℃で1時間保持後、50℃で1時間保持して取り出した。
この樹脂成形体の評価結果を表1に示す。
【0017】
比較例1
実施例1と同様にして熱成形した樹脂成形体を、熱風循環炉内に投入し、80℃で2時間保持し、次いで65℃で1時間保持後、50℃で1時間保持して取り出した。
この樹脂成形体の評価結果を表1に示す。
【0018】
【表1】

Figure 0003726603
【0019】
実施例1で得た樹脂成形体は、比較的短いアニール処理時間で、比較例1で得た樹脂成形体と同程度の歪み量(εX、εY)、コーナー部の曲率変化率(rc)、稜線部の曲率変化率(rL)および樹脂成形体中心部の歪み量(Δh)をそれぞれ示す。
【0020】
実施例2
樹脂板として、市販の架橋アクリル系樹脂板〔住友化学工業(株)製、「GS710」、荷重たわみ温度(T0)は100℃、1515mm×985mm、厚みは約5mm〕を用い、真空成形用雌型として内寸が幅740mm、長さ1400mm、深さ520mmであるバスタブ状の雌型を用いる以外は実施例1と同様に操作して樹脂成形体を得た。
【0021】
上記で得た樹脂成形体の外側表面(雌型に接触した面)に不飽和ポリエステル樹脂〔東京インキ社製、「ゲルコート PCG−OM215W」〕を塗布しゲルコート層を設け、該層の上に不飽和ポリエステル樹脂〔日立化成社製、「NR2219−PT−L」〕およびガラス繊維の混合物をスプレーアップ法で塗布して繊維強化樹脂第1層を設け、該層の上に不飽和ポリエステル樹脂〔日立化成社製、「NR2907APT−L」〕およびガラス繊維の混合物をスプレーアップ法で塗布して繊維強化樹脂第2層を設けた。次いで、底面に耐水合板〔厚み9mm〕をパテで接着し、その耐水合板の四隅に足〔木製、5cm×5cm×5cm〕を接着剤で固定して、バスタブとした。
このバスタブの内側に温水(80℃)を張って同温度で100時間保持し、次いで排水後、乾燥させる操作を3回繰り返したところ、内側には目視で観察できる異常は見出せなかった。
【0022】
比較例2
実施例2と同様に熱成形して得た樹脂成形体を、熱風循環炉内に投入し、80℃で2時間保持し、次いで15時間かけて除冷して、樹脂成形体を得た。
【0023】
上記で得た樹脂成形体を用いる以外は実施例と同様に操作して、バスタブを得た。
このバスタブを用いて、実施例2と同様に評価したところ、その内側には目視で観察できる異常は見出せなかった。
【0024】
実施例2で得た樹脂成形体を用いたバスタブは、比較例2で得た従来の製造方法による樹脂成形体を用いたバスタブと比較して、同等の耐熱水性を有している。
【図面の簡単な説明】
【図1】実施例で得た樹脂成形体および2軸用歪みゲージの取付け位置を示す模式図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a resin molded body.
[0002]
[Prior art]
2. Description of the Related Art A method for producing a resin molded body that is molded into a target shape by thermoforming a resin plate is widely used in various fields.
[0003]
In such a manufacturing method, since the resin plate is heated and shaped, the resin molded body in a heated state immediately after shaping is cooled to room temperature. This resin molded body does not relieve distortion in thermoforming, and tends to decrease durability.
For this reason, the resin molded body obtained after thermoforming needs to be subjected to a so-called annealing treatment in which the resin plate is held at a predetermined temperature lower than the temperature at which the resin plate is thermoformed to reduce strain and then cooled. .
[0004]
The process of cooling the resin molded body after holding it at a predetermined temperature is generally performed by holding it at a predetermined temperature for a predetermined time. In order to maintain at a predetermined temperature, for example, a heating furnace such as a hot air circulation oven is used.
In conventional annealing, for example, the temperature is generally maintained at a predetermined temperature which is 15 to 25 ° C. lower than the deflection temperature (T 0 ) under load.
However, in this annealing method, the following calculation formula (3)
t 0 = 8 × d ÷ 25 (time) (3)
[In formula, d shows the thickness (mm) of a resin molding. ]
It was necessary to hold at the predetermined temperature (T 0 −15 ° C. to T 0 −25 ° C.) for a longer time than the reference time (t 0 ) indicated by.
[0005]
[Problems to be solved by the invention]
Therefore, as a result of intensive studies to develop a method for producing a resin molded body that can reduce the time required for annealing, the present inventor held the resin molded body obtained by thermoforming at a specific temperature, Furthermore, in the manufacturing method which cools to the specific temperature lower than that, it discovered that distortion in thermoforming could be relieved even for a short time, and came to this invention.
[0006]
[Means for Solving the Problems]
That is, the present invention is a method for producing a resin molded body in which a resin molded body obtained by thermoforming a resin plate is cooled after being heated,
The resin molded body in a cooled state after thermoforming is expressed by conditional expression (1)
T 0 -15 ℃ ≦ T A ≦ T 0 -10 ℃ (1)
[In the formula, T 0 represents the deflection temperature under load. ]
Is maintained at a temperature (T A ) that satisfies the following condition, then conditional expression (2)
T 0 −80 ° C. ≦ T B ≦ T 0 −40 ° C. (2)
[In the formula, T 0 represents the deflection temperature under load. ]
And a method for producing a resin molded body characterized by cooling to a temperature (T B ) satisfying the above.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
As the resin plate applied to the production method of the present invention, the same resin plate as that used in normal thermoforming can be applied. Specifically, acrylic resin plate, vinyl chloride resin plate, acrylonitrile-butadiene-styrene copolymer Examples thereof include a polyolefin resin plate such as a combined resin plate, a polycarbonate resin plate, a polystyrene resin plate, a polyethylene resin plate, and a polypropylene resin plate. These resin plates may be cross-linked as long as they can be thermoformed.
[0008]
The method of thermoforming is not particularly limited, and examples thereof include vacuum forming, pressure forming, plug assist forming, and press forming.
