JP3726229B2 - Cholesteric liquid crystal material comprising a rigid rod-like helical structure optically active homo- or copolymerized polysilane having an optically active alkyl group having a branched structure at the β-position - Google Patents

Cholesteric liquid crystal material comprising a rigid rod-like helical structure optically active homo- or copolymerized polysilane having an optically active alkyl group having a branched structure at the β-position Download PDF

Info

Publication number
JP3726229B2
JP3726229B2 JP35203099A JP35203099A JP3726229B2 JP 3726229 B2 JP3726229 B2 JP 3726229B2 JP 35203099 A JP35203099 A JP 35203099A JP 35203099 A JP35203099 A JP 35203099A JP 3726229 B2 JP3726229 B2 JP 3726229B2
Authority
JP
Japan
Prior art keywords
optically active
liquid crystal
polymer
alkyl group
cholesteric liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35203099A
Other languages
Japanese (ja)
Other versions
JP2001164251A (en
Inventor
順次 渡辺
道也 藤木
宏幸 亀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Nippon Telegraph and Telephone Corp
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Nippon Telegraph and Telephone Corp
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Nippon Telegraph and Telephone Corp, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP35203099A priority Critical patent/JP3726229B2/en
Publication of JP2001164251A publication Critical patent/JP2001164251A/en
Application granted granted Critical
Publication of JP3726229B2 publication Critical patent/JP3726229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal Substances (AREA)
  • Silicon Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、骨格構造がSiのみからなるポリシランであり、該骨格を構成するSiの少なくとも1%以上のSiがβ−位置に分岐構造をもつキラルなアルキル基を1つ持ち、前記以外のSiはすべてアキラルな有機基、特にアルキル基または末端にフェニル基を有するアルキル基により飽和されており、骨格構造を構成するSiが10〜1000である粘度指数αが1.3以上(テトラヒドロフラン、30℃)である剛直棒状ヘリカル構造の光学活性有機シリコン高分子重合体からなる温度依存性円偏光選択反射波長を示すコレステリック液晶に関する。剛直棒状とは、前記光学活性有機シリコン高分子重合体をテトラヒドロフラン溶液とし(0.1〜0.2g/vol%)、30℃で測定した粘度指数(α)(具体的測定法は後に示す。)が少なくとも1.3であり、原子間力顕微鏡(AFM)で約2μmの長さを持つヘリカルポリシランを観察した場合、キンク部により非常に長い棒状セグメントが結合した構造を示すものである。温度依存性円偏光選択反射波長を示すコレステリック液晶性は、前記有機シリコン高分子重合体の化学構造を特徴づける構成によってもたらされるものである。
【0002】
【従来技術】
従来技術として、光学活性有機シリコン高分子重合体および共重合体技術については、上記重合体、その製造法、およびポジ型(光分解型など)のレジスト材料、エナンチオマー分子認識能をもつ高速液体クロマトグラフィー(HPLC)やガスクロマトグラフィー(GC)用のカラム材料、あるいは鎖間相互作用が無視することができることから一次元量子細線半導体の光・電気物性の基礎研究用モデル物質として、励起子物質としての物性や機能の研究への応用が検討されてきた。前記技術を報告している文献として、有機シリコン化合物に関する技術を記載した特開平7−33784号公報、特開平6−306087号公報、また共重合体技術を報告している文献として、特開平10−226727号公報、特開平9−40783号公報、またキラルアルキル基としてγ位が不斉炭素であるものを用いた光学活性有機シリコン高分子を報告しているものとして特開平11−158288号公報を挙げることができる。
【0003】
前記文献に記載の有機シリコン重合体は、分子量分布特性がいずれも二峰性(bimodal)である。また、前記従来技術で挙げられている光学活性有機シリコン高分子重合体および共重合体は側鎖にキラル基を有することにより、ラセンピッチ、剛直性高分子構造をとることが知られている。
【0004】
前記のような剛直棒状ラセン構造を持つポリマーの他の例としては、長いn−アルキル鎖、例えばn−デシル基を持つポリグルタミン酸が渡辺等によって報告されている(文献1.Thermotropic polypeptides.1.Investigation of cholesteric mesophase propertes of poly(γ-methyl D-glutamate-co-γ-hexyl D-glutamate)s(with Y.Fukuda, R.Gehani and I.Uematsu),Macromolecules,17,1004(1984):2.Themortopic polypetides.2.Molecular packing andthermotropic behavior of poly(L-glutamates) with long n-alkyl sidechains(with H.Ono,A.Abe and I.Uematsu),Macromoleccules,18,2141(1986):3.Thermotropic polypeptides.6.On cholesteric mesophase with Grandjean texture and its solidification(with T.Nagase,H.Itoh,T.Ishii and T.Satoh)Mol. Cryst.Liq.Cryst.,160,432(1988):4.Thermotropic liquid crystals in polypetides In "Ordering in Macromolecular Systems",A.Teramoto,M.Kobayashi and T.Norisue,Eds.,Springer-Verlag,Berlin,Heidelberg,p99-108(1994))。また、ここにおいて、n−デシル基以上の長鎖のアルキル基を有するポリグルタミン酸では、コレステリック液晶特性ばかりでなくヘキサゴナルカラムナーおよびスメクチック相が観察されるとの報告がされている。また、前記高分子コレステリック液晶の特徴は、コレステリック液晶構造をフイルムとして固定できるところにあり、かつ、分子の剛直性に基づく面配向効果があることにより、液晶相の調製も簡単であるとされている。更に高い温度依存性のサーモトロピック・コレステリック液晶性を持つこと、しかし温度ジャンプによるコレステリックらせん形態変化の進行は非常にゆっくりである、例えば約10℃の温度ジャンプでは十数分かかることが報告されている。この他にも、コレステリック液晶の特性と、種々の用途に言及している。
【0005】
更に、前記ポリグルタミン酸と同様に、いくつかの他の剛直または半剛直ポリマーである、セルロース、ポリイソシアネート、および全芳香族ポリマーにおいても、サーモトロピック液晶性、およびリオトロピック液晶性を示すことが報告されている。ところで、液晶を特徴づけるものは、主としてそれを構成する分子の形とその並び方にあるとされている。そして、液晶を示す多くのものは棒状の分子であることも知られており、コレステリック液晶では分子を重ねると右または左にねじれていく〔前記右手型(R)または左手型(S)に相当〕、この構造は分子の非対称性に由来するとされ、ねじれを発生させる原子団があるためである。このような分子はカイラル分子と呼ばれている。
【0006】
【発明が解決しようとする課題】
本発明者等は、剛直棒状ヘリカル構造の光学活性有機シリコン高分子重合体類も、ねじれ構造を取ることから、前記有機シリコン高分子重合体類中にはその構造の特徴から、有用な液晶特性を有するものがあるのではないかと考えた。従って、本発明の課題は、温度依存性円偏光選択反射波長を示すコレステリック液晶性を示す光学活性有機シリコン高分子重合体類を見出すことであり、更に該高分子特有の液晶特性を見出すことである。本発明者等は、前記従来技術で挙げられている光学活性有機シリコン高分子重合体および共重合体技術の特性について研究する中で、前記重合体を二峰性のままのではなく、構成する分子を、区切った分子量のものに分別し、分別した重合体の特性を観察することを考えた。そうすれば、その特性を示す分子の領域を選択的に得る方法を確立すれば、目的にあった重合体を必要に応じて合成できるからである。
【0007】
そのために、従来の方法で合成した光学活性有機シリコン高分子重合体類を分別する処理をし、前記研究の手法に従い、区切った分子量のもの毎に特性を観察するのであるが、二峰性ポリマーの比較的分子量の小さなものの温度変化と光学特性を観察することから始め、剛直棒状ヘリカル構造をもつ重合体が極めてユニークな特性、すなわち液晶性特性を有することを見出した。そして、剛直棒状ヘリカル構造の光学活性有機シリコン高分子重合体をAFMにより観察すると、その分子の構造は非常に長いセグメントがキンク(折点)部で結合する構造を有すること、このような分子はテトラヒドロフラン溶液(0.1〜0.2g/vol%)とし、30℃で測定した粘度指数が少なくとも1.3を有することを発見した(測定法については後述)。更に、分子量の違いにより波長に対する特性が大きく変わること、温度を上げて波長特性を変えることができることなどにより、色々な用途を考えることができる。例えば、分子量の大きなフラクションである、I-fr5を用いれば、光通信に利用されている1550nm、及び1300nmの赤外光の液晶チューナブルフィルターとしての利用が考えられる。
【0008】
前記粘度測定法を以下に示す。
1.GPC-VISCO法(Gel Permeation Chromatograph-Viscometer法)原理GPC法は分子サイズ(流体力学的体積)の違いにより高分子鎖の分離を行う液体クロマトグラフィーの一種である。粘度検出器(VISCO)および示差屈折率計(RI)を組み入れ、GPCでサイズ分別された高分子溶液の極限粘度および屈折率差を保持容量を追って測定することにより、溶液の極限粘度、分子量および含有率を順次計算し、最終的に高分子物質の分子量特性および粘度特性に関する情報を得る手法である。2.測定条件GPC:150-C型 ゲル浸透クロマトグラフィー(GPC)(Waters製)カラム:TSKgelGMHXL(内径7.8mm,長さ30cm,3本)(東ソー製)溶剤:トルエン(SN42〜45ナカライテスク(株)製)流速:1.0mL/min(実測1.021mL/min)温度:70℃試料濃度:1:0.2877w/v%(70℃)溶解性:完全溶解(約70℃×15分)ろ過:金属フィルター0.5μm(Waters製)注入量:800μL検出器:示差屈折率計RI感度32x,40%(Waters製)分子量校正:10 種の単分子ポリスチレン(東ソー製)VISCO:H502a型 粘度検出器(VISCOTEK製)キャピラリー:0.5mm(内径)×61cm(長さ)温度:70℃ データ処理:GPC-VISCOデータ処理システムUNICAL Ver.4.05(VISCOTEK製)
【0009】
【課題を解決するための手段】
本発明は、(1)下記(式1)の構造式で表される
【0010】
【化2】