[0009]
In the production method of the present invention, the resin molded body obtained by thermoforming, firstly kept at a temperature (T A) represented by the conditional expression (1). The deflection temperature under load (T 0 ) in the conditional expression (1) is a temperature measured by the method described in JIS K 7207.
When T A is less than 15 ° C. lower than the deflection temperature under load (T 0 ), that is, T A is conditional expression (4)
T A <T 0 −15 ° C. (4)
In the case of satisfying the above, there is a tendency that distortion in thermoforming is not sufficiently relaxed. Further, when T A is a temperature exceeding a temperature lower by 10 ° C. than the deflection temperature under load (T 0 ), that is, T A is conditional expression (5).
T 0 -10 ° C <T A (5)
When the above is satisfied, macroscopic deformation tends to occur in the molded body.
[0010]
In order to maintain the resin molded body at such a temperature (T A ), for example, the molded body may be kept warm in a hot air circulation type oven. The resin molded body may be held at a temperature intermediate between T A and T B , that is, a temperature lower than (T 0 -15 ° C.) before being held at the temperature (T A ). The holding time held at the temperature (T A ) is usually about 20 minutes to 40 minutes.
[0011]
Then, it cools to the temperature (T B ) that satisfies the conditional expression (2). This temperature (T B ) is about room temperature or higher in a normal resin molded body.
The cooling method is not particularly limited. For example, heating of the hot air circulation oven may be stopped, or the cooling may be gradually performed according to a cooling program.
After cooling to the above temperature (T B ), the intended resin molding can be taken out in an atmosphere at room temperature.
[0012]
The resin molded body thus obtained has relaxed strain and almost no macroscopic deformation is observed. For example, the following calculation formula (5)
R = (S−S 0 ) / S × 100 (%) (5)
[In the formula, R represents a molding area development rate, S 0 represents an area of a portion related to molding of a resin plate before thermoforming, and S represents an area of a molded portion of the resin molded body after thermoforming. ]
This is particularly effective in the case of producing a resin molded body having a molding area development rate [R (%)] calculated by the following formula of 30 to 900%.
[0013]
【The invention's effect】
According to the production method of the present invention, the distortion of the resin molded product obtained by thermoforming the resin plate can be relaxed in a short time, and the macroscopic deformation of the obtained resin molded product is hardly observed. A molded body can be obtained.
[0014]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.
[0015]
In addition, the resin molding obtained in each Example was evaluated by the following method.
(1) Distortion amount (ε X , ε Y )
A two-axis strain gauge ["KGF-5-120-D16-11L3M2S", manufactured by Kyowa Denki Co., Ltd.] (2) is attached to the corner of the obtained resin molded body (1) with an instantaneous adhesive, paste similar to the above biaxially strained gauge (3) in the ridge portion with instant adhesive, the distortion amount of the X-axis direction in the annealing (epsilon X), measured distortion quantity of the Y-axis direction (epsilon Y), respectively ( FIG. 1). Incidentally, the displacement due to thermal expansion in the annealing embodiment a similar manner biaxial for distortion temperature (T A -5 ° C.) resin was obtained by holding for 18 hours at molding body (dummy) After thermoformed under the same conditions A gauge was attached and compensated by the temperature compensation method (active dummy method).
(2) Curvature change rate at corner (r c )
The radius of curvature before annealing (r c0 ) and the radius of curvature after annealing (r c1 ) at the corner where the relaxation strain rate was measured were measured, and the ratio (r c = r c1 / r c0 ) was determined.
(3) Curvature change rate of ridge line part (r L )
The curvature radius (r L0 ) before annealing and the curvature radius (r L1 ) after annealing at the ridge line portion where the relaxation strain rate was measured were measured, and the ratio (r L = r L1 / r L0 ) was determined.
(4) Depression amount at the center of the molded product (Δh)
The height (h 0 ) of the center portion of the bottom surface of the molded product before annealing and the height (h 1 ) of the center portion of the molded body after annealing are measured, and the difference (Δh = h 1 −h 0 ) is obtained. It was.
(5) Thickness of resin plate and resin molding (d c0 , d L0 , d c , d L )