Figure 0003726229
【0011】
〔式中R1及びR2は同一又は異なり、C10〜C22のアルキル基またはC10〜C22アルキル基の末端にフェニル基を有するアラルキル基であり。R3はβ−位置に分岐構造をもつアキラルなアルキル基であり。Rはγ−位置に分岐構造をもつキラルなアルキル基を示し、左手型(S)または/および右手型(R)、但し、(S)と(R)が共存する場合には少なくとも1%以上どちらかが多く含まれている。mは≧0、n+mは10〜1000、そしてn/(n+m)≧0.01である。〕粘度指数αが1.3以上(テトラヒドロフラン、30℃)である剛直棒状のヘリカル構造の光学活性有機シリコン高分子重合体からなる温度依存性円偏光選択反射波長を示すコレステリック液晶である。好ましくは、(n+m)が40〜1000であることを特徴とする前記(1)に記載の粘度指数αが1.3以上(テトラヒドロフラン、30℃)である剛直棒状ヘリカル構造の光学活性有機シリコン高分子重合体からなる温度依存性円偏光選択反射波長を示すコレステリック液晶である。
【0012】
【本発明の実施の態様】
本発明をより詳細に説明する。
A.コレステリック液晶を示す光学活性有機シリコン高分子重合体類の化学構造は、前記(式1)として記載したとおりであるが、それらは、
1.はホモポリマーであり、
2.は共重合体であり、共重合体は大別して二種類の高分子共重合体系に分けられる。
a.一つは、対応する光学活性ジクロロシランと光学不活性ジクロロシランをとトルエン中金属ナトリウムと脱塩共重合することで、対応する光学活性ポリシラン共重合体を合成するものであり、
b.もう一つの系は、対応する(S)−配置光学活性ジクロロシランと(R)−配置光学活性ジクロロシランとをトルエン中金属ナトリウムと脱塩共重縮合することで、対応する光学活性ポリシラン共重合体を合成するものである。いずれの場合においても、使用する光学活性有機置換基として分岐部がβ位置にあるものを用いると、Na脱塩縮合反応過程でのラセミ化や転移反応の恐れがなく、また、縮合反応時のシリコンモノマー間の立体障害の程度も比較的小さいため、高分子量の光学活性鎖状有機ポリシランが容易に生成する。また、極少量のβ位キラル炭素が鎖状骨格の有機ポリシラン重合体全体の主鎖をほとんど一方向にかつ一定ピッチのヘリックスに固定化する効果が顕著であることが知られている。
【0013】
従って、鎖状骨格のSiに結合させる側鎖の有機基を適切に選択すること、更に重合度、式1において(n+m)を適切にすることにより、有機ポリシラン重合体全体の構造を液晶性の優れたものとすることができる。重合体の合成は、前記した文献に記載の方法に準じてなし得る。
【0014】
B.本発明では、前記公知文献に記載の光学活性有機シリコン高分子重合体類の製造方法により得られた、二峰性ポリマーを適当な溶媒の組み合わせを用いて分割された分子領域のポリマーとして採取する。分割溶媒としては、前記重合体類の溶剤であるトルエンと前記ポリマーの貧溶媒であるイソプロピルアルコール、エタノール、メタノールなどのアルコールあるいは少量の水を、溶解性を調節するように配合したものを使用できる。
C.本発明の液晶材料は、図1からも理解されるように、分子量を適切に設計すれば、所望の円偏光反射を持ったフィルターを設計できる。そして、温度制御によって前記吸収特性をスイッチできる。分子量によって前記吸収特性の温度依存性の直線的に変化を開始する温度(臨界温度)は異なるが、温度を上げるとき(昇温)の前記温度依存性と、降下するとき(降温)の温度依存性が同じ、換言すれば残留歪みがない特性を示す。また、図2は図1に円偏光反射強度のデータを加えたものである。図3及び4は、剛直棒状ヘリカル構造の光学活性有機シリコン高分子重合体分子主鎖のヘルカル構造の円偏光二色性の温度依存性を観察したものであるが、実質的に温度依存性がないことを示す。換言すれば、前記重合体による温度依存性は、剛直棒状ラセン構造のポリシラン分子のラセンのピッチが変わることよるを示す。図5は、I−fr.7の重合体の温度を70℃から110℃にジャンプした場合のラセン形態(ピッチ)変化の進行の早さを測定したもので、2分程度でほぼ変化が完了することを示す。
【0015】
【実施例】
実施例1
I.原料モノマーであるn−デシル−(S)−2−メチルブチルジクロロシランの合成。
A.乾燥した三口フラスコ(300mL)にマグネシウム3.9g(0.16mol)を入れ、フラスコ内をアルゴン置換した。THF(テトラヒドロフラン)50mLを注入し70℃に加熱した後、これにジブロモブタンを少量加えて撹拌し、マグネシュウム表面を活性化する。滴下ロートより1−クロロ−(S)−2−メチルブタン14.3g(0.13mol)を滴下し、2時間撹拌し、その後室温まで下げる。グリニヤル試薬を得た。
B.乾燥した三口フラスコ(300mL)にTHF50mLと、n−デシルトリクロロシラン44.25g(0.16mol)を入れる。60℃に昇温させた後、A.工程で得られたグリニヤル試薬のTNF溶液をゆっくり滴下する。生成物を加圧ろ過して組成生物32.62gを得た。これを、減圧蒸留(0.8mmHg)器により、目的物質(上記ジクロロシラン)の沸点〔100℃(0.8mmHg)〕と上記原料のトリクロロシランの沸点〔130℃(0.8mmHg)〕との違いを利用して生成した。
II.ポリシランの合成
A.反応容器内を十分に脱水脱気し、アルゴンガス置換する。18−クラウンエーテル−6(34.0mg)を前記反応容器に入れ120℃(油浴上)で加熱する。金属ナトリウム0.3g(12.84mmol)と脱水トルエン50mlを反応容器に入れた。撹拌しながら前記原料モノマー2.0g(6.42mmol)をゆっくり滴下する。粘度が高くなるたびに脱水トルエンを加えて粘度を下げる。2時間撹拌後、反応混合溶液を加圧ろ過する。精製前のポリマーは、分子量約100万と約5万にピークを持つ二峰性(Bimodal)であった。
B.精製(ポリマーの分別)A.工程の終了したポリマーのトルエン溶液をイソプロピルアルコール、エタノールで再沈殿して、高分子量のものから順次採取する。加圧ろ過、真空乾燥により先ず、表1のフラクションI−fr.1〜I−fr.5を採取する。
C.残った溶液を次いでメタノールにより再沈殿させる。加圧ろ過、真空乾燥により、表1のフラクションI−fr.6を採取する。I−fr.6の重合度(式1におけるn、mは0)はおよそ40である。
D.最後に水により再沈殿させる。加圧ろ過、真空乾燥により、表1のフラクションI−fr.7を採取する。I−fr.7の重合度(式1におけるn)はおよそ58である。
【0016】
【表1】
Figure 0003726229
【0017】
図1は、前記表1における分取ポリマーI−fr.5、I−fr.6およびI−fr.7のコレステリック液晶ポリマーのCD反射ピーク波長と平均分子量との関係、およびそれぞれの平均分子量のコレステリック液晶ポリマーの温度依存性を示す。コレステリック液晶ポリマーの温度依存性には臨界値があり、臨界値は、平均分子量が小さい方が低いことが推測される。図2は、図1のI−fr.7のコレステリック液晶ポリマーのCD反射ピーク波長の各温度における円偏光二色性の大きさ(強度)の関係を示す。図5は、I−fr.7のコレステリック液晶ポリマーの円偏光二色性の温度ジャンプに対する応答性を観察したものであり、温度を70℃から110℃に温度ジャンプした場合、ほぼ2分で円偏光二色性の進行が完了することが観察された。この特性は、コレステリック液晶のチューナブルフィルターとしての1つの評価を観察したものである。
【0018】
【発明の効果】
以上述べたように、β−位が分岐構造である光学活性アルキル基を持つ剛直棒状ヘリカル構造光学活性ホモまたは共重合ポリシラン類は、平均分子量を適当に設計することにより、種々の用途、例えば、チューナブルフィルターとして利用できるコレステリック液晶材料を提供できるという優れた効果をもたらす。
【図面の簡単な説明】
【図1】I−fr.5、I−fr.6、I−fr.7のCD反射ピーク波長と平均分子量と関係、およびそれぞれの平均分子量のコレステリック液晶ポリマーの温度依存性を示す
【図2】I−fr.7のCD反射ピーク波長の各温度における円偏光二色性の大きさの関係を示す
【図3】I-fr6、I-fr7の重合体分子主鎖のヘルカル構造の円偏光二色性の温度依存性を観察
【図4】I-fr6の重合体分子主鎖のヘルカル構造の円偏光二色性の温度依存性を観察
【図5】I-fr7のコレステリック液晶ポリマーの円偏光二色性の温度ジャンプに対する応答性[0001]
BACKGROUND OF THE INVENTION
The present invention is a polysilane whose skeleton structure is composed only of Si, and at least 1% or more of Si constituting the skeleton has one chiral alkyl group having a branched structure at the β-position. Are all saturated with an achiral organic group, particularly an alkyl group or an alkyl group having a phenyl group at the terminal, and a viscosity index α of Si of 10 to 1000 constituting the skeleton structure is 1.3 or more (tetrahydrofuran, 30 ° C. And a cholesteric liquid crystal exhibiting a temperature-dependent circularly polarized light selective reflection wavelength comprising an optically active organosilicon polymer having a rigid rod-like helical structure. The rigid rod shape refers to a viscosity index (α) measured at 30 ° C. using the optically active organic silicon polymer as a tetrahydrofuran solution (0.1 to 0.2 g / vol%) (a specific measurement method will be described later). ) Is at least 1.3, and when a helical polysilane having a length of about 2 μm is observed with an atomic force microscope (AFM), it shows a structure in which very long rod-shaped segments are bonded to the kink portion. The cholesteric liquid crystallinity exhibiting a temperature-dependent circularly polarized light selective reflection wavelength is brought about by a configuration characterizing the chemical structure of the organosilicon polymer.
[0002]
[Prior art]
Conventionally, optically active organosilicon polymer and copolymer technologies include the above-mentioned polymer, its production method, positive type (photodecomposition type) resist material, and high-performance liquid chromatography with enantiomeric molecule recognition ability. As a column material for chromatography (HPLC) and gas chromatography (GC), or as a model material for basic research on optical and electrical properties of one-dimensional quantum wire semiconductors, as an exciton material Application to the study of the physical properties and functions of sucrose has been studied. JP-A-7-33784, JP-A-6-306087, which describe techniques relating to organosilicon compounds, as documents reporting the above-mentioned techniques, and JP-A-10-101, as documents reporting copolymer techniques. JP-A-11-158288 reports that an optically active organosilicon polymer using a chiral alkyl group having an asymmetric carbon as the chiral alkyl group is disclosed in JP-A-9-226727, JP-A-9-40783. Can be mentioned.
[0003]
The organosilicon polymers described in the above documents are all bimodal in molecular weight distribution characteristics. Further, it is known that the optically active organosilicon polymer and copolymer mentioned in the above prior art have a helical pitch and a rigid polymer structure by having a chiral group in the side chain.
[0004]
As another example of a polymer having a rigid rod-like helical structure as described above, Watanabe et al. Reported polyglutamic acid having a long n-alkyl chain, for example, n-decyl group (Reference 1. Thermotropic reagents. Investigation of cholesteric mesophase propertes of poly (γ-methyl D-glutamate-co-γ-hexyl D-glutamate) s (with Y. Fukuda, R. Gehani and I. Uematsu), Macromolecules, 17, 1004 (1984): 2 .Themortopic polypetides.2.Molecular packing andthermotropic behavior of poly (L-glutamates) with long n-alkyl sidechains (with H.Ono, A.Abe and I.Uematsu), Macromoleccules, 18,2141 (1986) : 3.Thermotropic on.cholesteric mesophase with Grandjean texture and its solidification (with T.Nagase, H.Itoh, T.Ishii and T.Satoh) Mol. Cryst.Liq.Cryst., 160,432 (1988) : 4.Thermotropic liquid crystals in polypetides In "Ordering in Macromolecular Systems", A. Teramoto, M. Kobayashi and T. Norisue, Eds., Springer-Verlag, Berlin, Heidelberg, p99-108 (1994)). In addition, here, it has been reported that with polyglutamic acid having a long-chain alkyl group of n-decyl group or more, not only cholesteric liquid crystal properties but also hexagonal columnar and smectic phases are observed. The polymer cholesteric liquid crystal is characterized in that the cholesteric liquid crystal structure can be fixed as a film, and that the liquid crystal phase can be easily prepared by having a plane alignment effect based on molecular rigidity. Yes. It has been reported that it has a higher temperature-dependent thermotropic cholesteric liquid crystallinity, but the progress of cholesteric helical shape change due to temperature jump is very slow, for example, temperature jump of about 10 ° C takes more than ten minutes. Yes. In addition, the characteristics of cholesteric liquid crystals and various applications are mentioned.
[0005]
Furthermore, as with the polyglutamic acid, cellulose, polyisocyanate, and wholly aromatic polymers, which are other rigid or semi-rigid polymers, have been reported to exhibit thermotropic and lyotropic liquid crystallinity. ing. By the way, what characterizes a liquid crystal is said to be mainly in the shape and arrangement of molecules constituting the liquid crystal. It is also known that many liquid crystal display molecules are rod-like molecules. In cholesteric liquid crystals, when molecules are stacked, they twist to the right or left [corresponding to the right-hand type (R) or the left-hand type (S). This structure is attributed to the asymmetry of the molecule, and there are atomic groups that generate twist. Such a molecule is called a chiral molecule.
[0006]
[Problems to be solved by the invention]
Since the present inventors have a twisted structure in the optically active organosilicon polymer having a rigid rod-like helical structure, the organosilicon polymer has some useful liquid crystal properties due to the characteristics of the structure. I thought that there might be something that has. Therefore, an object of the present invention is to find optically active organosilicon polymer polymers exhibiting cholesteric liquid crystal properties exhibiting a temperature-dependent circularly polarized light selective reflection wavelength, and to find liquid crystal characteristics specific to the polymer. is there. In the course of studying the properties of the optically active organosilicon polymer and copolymer technologies listed in the prior art, the inventors configure the polymer rather than remain bimodal. It was considered that the molecules were fractionated into molecular weights separated and the characteristics of the fractionated polymer were observed. This is because if a method for selectively obtaining a region of the molecule exhibiting the characteristics is established, a polymer suitable for the purpose can be synthesized as needed.
[0007]
For this purpose, the optically active organosilicon polymer synthesized by the conventional method is fractionated, and the characteristics are observed for each of the divided molecular weights according to the method of the above research. Starting from observing the temperature change and optical properties of the polymer having a relatively small molecular weight, it was found that a polymer having a rigid rod-like helical structure has very unique properties, that is, liquid crystal properties. When an optically active organosilicon polymer having a rigid rod-like helical structure is observed by AFM, the structure of the molecule has a structure in which a very long segment is bonded at a kink (folding point). It was found that the viscosity index measured at 30 ° C. was at least 1.3 with a tetrahydrofuran solution (0.1 to 0.2 g / vol%) (the measurement method will be described later). Furthermore, various applications can be considered because the characteristics with respect to the wavelength greatly change due to the difference in molecular weight, and the wavelength characteristics can be changed by increasing the temperature. For example, if I-fr5, which is a fraction having a large molecular weight, is used, it can be considered to be used as a liquid crystal tunable filter for infrared light of 1550 nm and 1300 nm used for optical communication.