The thickness (d c0 ) of the portion corresponding to the corner portion of the resin molded body and the thickness (d L0 ) corresponding to the ridgeline portion of the resin plate before molding, and the thickness (d of the corner portion of the resin molded body after molding) c ) and the thickness (d L ) of the ridge portion were measured.
[0016]
Example 1
Resin plate [crosslinked acrylic resin plate, copolymer of methyl methacrylate (94.5% by weight) and 2-ethylhexyl acrylate (5.5% by weight), with a degree of swelling of 12 and a gelation rate of 73.2%, deflection temperature under load (T 0 ) is 98 ° C., 1515 mm × 985 mm, thickness is about 5 mm], vacuum pressure forming machine (CUPF1015-PWB, manufactured by Fuse Vacuum Co., Ltd.) and female mold for vacuum forming [ The inside dimension was vacuum molding using a width 1190 mm × length 545 mm × height 470 mm, bathtub shape] to obtain a resin molded body. The resin plate has a surface temperature of 140 ° C. at the portion corresponding to the corner of the resin molded body, a temperature of 165 ° C. at the portion corresponding to the central portion, and a temperature of the portion corresponding to the side portion of 180 ° C. Then, it was molded after heating until the temperature of the portion corresponding to the flange reached 200 ° C. (molding area expansion ratio was 65%).
The resin molded body was put into a hot air circulating furnace, heated at 60 ° C. for 30 minutes, immediately held at 85 ° C. for 30 minutes, then held at 65 ° C. for 1 hour, and then held at 50 ° C. for 1 hour and taken out. .
The evaluation results of this resin molding are shown in Table 1.
[0017]
Comparative Example 1
The resin molded body thermoformed in the same manner as in Example 1 was put into a hot-air circulating furnace, held at 80 ° C. for 2 hours, then held at 65 ° C. for 1 hour, then held at 50 ° C. for 1 hour and taken out. .
The evaluation results of this resin molding are shown in Table 1.
[0018]
[Table 1]
Figure 0003726603
[0019]
The resin molded body obtained in Example 1 has a strain amount (ε X , ε Y ) similar to that of the resin molded body obtained in Comparative Example 1 and the curvature change rate (r c ), the curvature change rate (r L ) of the ridge line part, and the distortion amount (Δh) of the resin molded body center part, respectively.
[0020]
Example 2
As a resin plate, a commercially available cross-linked acrylic resin plate (manufactured by Sumitomo Chemical Co., Ltd., “GS710”, deflection temperature under load (T 0 ) is 100 ° C., 1515 mm × 985 mm, thickness is about 5 mm) is used for vacuum forming. A resin molded body was obtained by operating in the same manner as in Example 1 except that a bathtub-shaped female mold having an internal size of width 740 mm, length 1400 mm, and depth 520 mm was used as the female mold.
[0021]
An unsaturated polyester resin [manufactured by Tokyo Ink Co., Ltd., “Gelcoat PCG-OM215W”] is applied to the outer surface (the surface in contact with the female mold) of the resin molded body obtained above, and a gelcoat layer is provided. A mixture of a saturated polyester resin (manufactured by Hitachi Chemical Co., Ltd., “NR2219-PT-L”) and glass fiber is applied by a spray-up method to provide a first layer of fiber reinforced resin, and an unsaturated polyester resin [Hitachi Kasei Co., Ltd. “NR2907APT-L”] and a glass fiber mixture were applied by a spray-up method to provide a second layer of fiber reinforced resin. Next, a water-resistant plywood [thickness 9 mm] was adhered to the bottom surface with a putty, and feet [wooden, 5 cm × 5 cm × 5 cm] were fixed to the four corners of the water-resistant plywood with an adhesive to form a bathtub.
The operation of applying warm water (80 ° C.) to the inside of the bathtub and holding it at the same temperature for 100 hours, then draining and drying was repeated 3 times, and no abnormality that could be observed visually was found on the inside.
[0022]
Comparative Example 2
A resin molded body obtained by thermoforming in the same manner as in Example 2 was put into a hot air circulating furnace, held at 80 ° C. for 2 hours, and then cooled for 15 hours to obtain a resin molded body.
[0023]
A bathtub was obtained in the same manner as in Example 2 except that the resin molded body obtained above was used.
When this bathtub was used for evaluation in the same manner as in Example 2, no abnormality that could be observed visually was found on the inside.
[0024]
The bathtub using the resin molded body obtained in Example 2 has equivalent hot water resistance as compared with the bathtub using the resin molded body obtained by the conventional manufacturing method obtained in Comparative Example 2.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a mounting position of a resin molded body and a biaxial strain gauge obtained in an example.