[0008]
The viscosity measurement method is shown below.
1. GPC-VISCO Method (Gel Permeation Chromatograph-Viscometer Method) Principle GPC method is a kind of liquid chromatography that separates polymer chains by molecular size (hydrodynamic volume) difference. Incorporating a viscosity detector (VISCO) and a differential refractometer (RI), and measuring the intrinsic viscosity and refractive index difference of a polymer solution sized by GPC following the retention volume, the intrinsic viscosity, molecular weight and In this method, the content rate is sequentially calculated, and finally information on the molecular weight characteristics and viscosity characteristics of the polymer substance is obtained. 2. Measurement conditions GPC: 150-C type gel permeation chromatography (GPC) (manufactured by Waters) Column: TSKgelGMHXL (inner diameter 7.8 mm, length 30 cm, 3) (manufactured by Tosoh) Solvent: toluene (SN42-45 Nacalai Tesque) Manufactured) Flow rate: 1.0 mL / min (actually measured 1.021 mL / min) Temperature: 70 ° C. Sample concentration: 1: 0.2877 w / v% (70 ° C.) Solubility: complete dissolution (about 70 ° C. × 15 minutes) Filtration: Metal filter 0.5 μm (Waters) Injection amount: 800 μL Detector: Differential refractometer RI sensitivity 32x, 40% (Waters) Molecular weight calibration: 10 types of monomolecular polystyrene (manufactured by Tosoh) VISCO: H502a type viscosity detector ( VISCOTEK) Capillary: 0.5mm (inner diameter) x 61cm (length) Temperature: 70 ℃ Data processing: GPC-VISCO data processing system UNICAL Ver.4.05 (made by VISCOTEK)
[0009]
[Means for Solving the Problems]
The present invention is represented by (1) the following structural formula (Formula 1).
[Chemical formula 2]
Figure 0003726229
[0011]
[ Wherein R1 and R2 are the same or different and are an alkyl group of C10 to C22 or an aralkyl group having a phenyl group at the terminal of an alkyl group of C10 to C22 . R3 is an achiral alkyl group having a branched structure at the β-position. R * represents a chiral alkyl group having a branched structure at the γ-position and is left-handed (S) or / and right-handed (R), provided that at least 1% when (S) and (R) coexist contains many either or more. m is ≧ 0, n + m is 10 to 1000 , and n / (n + m) ≧ 0.01. It is a cholesteric liquid crystal having a temperature-dependent circularly polarized light selective reflection wavelength made of an optically active organosilicon polymer having a rigid rod-like helical structure with a viscosity index α of 1.3 or more (tetrahydrofuran, 30 ° C.) . Preferably, (n + m) is 40 to 1000 , and the viscosity index α according to (1) above is 1.3 or more (tetrahydrofuran, 30 ° C.). It is a cholesteric liquid crystal having a temperature-dependent circularly polarized light selective reflection wavelength composed of a molecular polymer.
[0012]
[Embodiments of the present invention]
The present invention will be described in more detail.
A. The chemical structure of the optically active organosilicon polymers exhibiting cholesteric liquid crystals is as described above (Formula 1).
1. Is a homopolymer,
2. Is a copolymer, and copolymers are roughly classified into two types of polymer copolymer systems.
a. One is to synthesize the corresponding optically active polysilane copolymer by desalting and copolymerizing the corresponding optically active dichlorosilane and optically inactive dichlorosilane with sodium metal in toluene.
b. Another system is the desalting copolycondensation of the corresponding (S) -configured optically active dichlorosilane and (R) -configured optically active dichlorosilane with sodium metal in toluene to provide the corresponding optically active polysilane copolymer. It is to synthesize a coalescence. In any case, when an optically active organic substituent to be used is one having a branched portion at the β position, there is no fear of racemization or rearrangement reaction in the Na desalting condensation reaction process. Since the degree of steric hindrance between silicon monomers is relatively small, a high molecular weight optically active chain organic polysilane is easily formed. Further, it is known that a very small amount of β-position chiral carbon has a remarkable effect of immobilizing the main chain of the whole organic polysilane polymer having a chain skeleton in a helix having almost a single direction and a constant pitch.
[0013]
Therefore, by appropriately selecting the organic group of the side chain to be bonded to Si of the chain skeleton, and further by adjusting the degree of polymerization, (n + m) in Formula 1, the structure of the whole organic polysilane polymer is made liquid crystalline. It can be excellent. The synthesis of the polymer can be performed according to the method described in the aforementioned literature.
[0014]
B. In the present invention, the bimodal polymer obtained by the method for producing optically active organosilicon polymers described in the above-mentioned known literature is collected as a polymer in a molecular region divided by using an appropriate solvent combination. . As the resolving solvent, a mixture of toluene, which is a solvent for the polymers, and alcohol, such as isopropyl alcohol, ethanol, methanol, or a small amount of water, which is a poor solvent for the polymer, so as to adjust the solubility can be used. .
C. As can be understood from FIG. 1, the liquid crystal material of the present invention can design a filter having a desired circularly polarized reflection if the molecular weight is appropriately designed. And the said absorption characteristic can be switched by temperature control. The temperature at which the temperature dependence of the absorption characteristics starts to change linearly (critical temperature) depends on the molecular weight, but the temperature dependence when raising the temperature (temperature rise) and the temperature dependence when falling (temperature fall) The characteristics are the same, in other words, there is no residual distortion. FIG. 2 is obtained by adding circularly polarized reflection intensity data to FIG. FIGS. 3 and 4 show the temperature dependence of the circular dichroism of the helical structure of the optically active organosilicon polymer polymer main chain having a rigid rod-like helical structure. Indicates no. In other words, the temperature dependence of the polymer indicates that the pitch of the helix of the polysilane molecule having a rigid rod-like helix structure is changed. 5 shows I-fr. 7 was measured for the rate of progression of the helical form (pitch) change when the temperature of the polymer No. 7 was jumped from 70 ° C. to 110 ° C., indicating that the change was almost completed in about 2 minutes.
[0015]
【Example】
Example 1
I. Synthesis of n-decyl- (S) -2-methylbutyldichlorosilane as a raw material monomer.
A. 3.9 g (0.16 mol) of magnesium was placed in a dry three-necked flask (300 mL), and the inside of the flask was purged with argon. After injecting 50 mL of THF (tetrahydrofuran) and heating to 70 ° C., a small amount of dibromobutane is added and stirred to activate the magnesium surface. From the dropping funnel, 14.3 g (0.13 mol) of 1-chloro- (S) -2-methylbutane is dropped, and the mixture is stirred for 2 hours and then lowered to room temperature. A Grignard reagent was obtained.
B. In a dry three-necked flask (300 mL), 50 mL of THF and 44.25 g (0.16 mol) of n-decyltrichlorosilane are placed. After raising the temperature to 60 ° C., A. The TNF solution of the Grignard reagent obtained in the process is slowly added dropwise. The product was filtered under pressure to obtain 32.62 g of the composition organism. Using a vacuum distillation (0.8 mmHg) apparatus, the boiling point of the target substance (the above dichlorosilane) [100 ° C. (0.8 mmHg)] and the boiling point of the raw material trichlorosilane [130 ° C. (0.8 mmHg)] Generated using the difference.
II. Synthesis of polysilane A. The inside of the reaction vessel is fully dehydrated and degassed and replaced with argon gas. 18-Crown ether-6 (34.0 mg) is placed in the reaction vessel and heated at 120 ° C. (on an oil bath). Metal sodium 0.3g (12.84mmol) and dehydrated toluene 50ml were put into the reaction vessel. While stirring, 2.0 g (6.42 mmol) of the raw material monomer is slowly added dropwise. Every time the viscosity increases, dehydrated toluene is added to lower the viscosity. After stirring for 2 hours, the reaction mixture solution is filtered under pressure. The polymer before purification was bimodal with peaks at molecular weights of about 1 million and about 50,000.
B. Purification (polymer fractionation) The toluene solution of the polymer after the completion of the process is reprecipitated with isopropyl alcohol and ethanol, and sequentially collected from those having a high molecular weight. First, the fraction I-fr. 1-I-fr. Collect 5
C. The remaining solution is then reprecipitated with methanol. By pressure filtration and vacuum drying, the fraction I-fr. Collect 6 I-fr. The degree of polymerization of 6 (n and m in Formula 1 are 0) is about 40.
D. Finally, reprecipitate with water. By pressure filtration and vacuum drying, the fraction I-fr. Collect 7 I-fr. The degree of polymerization of 7 (n in Formula 1) is approximately 58.
[0016]
[Table 1]
Figure 0003726229
[0017]
1 shows the preparative polymer I-fr. 5, I-fr. 6 and I-fr. 7 shows the relationship between the CD reflection peak wavelength and the average molecular weight of No. 7 cholesteric liquid crystal polymer, and the temperature dependence of each average molecular weight of the cholesteric liquid crystal polymer. The temperature dependence of the cholesteric liquid crystal polymer has a critical value, and it is estimated that the critical value is lower when the average molecular weight is smaller. FIG. 2 shows I-fr. 7 shows the relationship between the magnitude (intensity) of circular dichroism at each temperature of the CD reflection peak wavelength of No. 7 cholesteric liquid crystal polymer. 5 shows I-fr. The response of circular dichroism to the temperature jump of cholesteric liquid crystal polymer No. 7 was observed. When the temperature jumped from 70 ° C to 110 ° C, the progress of circular dichroism was completed in approximately 2 minutes. To be observed. This characteristic is the observation of one evaluation of a cholesteric liquid crystal as a tunable filter.
[0018]
【The invention's effect】
As described above, rigid rod-like helical structure optically active homo- or copolymerized polysilanes having an optically active alkyl group having a branched structure at the β-position can be used for various purposes, for example, by appropriately designing the average molecular weight. This provides an excellent effect of providing a cholesteric liquid crystal material that can be used as a tunable filter.
[Brief description of the drawings]
FIG. 1 shows I-fr. 5, I-fr. 6, I-fr. 7 shows the relationship between the CD reflection peak wavelength and the average molecular weight, and the temperature dependence of each average molecular weight of the cholesteric liquid crystal polymer. 7 shows the relationship between the magnitude of circular dichroism at each temperature of the CD reflection peak wavelength of 7 [FIG. 3] Temperature of circular dichroism of the helical structure of the polymer main chain of I-fr6 and I-fr7 Observation of dependence [Fig. 4] Observation of temperature dependence of circular dichroism of the helical structure of the polymer main chain of I-fr6 [Fig. 5] Observation of circular dichroism of cholesteric liquid crystal polymer of I-fr7 Responsiveness to temperature jump