Claims (2)

アクリル樹脂板を熱成形して得た樹脂成形体を加熱後冷却する樹脂成形体の製造方法であり、
熱成形後の冷却状態にある樹脂成形体を、条件式(1)
0 −15℃ ≦ TA ≦ T0 −10℃ (1)
〔式中、T0は荷重たわみ温度を示す。〕
を満足する温度(TAで20〜40分間保持した後、条件式(2)
0 −80℃ ≦ TB ≦ T0 −40℃ (2)
〔式中、T0は荷重たわみ温度を示す。〕
を満足する温度(TB)に冷却することを特徴とする樹脂成形体の製造方法。
It is a method for producing a resin molded body in which a resin molded body obtained by thermoforming an acrylic resin plate is heated and then cooled,
The resin molded body in a cooled state after thermoforming is expressed by conditional expression (1)
T 0 -15 ℃ ≦ T A ≦ T 0 -10 ℃ (1)
[In the formula, T 0 represents the deflection temperature under load. ]
Is maintained at a temperature (T A ) for 20 to 40 minutes , then conditional expression (2)
T 0 −80 ° C. ≦ T B ≦ T 0 −40 ° C. (2)
[In the formula, T 0 represents the deflection temperature under load. ]
Is cooled to a temperature (T B ) that satisfies the following conditions:
熱成形における成形面積展開率が30〜900%である請求項1に記載の製造方法。  The manufacturing method according to claim 1, wherein a forming area development rate in thermoforming is 30 to 900%.
JP35023899A 1998-12-25 1999-12-09 Manufacturing method of resin molding Expired - Fee Related JP3726603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35023899A JP3726603B2 (en) 1998-12-25 1999-12-09 Manufacturing method of resin molding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-370822 1998-12-25
JP37082298 1998-12-25
JP35023899A JP3726603B2 (en) 1998-12-25 1999-12-09 Manufacturing method of resin molding

Publications (2)

Publication Number Publication Date
JP2000238120A JP2000238120A (en) 2000-09-05
JP3726603B2 true JP3726603B2 (en) 2005-12-14

Family

ID=26579155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35023899A Expired - Fee Related JP3726603B2 (en) 1998-12-25 1999-12-09 Manufacturing method of resin molding

Country Status (1)

Country Link
JP (1) JP3726603B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012098074A (en) * 2010-10-29 2012-05-24 Konica Minolta Opto Inc Method for producing microchip

Also Published As

Publication number Publication date
JP2000238120A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
JP3726603B2 (en) Manufacturing method of resin molding
JPS6141290B2 (en)
JPH0127850B2 (en)
CN210055795U (en) Hollow insulating layer of bathtub
JPS591184B2 (en) Double-sided vacuum forming method for thermoplastic foam resin sheet
JP3863393B2 (en) Method for manufacturing sheet-like member for optical screen
JPH077290Y2 (en) Insulation board for concrete curing room wall
JPS5842256Y2 (en) food packaging tray
JP2001018289A (en) Molding method for synthetic resin board
JPH09174677A (en) Manufacture of reinforced acryl bathtub
JPS5832925Y2 (en) Fiber-reinforced rigid foam secondary molding
JP4230064B2 (en) Method for forming thermoplastic vegetable fiber mat
JPH09226002A (en) Method for thermally molding synthetic resin foamed sheet, the sheet and thermal molding of the sheet
JPH03184636A (en) Warm forming method for aluminum plate material
JPH07213448A (en) Bath tub
JPH0342574B2 (en)
JPS59145110A (en) Thermoforming process of plastic plate
JPS645817A (en) Manufacture of heat-resistant container
JPS6050134B2 (en) Thick plate manufacturing method
JPS63170032A (en) Sheet material for thermoforming
JP2541055B2 (en) Glass fiber preform mat
JP2002210813A (en) Method for manufacturing multilayer thermoplastic resin molding
JPH0133306Y2 (en)
JPS63224915A (en) Coating method for polydicyclopentadiene reaction injection molded product
JP2001179898A (en) Bathtub, its manufacturing method and laminated item

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050126

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A131 Notification of reasons for refusal

Effective date: 20050524

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050919

LAPS Cancellation because of no payment of annual fees