Claims (2)

下記(式1)の構造式で表され
Figure 0003726229
〔式中R1及びR2は同一又は異なり、C10〜18のアルキル基またはC10〜C18アルキル基の末端にフェニル基を有するアラルキル基であり。R3はβ−位置に分岐構造をもつアキラルなアルキル基であり。Rはβ−位置に分岐構造をもつキラルなアルキル基を示し、左手型(S)または/および右手型(R)、但し、(S)と(R)が共存する場合には少なくとも1%以上どちらかが多く含まれている。mは≧0、(n+m)は10〜1000、そしてn/(n+m)≧0.01である。〕、粘度指数αが1.3以上(テトラヒドロフラン、30℃)である剛直棒状のヘリカル構造の光学活性有機シリコン高分子重合体からなる温度依存性円偏光選択反射波長を示すコレステリック液晶。
It is represented by the following structural formula (Formula 1)
Figure 0003726229
[ Wherein R1 and R2 are the same or different and are an aralkyl group having a phenyl group at the terminal of a C10-18 alkyl group or a C10-C18 alkyl group . R3 is an achiral alkyl group having a branched structure at the β-position. R * represents a chiral alkyl group having a branched structure at the β-position, and is left-handed (S) or / and right-handed (R), provided that at least 1% when (S) and (R) coexist Either of these is included. m is ≧ 0, (n + m) is 10 to 1000 , and n / (n + m) ≧ 0.01. ] A cholesteric liquid crystal exhibiting a temperature-dependent circularly polarized light selective reflection wavelength composed of an optically active organosilicon polymer having a rigid rod-like helical structure with a viscosity index α of 1.3 or more (tetrahydrofuran, 30 ° C.) .
(n+m)が40〜1000であることを特徴とする請求項1に記載の粘度指数αが1.3以上(テトラヒドロフラン、30℃)である剛直棒状ヘリカル構造の光学活性有機シリコン高分子重合体からなる温度依存性円偏光選択反射波長を示すコレステリック液晶。(N + m) is 1.3 or more α viscosity index according to claim 1, characterized in that the 40 to 1000 (tetrahydrofuran, 30 ° C.) from optically active organosilicon high polymer of the rigid-rod helical structure is A cholesteric liquid crystal exhibiting a temperature-dependent circularly polarized light selective reflection wavelength .
JP35203099A 1999-12-10 1999-12-10 Cholesteric liquid crystal material comprising a rigid rod-like helical structure optically active homo- or copolymerized polysilane having an optically active alkyl group having a branched structure at the β-position Expired - Fee Related JP3726229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35203099A JP3726229B2 (en) 1999-12-10 1999-12-10 Cholesteric liquid crystal material comprising a rigid rod-like helical structure optically active homo- or copolymerized polysilane having an optically active alkyl group having a branched structure at the β-position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35203099A JP3726229B2 (en) 1999-12-10 1999-12-10 Cholesteric liquid crystal material comprising a rigid rod-like helical structure optically active homo- or copolymerized polysilane having an optically active alkyl group having a branched structure at the β-position

Publications (2)

Publication Number Publication Date
JP2001164251A JP2001164251A (en) 2001-06-19
JP3726229B2 true JP3726229B2 (en) 2005-12-14

Family

ID=18421308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35203099A Expired - Fee Related JP3726229B2 (en) 1999-12-10 1999-12-10 Cholesteric liquid crystal material comprising a rigid rod-like helical structure optically active homo- or copolymerized polysilane having an optically active alkyl group having a branched structure at the β-position

Country Status (1)

Country Link
JP (1) JP3726229B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4044791B2 (en) * 2002-06-17 2008-02-06 独立行政法人科学技術振興機構 Method for producing liquid crystal having desired characteristics by mixing at least two kinds of polymers having different molecular weights, such as rigid rod-like narrow molecular weight distributions having chiral side chain groups
JP2004091736A (en) * 2002-09-03 2004-03-25 Nara Institute Of Science & Technology Optically active polysilane, optically active membrane and method for controlling optical properties of solid membrane
JP3817718B2 (en) * 2003-05-19 2006-09-06 独立行政法人科学技術振興機構 Method for producing polysilane optically active inversion thin film
WO2005080500A1 (en) 2004-02-23 2005-09-01 Japan Science And Technology Agency Hydrophilic stiff main chain type liquid crystalline composition and chiral sensor utilizing the same
EP1956035B1 (en) 2005-12-01 2014-01-22 Japan Science and Technology Agency Polyisocyanide derivative having controlled helical main chain structure

Also Published As

Publication number Publication date
JP2001164251A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
San Jose et al. Lyotropic chiral nematic liquid crystalline aliphatic conjugated polymers based on disubstituted polyacetylene derivatives that exhibit high dissymmetry factors in circularly polarized luminescence
Percec et al. Steric communication of chiral information observed in dendronized polyacetylenes
Wang et al. Helical conformations of poly (3, 5-disubstituted phenylacetylene) s tuned by pendant structure and solvent
Mu et al. Hierarchical self-organization and uniaxial alignment of well synthesized side-chain discotic liquid crystalline polymers
Yu et al. Phase behaviors of side-chain liquid crystalline polyacetylenes with different length of spacer: Where will the decoupling effect appear?
Wu et al. Triphenylene-based side chain liquid crystalline block copolymers containing a PEG block: controlled synthesis, microphase structures evolution and their interplay with discotic mesogenic orders
JP3726229B2 (en) Cholesteric liquid crystal material comprising a rigid rod-like helical structure optically active homo- or copolymerized polysilane having an optically active alkyl group having a branched structure at the β-position
KR20070056070A (en) Novel polyacetylene derivatives
Koltzenburg et al. Investigation of the thermal and morphological behavior of liquid-crystalline acetylene homo-and copolymers
Gu et al. Thermotropic, reversible, and highly selective one-handed helical structure of hydroxyl group-containing poly (phenylacetylene) s and its static memory
JPH0430969B2 (en)
Shirakawa et al. Synthesis of vertically aligned polyacetylene thin films in homeotropic liquid crystal solvents
US7563387B2 (en) Hydrophilic stiff main chain type liquid crystalline composition and chiral sensor utilizing the same
JP3730225B2 (en) Polymer liquid crystal material using polysilane
JP4044791B2 (en) Method for producing liquid crystal having desired characteristics by mixing at least two kinds of polymers having different molecular weights, such as rigid rod-like narrow molecular weight distributions having chiral side chain groups
Liu et al. Long range chirality transfer in free radical polymerization of vinylterphenyl monomers bearing chiral alkoxy groups
Wang et al. Synthesis and properties of novel chiral side-chain liquid crystalline polysiloxanes containing different chiral pendant groups
Boiko et al. Synthesis and comparative studies of carbosilane liquid crystalline dendrimers with chiral terminal mesogenic groups
CN113201008B (en) Full-spectrum selective reflection cyclic side chain liquid crystal oligomer film and preparation method thereof
Cooray et al. Preparation and Properties of Ferroelectric Liquid-Crystalline Polysiloxanes Possessing (S)-(−)-4-(2-methylbutyloxycarbonyl) phenyl 4′-(5-hexyloxy) biphenyl-4-carboxylate as Side Chain Mesogen Unit
JP3960428B2 (en) Polymer liquid crystal material
JP3805761B2 (en) Polysilane orientation control method
Lin et al. Synthesis of high temperature cholesteric copolysiloxanes and their use as stationary phases for high resolution gas chromatography
JP3770396B2 (en) Liquid crystal phase spacing control method
Cabrera et al. Liquid crystal polymers from swallow-tailed mesogens

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees