JP3725501B2 - Constant pressure reducing valve for water supply - Google Patents

Constant pressure reducing valve for water supply Download PDF

Info

Publication number
JP3725501B2
JP3725501B2 JP2002225587A JP2002225587A JP3725501B2 JP 3725501 B2 JP3725501 B2 JP 3725501B2 JP 2002225587 A JP2002225587 A JP 2002225587A JP 2002225587 A JP2002225587 A JP 2002225587A JP 3725501 B2 JP3725501 B2 JP 3725501B2
Authority
JP
Japan
Prior art keywords
inlet
water
valve
outlet
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002225587A
Other languages
Japanese (ja)
Other versions
JP2004070465A (en
Inventor
伸幸 松浦
寿之 山口
Original Assignee
兼工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兼工業株式会社 filed Critical 兼工業株式会社
Priority to JP2002225587A priority Critical patent/JP3725501B2/en
Priority to SG200207819A priority patent/SG102065A1/en
Priority to CNB031017231A priority patent/CN100334378C/en
Publication of JP2004070465A publication Critical patent/JP2004070465A/en
Priority to HK04105680A priority patent/HK1062843A1/en
Application granted granted Critical
Publication of JP3725501B2 publication Critical patent/JP3725501B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Fluid Pressure (AREA)
  • Safety Valves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一次側圧力に対し二次側圧力を所定の比率に保持する水道用の定比減圧弁に関する。
【0002】
【従来の技術】
高層建築物等において、各階層の水道水の圧力差を無くし、各戸へ水道水を均等に供給するためには、水道本管から各戸へ供給される支管に一次側圧力に対する二次側圧力の比率を各階層毎に設定した減圧弁を配管する必要があった。
しかしながら、既設の配管にダイアフラム式等の大型の減圧弁を取り付けることは、非常に困難であった。
そのため、大型の減圧弁に比し、小型で取付けが比較的容易なインライン式の定比減圧弁を水道メータの二次側(出口)と下流側配水管との間に介装連結して各階層の水道水の圧力差を無くす様にしているが、配管の長さを調節してもなお配管中に設定できる定比減圧弁の介装間隔は極めて短いため、ユニオンナットを利用して定比減圧弁を配管している。
上記定比減圧弁の具体的な構造の一例を図6〜8に示し説明する。
この減圧弁aは、流入口bと、該流入口bより大径な流出口cとを各端部に設けた円筒状の弁箱dに、流入口bを開閉する弁部eを一端に設けると共に、他端が流出口cに開口した中空部fを設けたピストンgを摺動自在に挿嵌し、該ピストンgの一端側周囲には断面積が流入口bの面積より大きく設定された弁箱d内壁との間隙hを設け、該間隙hを介して弁箱d内壁に面するピストンg周壁の十字方向には前記中空部fに連通する通水口iを開設しており、弁箱dの流入口側端部には、ユニオンナットjを摺動自在に装着し、弁箱dの流出口側端部の外周には、下流配管の端部に螺入するテーパーネジkを螺刻している。
尚、一次側圧力に対する二次側圧力の比率は、一次側圧力を受圧する弁部eの面積、即ち、流入口bの口径を設定することにより変更している。
【0003】
【発明が解決しようとする課題】
そして、この減圧弁aを水道メータと下流側配水管との間に介装するには、その間隔が極めて短く、弁箱d全長より若干長い程度のため、ユニオンナットjを流出口c側へ一旦スライドした状態で、弁箱dの流出口側端部を下流側配水管に螺入し、その後ユニオンナットjを流入口b側へスライドして水道メータにユニオンナットjを螺着せねば、減圧弁aを比較的容易に配管できなかった。
しかも、上記構成の定比減圧弁aでは、ユニオンナットjを弁箱dの長さ方向へスライドする様に成しているため、弁箱dは、ユニオンナットjの挿通穴mに対応した外径でなければならないが、この様に、弁箱dの外径、全長に制約があるため、流入口bの口径も必然的に小径に成らざるを得ず、よって圧力損失が大きくなり、安定した流量の確保が困難であった。
【0004】
【課題を解決するための手段】
本発明は、上記課題に鑑み、流入口と、該流入口より大径に設定した流出口とを端部の夫々に設けた円筒状の弁箱に、流入口を開閉する弁部を一端に設けると共に、他端側が流出口に開口した中空部を設けたピストンを摺動自在に挿嵌し、該ピストンの一端側周囲には断面積が流入口の面積より大きく設定された弁箱内壁との間隙を設け、該間隙を介して弁箱内壁に面するピストン周壁に環状の陥没面を凹設し、該陥没面には、前記中空部に連通すると共に、陥没面の幅と同径の通水口を軸線に対し鋭角を以て流出口向きの斜めにして、且つ、狭小間隔を置いて複数開設し、通水口の総面積は、流入口の面積及び通水口の総面積を除いた陥没面の面積のいずれよりも大きく設定することにより、圧力損失を小さくした流路形状を構成した定比減圧弁を提供し、更にかかる定比減圧弁を水道メータの出口内部や、水道メータの二次側に配管される水道器具内部に収容する様にして、定比減圧弁の配管作業をも省ける様にして、上記課題を解決する。
【0005】
【発明の実施の形態】
以下本発明の一実施例を図面に基づいて説明する。
1は高層マンション等の各戸に装備される水道メータ(図示せず)の二次側(出口)と下流側配水管(図示せず)との間に介装されるインライン形の水道用定比減圧弁であり、該定比減圧弁1は、その弁箱2と、該弁箱2に内装したピストン3とから主に構成されている。
弁箱2は、円筒状に形成され、その各端部の夫々に流入口4と、該流入口4より大径に設定した流出口5とを設け、流入口4の二次側開口部周縁には弁座6を突設している。
又、弁箱2は、流入口4を水道メータの出口外周に設けたユニオンネジに螺着するユニオンナット7の挿通穴7aに摺動自在な外径を有し、弁箱2の流入口端部4aの外周にはユニオンナット7を抜止め掛止するユニオン鍔8を突設し、流出口端部5aの外周には、下流管に螺入されるテーパーネジ9を螺刻している。
尚、ユニオン鍔8の端面には、水道メータの出口端面に密着する様に成した円環状のパッキン10を接着している。
【0006】
ピストン3は、弁座6に着離することにより流入口4を開閉する弁部11を一端に設けると共に、他端側が流出口5に開口した中空部12を設けた円筒状に形成され、弁箱2内の略中間部位に設けた縮径部13に、Uパッキン14で以て気密状にして、且つ、摺動自在に挿嵌している。
そして、ピストン3の一端(弁部11の形成端部)側周囲には、開弁時に流入口4と連通して圧力流体の流路の一部と成る弁箱2内壁との間隙15が設けられ、該間隙15の断面積(弁箱2とピストン3との間のリング状の面積に相当)は流入口4の面積S1よりも大きく設定して成り、又ピストン3の他端(開口端)の周縁には、Uパッキン16を周設したフランジ17を突設し、該フランジ17を弁箱2内壁に摺動自在に内接している。
間隙15を介して弁箱2内壁に常に面するピストン3周壁には、環状の陥没面18を凹設し、該陥没面18には、ピストン3の中空部12に連通すると共に、陥没面18の幅と同径の通水口19を弁箱2の軸線に対し鋭角(図示例では約60度)を以て流出口5向きの斜めにして、且つ、狭小間隔Lを置いて複数(図示例では6個)開設し、通水口19の総面積Saは、流入口4の面積S1よりも大きく(Sa>S1)設定すると共に、陥没面18の全面積Sb(通水口19の総面積Saを含む)から通水口19の総面積Saを除いた陥没面18の面積(Sb−Sa)よりも大きく(Sa>Sb−Sa)設定している(図1、3参照)。
【0007】
又、ピストン3において、弁部11の背面には、通水口19の出口19aに連続して、ピストン3の中心へ向かい傾斜した略漏斗状の凹面部20を凹設している。
弁箱2の流出口5内周には、ピストン3(フランジ17)を抜止めする止め輪21を突設しており、ピストン3のストロークは止め輪21にフランジ17が当接するまでの距離に相当し、かかる状態において縮径部13は通水口19を閉じない様に設定されている(図2参照)。
尚、弁箱2において、縮径部13とフランジ17との間の気密空間は、弁箱2に開設した通気口22にて外部と連通し、ピストン3が支障なく動作できる様に成している。
【0008】
上記実施例では、水道メータの出口と下流側配水管との間に定比減圧弁1を介装するものを示したが、定比減圧弁1は、その弁箱2の流入口4及び流出口5を一次側及び二次側の夫々に対応させ、図4に示す様に、水道メータMの出口M1内部、又は、図5に示す様に、水道メータの下流側に配管される水道器具Nの内部に収容しても良い。
この場合、弁箱2は、ユニオン鍔8とテーパーネジ9を廃し、流入口端部4a及び流出口端部5aの外径が同一な直円柱状に形成している。
定比減圧弁1を収容する水道メータMの出口M1は、弁箱2の全長より若干長い直管状に形成され、出口M1の内部において、その奥方には、弁箱2の流入口端部4aより若干小径な環状段部M2を縮径形成し、該環状段部M2に弁箱2の流入口端部4aを当接し、流出口端部5aに対応した出口M1側端内周には、流出口端部5aに当接して弁箱2及びピストン3を抜止めする止め輪21を突設している。
そして、出口M1の側部には、通気口22と外部とを連通する通気路M3を設けると共に、出口M1の内部において、通気路口M4の前後には、通気路M3と通気口22との気密性を保持するシール部材(Oリング)Gを周設している。
水道メータの下流側に配管される水道器具Nは、配水管、止水栓等のバルブであって、定比減圧弁1は、直線状の配水管の出口又は入口内部、或いは、バルブに設けた直管状の入口内部に収容される。
配水管の出口内部に定比減圧弁1を収容する構成は、水道メータMの出口M1に収容した構成と同一のため図示を省略し、配水管又はバルブの入口内部に定比減圧弁1を収容した構成を図5に示すが、その基本構成は、上記と同様である。
即ち、水道器具(配水管又はバルブ)Nの入口N1内部は、その奥方に弁箱2の流出口端部5aに当接すると共に、ピストン3のストローク端に設けた止め輪21に代替される環状段部N2を縮径形成し、流入口端部4aに対応した入口N1側端内周に、流入口端部4aに当接して弁箱2を抜止めする止め輪Rを突設し、上記と同様に、通気口22と外部とを連通する通気路N3を入口N1の側部に設け、該入口N1の内部における通気路口N4の前後にシール部材Gを周設している。
【0009】
次に、本発明に係る定比減圧弁1の作用について説明する。
この定比減圧弁1において、ピストン3の形状は、流入口4と流出口5の口径差を利用してピストン3の弁部11に作用する一次側方向の作用力と、ピストン3の中空部12側に作用する二次側方向の流体作用力(中空部12側の二次側圧力の受圧面積(流出口5の面積S2に相当)と二次側圧力P2の積)が釣り合う様に構成されている。
一次側方向の作用力は、弁部11の一次側圧力の受圧面積(流入口4の面積S1に相当)と一次側圧力P1の積、弁部11の二次側圧力の受圧面積(弁部11の全面積S3から一次側圧力の受圧面積S1を除いた環状面の面積(S3−S1)に相当)と二次側圧力P2の積、及びUパッキン14、16等に基づくピストン3の摩擦抵抗力αの和である。
即ち、S1P1+(S3−S1)P2+α=S2P2であり、
P2=(S1P1+α)/(S2−(S3 −S1))を得る。
故に、二次側圧力P2は、一次側圧力P1を受圧面積(S2−(S3 −S1))と、受圧面積S1、及び摩擦抵抗αとで決まる値に減圧した圧力となる。
上述の通り、流入口4は流出口5より小径に設定しているため、流入口4の面積S1は流出口5の面積S2より小さく(S1<S2)、又弁部11における環状面の面積(S3−S1)は流入口4の面積S1により設定(尚、S3≦S2である。)されるから、二次側圧力は流入口4の面積S1(口径)を変更することにより設定できる。
従って、定比減圧弁1は、二次側圧力が所定圧の時、弁部11が弁座6に着座して閉弁状態であり、給水栓を開いて水を使用することにより、二次側圧力が所定圧より降下すると、一次側圧力により弁部11が弁座6離間して開弁し、一次側流体は流入口4、間隙15、通水口19及び中空部12を経て二次側へ流入する。
【0010】
上記開弁状態における圧力流体(水道水)の流れについて詳述すると、流入口4から間隙15に流入した圧力流体は、ピストン3の母線に沿った流れを生じ、通水口19がピストン3外周より落ち込んだ位置(陥没面18上)にあるので、ピストン3の母線に沿って流れる圧力流体は環状の窪みに沿って通水口19へ流れ込む。
そして、間隙15の断面積及び通水口19の総面積Saは、流入口4の面積S1よりも大きいため、圧力流体の滞りのない通過面積を確保できると共に、通水口19の総面積Saは、その面積Saを除いた陥没面18の面積(Sb−Sa)よりも大きく、陥没面18に対する通水口19の開口度が大きく、しかも各通水口19は陥没面18の全周に渡って狭小なる間隔Lを置いて隣接しているため、間隔Lに阻まれる流れよりも通水口19へ流入する流れが多く、全体的に通水口19へ流入する圧力流体の流れの圧力損失が小さく、通水口19の通過流量が多く確保される。
尚、従来の定比減圧弁a(以下、従来品aと称する。)では、通水口iの総面積Sxは、流入口4の面積Szよりも大きいが、通水口iの口径を幅としたピストン円周上の環状面(図6において陥没面18に対応した一点鎖線間の面)の面積Syから通水口iの総面積Sxを除いた面積(Sy−Sx)より通水口iの総面積Sxが小さく、本発明の定比減圧弁1に比し、隣接する通水口iの間隔L1が大きいので、通水口iへ流入する流体の流れよりも、通水口iの間隔L1に流れが阻まれる割合が高く、全体的に通水口iへ流入する圧力流体の流れの圧力損失が大きくなり、本発明の定比減圧弁1に比し、通水口iの通過流量が多く確保できない。
又、通水口19へ流入した圧力流体は、通水口 19 が、従来品aの様に流れ方向(弁箱2の軸線方向に相当)に対し直角でなく、軸線に対し鋭角を以て中空部12へ連通しているため、従来品aに比し圧力流体の流れの抵抗が小さくなる。
そして、各通水口19を通過し中空部12内に流入する圧力流体は、通水口19の出口より連続してピストン3の中心に向かって傾斜する斜面に沿って剥離することの無い流れ、あたかも翼の表面に沿ってよどみなく流れる流体と同様な流れを生じた後に合流するため、合流時に負圧を生じ難く安定した流れの圧力流体が下流側へ流動する。
これに対し、従来品aでは、通水口iから中空部fへ流入する圧力流体は、弁部eの背面が通水口iに沿った平坦のため、中空部f内で激しく衝突して合流することと成り、その合流時に弁部eの背面中央に負圧を生じて、圧力流体の流れの圧力損失が増大し、下流へ流動する。
この様に、本発明の定比減圧弁1は、従来品aに比し、開弁時における圧力流体の圧力損失が全体的に小さく、安定した流量が確保される。
そして、水の使用後、給水栓を閉じると、二次側圧力が上昇するに伴ってピストン3は一次側へ押し戻され、二次側圧力が所定圧に達した時点で閉弁する。
【0011】
【発明の効果】
要するに本発明は、流入口4と、該流入口4より大径に設定した流出口5とを端部の夫々に設けた円筒状の弁箱2に、流入口4を開閉する弁部11を一端に設けると共に、他端側が流出口5に開口した中空部12を設けたピストン3を摺動自在に挿嵌し、該ピストン3の一端側周囲には断面積が流入口4の面積S1より大きく設定された弁箱2内壁との間隙15を設け、該間隙15を介して弁箱2内壁に常に面するピストン3周壁に、中空部12に連通する通水口19を複数開設したので、二次側圧力P2は一次側圧力P1に対し所定の比率に減圧できるため、弁箱2の口径を変更することなく、流入口4の面積S1(口径)を変更することで、高層建築物の各階層における二次側圧力を同一に設定でき、水道配管と外径が略同一で軸線方向の長さの短い弁箱2を用いることができ、定比減圧弁1を取付けスペースの小さい箇所にも容易に設置できる。
又、各通水口19は、ピストン3周壁に凹設した通水口19と同径の幅を有する環状の陥没面18上に設けたので、開弁時において、流入口4から間隙15へ流入してピストン3の母線に沿う圧力流体の流れは、通水口19が形成された陥没面18へよどみなく導かれ、通水口19へ到達するまでの流体の圧力損失を軽減することができると共に、陥没面18に形成された通水口19は、従来の様に軸線に対し直角でなく、軸線に対し鋭角を以て流出口5向きの斜めに中空部12へ連通したので、一次側から二次側への流れの方向に、より即した流れを保持でき、通水口19から中空部12へ到達するまでの流体の圧力損失を軽減でき、全体的に圧力損失の小さい流れを保持できる。
更に、間隙15の断面積及び通水口19の総面積Saが流入口4の面積S1より大きく設定されることで、圧力流体の滞りのない通過面積を確保できると共に、通水口19の総面積Saは、その面積Saを除いた陥没面18の面積(Sb−Sa)よりも大きくして、陥没面18に対する通水口19の開口度を大きくでき、しかも各通水口19は陥没面18の全周に渡って狭小なる間隔Lを置いて隣接しているので、間隔Lに阻まれる流れよりも通水口19へ流入する流れが多くでき、全体的に通水口19へ流入する圧力流体の流れの圧力損失が小さく、通水口19の通過流量を多く確保できる。
この様に、本発明によれば、全体的に圧力損失の小さい流路(流入口4、間隙15、通水口19、中空部12及び流出口5)を構成できるので、所望する流量を確保でき、単に流入口4の面積S1を設定することにより、高層建築物の各階層の二次側圧力を同一に設定できると共に、安定した流量を供給できる。
従って、例え弁箱2が、ユニオンナット7の挿通穴7aに摺動自在な外径に形成され、且つ、水道メータと下流側配水管との間隔が短くても、ユニオンナット7を弁箱2上で前後に摺動させることで、従来品aでは期待できなかった安定した流量の確保が可能な定比減圧弁1を容易に取付けできる。
【0012】
ピストン3において、弁部11の背面には、通水口19の出口19aに連続して、ピストン3の中心へ向かい傾斜した略漏斗状の凹面部20を凹設したので、通水口19から中空部12へ流入する圧力流体は、軸線に対し鋭角を以て流出口5に向かって傾斜した通水口19の出口19aより連続してピストン3の中心に向かい傾斜する凹面部20の斜面に沿って剥離することのない流れを生じて合流し、下流側へ流動するため、従来品aの様に負圧を生じ難く、圧力損失の小さい流れを生じさせられ、上記効果と相俟って全体的により圧力損失の小さい流れと成すことができ、より一層安定した流量を確保できる。
【0013】
流入口4及び流出口5を一次側及び二次側の夫々に対応させた弁箱2を水道メータMの出口M1内部に収容したり、又は、弁箱2を水道メータの二次側に配管される水道器具N内部に収容したので、水道メータM又は水道器具Nに上記性能を具有させられると共に、定比減圧弁1を水道メータと下流側配水管との介装連結する必要がないため、配管作業の手間を省いてその作業効率を向上させることができる等その実用的効果甚だ大である。
【図面の簡単な説明】
【図1】水道用定比減圧弁の閉弁状態を示す断面図である。
【図2】開弁状態を示す断面図である。
【図3】図1のAーA断面図である。
【図4】水道メータの出口内部に水道用定比減圧弁を収容した状態を示す断面図である。
【図5】水道器具の入口内部に水道用定比減圧弁を収容した状態を示す断面図である。
【図6】従来の水道用定比減圧弁の閉弁状態を示す断面図である。
【図7】開弁状態を示す断面図である。
【図8】図6のBーB断面図である。
【符号の説明】
2 弁箱
3 ピストン
4 流入口
5 流出口
7 ユニオンナット
7a 挿通穴
11 弁部
12 中空部
15 間隙
18 陥没面
19 通水口
19a 出口
20 凹面部
L 狭小間隔
M 水道メータ
M1 出口
N 水道器具
S1 流入口面積
Sa 通水口の総面積
Sb−Sa 通水口の総面積を除いた陥没面の面積
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a constant ratio pressure reducing valve for water supply that maintains a secondary pressure at a predetermined ratio with respect to a primary pressure.
[0002]
[Prior art]
In high-rise buildings, etc., in order to eliminate the difference in tap water pressure at each level and supply tap water evenly to each house, the secondary side pressure relative to the primary side pressure is supplied to the branch pipe supplied from the water main to each house. It was necessary to pipe a pressure reducing valve with the ratio set for each level.
However, it was very difficult to attach a large pressure reducing valve such as a diaphragm type to the existing piping.
For this reason, an in-line constant ratio pressure reducing valve that is small and relatively easy to install compared to a large pressure reducing valve is connected between the secondary side (outlet) of the water meter and the downstream water pipe. Although the pressure difference of tap water in the floor is eliminated, the interval between the constant pressure reducing valves that can be set in the pipe is very short even if the length of the pipe is adjusted. A specific pressure reducing valve is connected.
An example of a specific structure of the constant ratio pressure reducing valve will be described with reference to FIGS.
The pressure reducing valve a has a cylindrical valve box d provided with an inlet b and an outlet c larger in diameter than the inlet b at each end, and a valve portion e that opens and closes the inlet b at one end. In addition, a piston g provided with a hollow part f whose other end is open to the outlet c is slidably inserted, and a cross-sectional area is set larger than the area of the inlet b around the one end side of the piston g. A gap h with the inner wall of the valve box d is provided, and a water passage port i communicating with the hollow part f is opened in the cross direction of the piston g peripheral wall facing the inner wall of the valve box d through the gap h. A union nut j is slidably attached to the inlet side end of the box d, and a taper screw k screwed into the end of the downstream pipe is screwed to the outer periphery of the outlet side end of the valve box d. Engraved.
Note that the ratio of the secondary pressure to the primary pressure is changed by setting the area of the valve portion e that receives the primary pressure, that is, the diameter of the inlet b.
[0003]
[Problems to be solved by the invention]
In order to interpose this pressure reducing valve a between the water meter and the downstream water distribution pipe, the interval is extremely short and slightly longer than the total length of the valve box d, so that the union nut j is moved to the outlet c side. If the outlet side end of the valve box d is screwed into the downstream water pipe after sliding, then the union nut j is slid to the inlet b side and the union nut j is not screwed into the water meter. The valve a could not be piped relatively easily.
Moreover, in the constant ratio pressure reducing valve a configured as described above, since the union nut j is slid in the length direction of the valve box d, the valve box d is an outer part corresponding to the insertion hole m of the union nut j. However, since the outer diameter and overall length of the valve box d are limited in this way, the diameter of the inlet b must inevitably be reduced, and the pressure loss is increased and stable. It was difficult to secure the required flow rate.
[0004]
[Means for Solving the Problems]
In view of the above problems, the present invention provides a cylindrical valve box provided with an inlet and an outlet set to have a larger diameter than the inlet, and a valve portion for opening and closing the inlet at one end. And a valve box inner wall whose cross-sectional area is set larger than the area of the inflow port around the one end side of the piston. An annular recessed surface is recessed in the piston peripheral wall facing the inner wall of the valve box through the clearance, and the recessed surface communicates with the hollow portion and has the same diameter as the width of the recessed surface. A plurality of water inlets are inclined at an acute angle with respect to the axis toward the outlet, and at a small interval, and the total area of the inlet is the area of the recessed surface excluding the area of the inlet and the total area of the inlet. A constant ratio configured with a flow path shape that reduces pressure loss by setting it to be larger than any of the areas. A pressure valve is provided, and the constant ratio pressure reducing valve is housed inside the outlet of the water meter or in the water supply pipe that is piped on the secondary side of the water meter so that the piping work of the constant ratio pressure reducing valve can be omitted. Thus, the above problem is solved.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
1 is a constant ratio for in-line water supply that is interposed between a secondary side (exit) of a water meter (not shown) installed in each unit of a high-rise apartment or the like and a downstream water pipe (not shown). The constant ratio pressure reducing valve 1 is mainly composed of a valve box 2 and a piston 3 built in the valve box 2.
The valve box 2 is formed in a cylindrical shape, and is provided with an inflow port 4 and an outflow port 5 having a diameter larger than that of the inflow port 4 at each end thereof. Is provided with a valve seat 6.
The valve box 2 has a sliding outer diameter in an insertion hole 7a of a union nut 7 that is screwed into a union screw provided on the outer periphery of the outlet of the water meter. A union bar 8 for retaining and latching the union nut 7 is projected on the outer periphery of the portion 4a, and a taper screw 9 screwed into the downstream pipe is threaded on the outer periphery of the outlet end portion 5a.
An annular packing 10 formed so as to be in close contact with the outlet end surface of the water meter is bonded to the end surface of the union rod 8.
[0006]
The piston 3 is formed in a cylindrical shape in which a valve portion 11 that opens and closes the inlet 4 by being attached to and detached from the valve seat 6 is provided at one end, and a hollow portion 12 that is open to the outlet 5 is provided on the other end side. A U-packing 14 is used to slidably fit the reduced diameter portion 13 provided at a substantially intermediate portion in the box 2 with a U packing 14.
A clearance 15 between the piston 3 and the inner wall of the valve box 2 that forms a part of the flow path of the pressure fluid is provided around one end (formation end portion of the valve portion 11) side of the piston 3 when the piston 3 is opened. is made set to be larger than (ring-shaped corresponding to the area between the valve casing 2 and the piston 3) the area S 1 of the inlet 4 the cross-sectional area of the gap 15, the other end of the piston 3 (opening A flange 17 having a U-packing 16 is provided on the peripheral edge of the end, and the flange 17 is slidably inscribed on the inner wall of the valve box 2.
An annular recessed surface 18 is recessed in the peripheral wall of the piston 3 that always faces the inner wall of the valve box 2 through the gap 15, and the recessed surface 18 communicates with the hollow portion 12 of the piston 3. A plurality of water inlets 19 having the same diameter as the width of the valve box 2 are slanted toward the outlet 5 with an acute angle (about 60 degrees in the illustrated example) with respect to the axis of the valve box 2 and at a narrow interval L (in the illustrated example, 6 The total area Sa of the water inlet 19 is set larger than the area S 1 of the inlet 4 (Sa> S 1 ), and the total area Sb of the depressed surface 18 (the total area Sa of the water inlet 19 is It is set to be larger (Sa> Sb−Sa) than the area (Sb−Sa) of the depressed surface 18 excluding the total area Sa of the water inlet 19 (see FIG. 1 and FIG. 3).
[0007]
Further, in the piston 3, a substantially funnel-shaped concave surface portion 20 that is inclined toward the center of the piston 3 is provided on the back surface of the valve portion 11 continuously to the outlet 19 a of the water flow port 19.
A retaining ring 21 is provided on the inner periphery of the outlet 5 of the valve box 2 to prevent the piston 3 (flange 17) from being pulled out. The stroke of the piston 3 is the distance until the flange 17 contacts the retaining ring 21. Correspondingly, in such a state, the reduced diameter portion 13 is set so as not to close the water inlet 19 (see FIG. 2).
In the valve box 2, an airtight space between the reduced diameter portion 13 and the flange 17 communicates with the outside through a vent 22 formed in the valve box 2 so that the piston 3 can operate without any trouble. Yes.
[0008]
In the above-described embodiment, the constant ratio pressure reducing valve 1 is interposed between the outlet of the water meter and the downstream side distribution pipe, but the constant ratio pressure reducing valve 1 is connected to the inlet 4 and the flow of the valve box 2. The outlet 5 is made to correspond to each of the primary side and the secondary side, and as shown in FIG. 4, the water supply device piped inside the outlet M1 of the water meter M or downstream of the water meter as shown in FIG. You may accommodate in the inside of N.
In this case, the valve box 2 eliminates the union rod 8 and the taper screw 9, and is formed in the shape of a right circular cylinder with the same outer diameter of the inflow port end 4a and the outflow port end 5a.
The outlet M1 of the water meter M that accommodates the constant ratio pressure reducing valve 1 is formed in a straight tube that is slightly longer than the entire length of the valve box 2. Inside the outlet M1, there is an inlet end 4a of the valve box 2 at the back. An annular step portion M2 having a slightly smaller diameter is formed with a reduced diameter, the inlet end 4a of the valve box 2 is brought into contact with the annular step portion M2, and the inner periphery of the outlet M1 side end corresponding to the outlet end portion 5a is A retaining ring 21 is provided in contact with the outlet end portion 5a so as to prevent the valve box 2 and the piston 3 from being pulled out.
An air passage M3 that communicates the air vent 22 with the outside is provided on the side of the outlet M1, and the air passage between the air passage M3 and the air vent 22 is provided before and after the air passage port M4 inside the outlet M1. A sealing member (O-ring) G that retains properties is provided.
The water appliance N piped downstream of the water meter is a valve such as a water pipe or a stop cock, and the constant pressure reducing valve 1 is provided in the outlet or inlet of the straight water pipe or in the valve. It is housed inside a straight tubular entrance.
Since the configuration in which the constant ratio pressure reducing valve 1 is accommodated in the outlet of the water pipe is the same as the configuration accommodated in the outlet M1 of the water meter M, the illustration is omitted, and the constant ratio pressure reducing valve 1 is installed in the inlet of the water pipe or valve. The accommodated configuration is shown in FIG. 5, but the basic configuration is the same as described above.
That is, the inside of the inlet N1 of the water supply device (water pipe or valve) N is in contact with the outlet end portion 5a of the valve box 2 at the back thereof, and is replaced with a retaining ring 21 provided at the stroke end of the piston 3. A diameter of the stepped portion N2 is reduced, and a retaining ring R is provided on the inner periphery of the inlet N1 side end corresponding to the inlet end 4a so as to contact the inlet end 4a and prevent the valve box 2 from being removed. In the same manner as described above, an air passage N3 that communicates the air vent 22 with the outside is provided at the side of the inlet N1, and seal members G are provided around the air passage N4 inside the inlet N1.
[0009]
Next, the operation of the constant ratio pressure reducing valve 1 according to the present invention will be described.
In the constant ratio pressure reducing valve 1, the shape of the piston 3 is such that the acting force in the primary direction acting on the valve portion 11 of the piston 3 by utilizing the difference in the diameter between the inlet 4 and the outlet 5 and the hollow portion of the piston 3. The fluid acting force in the secondary direction acting on the 12 side (the product of the pressure receiving area of the secondary side pressure on the hollow portion 12 side (corresponding to the area S 2 of the outlet 5) and the secondary pressure P 2 ) is balanced. It is configured.
The acting force in the primary direction is the product of the primary pressure receiving area of the valve part 11 (corresponding to the area S 1 of the inlet 4) and the primary pressure P 1 , the secondary pressure receiving area of the valve part 11 ( The product of the area (S 3 −S 1 ) of the annular surface excluding the pressure receiving area S 1 of the primary pressure from the total area S 3 of the valve part 11) and the secondary pressure P 2 , and the U packings 14, 16 This is the sum of the frictional resistance α of the piston 3 based on the above.
That is, S 1 P 1 + (S 3 −S 1 ) P 2 + α = S 2 P 2
P 2 = (S 1 P 1 + α) / (S 2 − (S 3 −S 1 )) is obtained.
Therefore, the secondary pressure P 2 is a pressure obtained by reducing the primary pressure P 1 to a value determined by the pressure receiving area (S 2 − (S 3 −S 1 )), the pressure receiving area S 1 , and the frictional resistance α. Become.
As described above, since the inlet 4 is set to have a smaller diameter than the outlet 5, the area S 1 of the inlet 4 is smaller than the area S 2 of the outlet 5 (S 1 <S 2 ). Since the area (S 3 −S 1 ) of the annular surface is set by the area S 1 of the inlet 4 (where S 3 ≦ S 2 ), the secondary pressure is the area S 1 ( It can be set by changing the aperture.
Accordingly, when the secondary pressure is a predetermined pressure, the constant ratio pressure reducing valve 1 is in the closed state with the valve portion 11 seated on the valve seat 6, and by opening the water tap and using water, When the side pressure falls below a predetermined pressure, the valve portion 11 is opened away from the valve seat 6 due to the primary pressure, and the primary fluid passes through the inlet 4, the gap 15, the water inlet 19 and the hollow portion 12 to the secondary side. Flow into.
[0010]
The flow of the pressure fluid (tap water) in the valve open state will be described in detail. The pressure fluid flowing into the gap 15 from the inlet 4 generates a flow along the bus line of the piston 3, and the water inlet 19 is formed from the outer periphery of the piston 3. Since it is in the depressed position (on the depression surface 18), the pressure fluid flowing along the generatrix of the piston 3 flows into the water inlet 19 along the annular recess.
Since the cross-sectional area of the gap 15 and the total area Sa of the water inlet 19 are larger than the area S 1 of the inlet 4, a passage area without stagnation of the pressure fluid can be secured, and the total area Sa of the water inlet 19 is In addition, the area of the recessed surface 18 excluding the area Sa (Sb−Sa) is larger, the opening degree of the water inlet 19 with respect to the recessed surface 18 is larger, and each water outlet 19 is narrow over the entire circumference of the recessed surface 18. Therefore, the flow flowing into the water flow port 19 is larger than the flow blocked by the space L, and the pressure loss of the flow of the pressure fluid flowing into the water flow port 19 as a whole is small. A large passage flow rate of the water port 19 is secured.
In the conventional constant ratio pressure reducing valve a (hereinafter referred to as conventional product a), the total area Sx of the water inlet i is larger than the area Sz of the inlet 4, but the diameter of the water inlet i is the width. The total area of the water inlet i from the area (Sy−Sx) of the annular surface on the piston circumference (the surface between the alternate long and short dash lines corresponding to the depression surface 18 in FIG. 6) minus the total area Sx of the water inlet i Since Sx is small and the distance L1 between the adjacent water inlets i is larger than that of the constant ratio pressure reducing valve 1 of the present invention, the flow is blocked by the distance L1 between the water inlets i rather than the flow of the fluid flowing into the water inlet i. As a result, the pressure loss of the flow of the pressure fluid flowing into the water inlet i increases as a whole, and the passage flow rate through the water inlet i cannot be ensured more than the constant pressure reducing valve 1 of the present invention.
In addition, the pressure fluid flowing into the water flow port 19 is not perpendicular to the flow direction (corresponding to the axial direction of the valve box 2) as in the conventional product a, but to the hollow portion 12 at an acute angle with respect to the axial line. Because of the communication, the resistance to the flow of pressure fluid is smaller than that of the conventional product a.
Then, the pressure fluid that passes through each water flow port 19 and flows into the hollow portion 12 flows as if it does not peel along the slope inclined continuously toward the center of the piston 3 from the outlet of the water flow port 19, as if Since a flow similar to a fluid that flows smoothly along the surface of the blades is generated and then merged, the pressure fluid of a stable flow that hardly generates a negative pressure at the time of the flow flows downstream.
On the other hand, in the conventional product a, the pressure fluid flowing into the hollow portion f from the water passage i collides with and violently collides in the hollow portion f because the back surface of the valve portion e is flat along the water passage i. As a result, a negative pressure is generated at the center of the back surface of the valve part e at the time of merging, and the pressure loss of the flow of the pressurized fluid increases and flows downstream.
As described above, the constant ratio pressure reducing valve 1 of the present invention generally has a small pressure loss of the pressure fluid when the valve is opened compared to the conventional product a, and a stable flow rate is ensured.
When the water faucet is closed after the water is used, the piston 3 is pushed back to the primary side as the secondary pressure increases, and the valve is closed when the secondary pressure reaches a predetermined pressure.
[0011]
【The invention's effect】
In short, in the present invention, the valve portion 11 for opening and closing the inlet 4 is provided in the cylindrical valve box 2 provided with the inlet 4 and the outlet 5 having a diameter larger than that of the inlet 4 at each end. A piston 3 provided at one end and provided with a hollow portion 12 having the other end opened to the outlet 5 is slidably inserted, and a sectional area around the one end of the piston 3 is an area S 1 of the inlet 4. Since a larger gap 15 with the inner wall of the valve box 2 is provided, and a plurality of water inlets 19 communicating with the hollow portion 12 are opened on the peripheral wall of the piston 3 always facing the inner wall of the valve box 2 through the gap 15. Since the secondary pressure P 2 can be reduced to a predetermined ratio with respect to the primary pressure P 1 , by changing the area S 1 (caliber) of the inlet 4 without changing the diameter of the valve box 2, the high pressure The secondary side pressure in each level of the building can be set to the same, and the valve box 2 with the short outer diameter and the same axial diameter as the water pipe is used. The constant ratio pressure reducing valve 1 can be easily installed in a small installation space.
In addition, each water inlet 19 is provided on an annular recessed surface 18 having the same diameter as the water inlet 19 provided in the circumferential wall of the piston 3 so that it flows into the gap 15 from the inlet 4 when the valve is opened. Thus, the flow of the pressure fluid along the bus line of the piston 3 is smoothly guided to the depression surface 18 where the water passage 19 is formed, and the pressure loss of the fluid until reaching the water passage 19 can be reduced, and the depression The water inlet 19 formed on the surface 18 is not perpendicular to the axis as in the prior art, but communicates with the hollow portion 12 obliquely toward the outlet 5 with an acute angle with respect to the axis, so that from the primary side to the secondary side. It is possible to maintain a flow that is more in the direction of the flow, reduce the pressure loss of the fluid from the water flow port 19 to the hollow portion 12, and maintain a flow with a small pressure loss as a whole.
Further, the cross-sectional area of the gap 15 and the total area Sa of the water inlet 19 are set to be larger than the area S 1 of the inlet 4, so that a passage area without stagnation of the pressure fluid can be secured and the total area of the water inlet 19 Sa can be made larger than the area of the depressed surface 18 excluding the area Sa (Sb−Sa), and the degree of opening of the water inlet 19 with respect to the depressed surface 18 can be increased. Since the gaps are adjacent to each other with a narrow interval L over the circumference, the flow flowing into the water inlet 19 can be more than the flow blocked by the interval L, and the flow of the pressure fluid flowing into the water inlet 19 as a whole can be increased. The pressure loss is small and a large flow rate through the water inlet 19 can be secured.
As described above, according to the present invention, a flow path (inlet 4, gap 15, water inlet 19, hollow portion 12, and outlet 5) having a small pressure loss can be configured as a whole, so that a desired flow rate can be secured. simply by setting the area S 1 of the inlet 4, it is possible to set the secondary pressure of each layer of the high-rise building to the same, can provide a stable flow rate.
Therefore, even if the valve box 2 is formed to have a slidable outer diameter in the insertion hole 7a of the union nut 7 and the distance between the water meter and the downstream water distribution pipe is short, the union nut 7 is connected to the valve box 2 By sliding back and forth above, it is possible to easily attach the constant ratio pressure reducing valve 1 capable of ensuring a stable flow rate that could not be expected with the conventional product a.
[0012]
In the piston 3, a substantially funnel-shaped concave surface portion 20 that is inclined toward the center of the piston 3 is formed on the back surface of the valve portion 11 continuously to the outlet 19 a of the water inlet 19. pressure fluid flowing into 12 be peeled off along the inclined surface of the concave portion 20 continuously from the outlet 19a of the passage Minakuchi 19 inclined towards the outlet 5 with a acute angle to the axis to toward tilted about the piston 3 As the conventional product a, it is difficult to generate a negative pressure, and a flow with a small pressure loss is generated, and combined with the above effect, the pressure loss as a whole is reduced. Thus, a more stable flow rate can be secured.
[0013]
The valve box 2 in which the inlet 4 and the outlet 5 are respectively associated with the primary side and the secondary side is accommodated inside the outlet M1 of the water meter M, or the valve box 2 is piped on the secondary side of the water meter Since the water meter M or the water appliance N is provided with the above performance, it is not necessary to connect the constant pressure reducing valve 1 between the water meter and the downstream water pipe. The practical effect is significant, such as reducing the labor of piping work and improving the work efficiency.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a closed state of a water ratio constant pressure reducing valve.
FIG. 2 is a cross-sectional view showing a valve open state.
3 is a cross-sectional view taken along the line AA in FIG.
FIG. 4 is a cross-sectional view showing a state in which a constant water pressure reducing valve for water supply is housed inside the outlet of a water meter.
FIG. 5 is a cross-sectional view showing a state in which a constant water pressure reducing valve for water supply is housed inside an inlet of a water supply device.
FIG. 6 is a cross-sectional view showing a closed state of a conventional constant ratio pressure reducing valve for water supply.
FIG. 7 is a cross-sectional view showing a valve open state.
8 is a cross-sectional view taken along the line BB in FIG.
[Explanation of symbols]
2 Valve box 3 Piston 4 Inlet 5 Outlet 7 Union nut
7a Insertion hole
11 Valve
12 Hollow part
15 gap
18 Recessed surface
19 Water outlet
19a Exit
20 Concave part L Narrow interval M Water meter M1 Exit N Water supply
S 1 Inlet area
Total area of Sa outlet
Sb-Sa Area of the depressed surface excluding the total area of the water inlet

Claims (4)

流入口と、該流入口より大径に設定した流出口とを端部の夫々に設けた円筒状の弁箱に、流入口を開閉する弁部を一端に設けると共に、他端側が流出口に開口した中空部を設けたピストンを摺動自在に挿嵌し、該ピストンの一端側周囲には断面積が流入口の面積より大きく設定された弁箱内壁との間隙を設け、該間隙を介して弁箱内壁に面するピストン周壁に環状の陥没面を凹設し、該陥没面には、前記中空部に連通すると共に、陥没面の幅と同径の通水口を軸線に対し鋭角を以て流出口向きの斜めにして、且つ、狭小間隔を置いて複数開設し、通水口の総面積は、流入口の面積及び通水口の総面積を除いた陥没面の面積のいずれよりも大きく設定したことを特徴とする水道用定比減圧弁。A cylindrical valve box having an inlet and an outlet set larger in diameter than the inlet at each end, a valve portion for opening and closing the inlet is provided at one end, and the other end is an outlet. A piston provided with an open hollow part is slidably inserted, and a gap with the inner wall of the valve box whose cross-sectional area is set larger than the area of the inlet is provided around one end of the piston. An annular recessed surface is recessed in the piston peripheral wall facing the inner wall of the valve box. The recessed surface communicates with the hollow portion, and a water passage having the same diameter as the width of the recessed surface flows at an acute angle with respect to the axis. A plurality of outlets are opened obliquely at narrow intervals, and the total area of the water inlet is set larger than both the area of the inlet and the area of the depressed surface excluding the total area of the water inlet. A constant pressure reducing valve for water supply. ピストンにおいて、弁部の背面には、通水口の出口に連続して、ピストンの中心へ向かい傾斜した略漏斗状の凹面部を凹設したことを特徴とする請求項1記載の水道用定比減圧弁。2. The constant ratio for water supply according to claim 1, wherein a substantially funnel-shaped concave surface portion inclined toward the center of the piston is provided on the back surface of the valve portion continuously from the outlet of the water passage. Pressure reducing valve. 流入口及び流出口を一次側及び二次側の夫々に対応させた弁箱を水道メータの出口内部に収容したことを特徴とする請求項1又は2記載の水道用定比減圧弁。3. The water ratio constant pressure reducing valve according to claim 1, wherein a valve box in which the inlet and the outlet correspond to the primary side and the secondary side is accommodated inside the outlet of the water meter. 流入口及び流出口を一次側及び二次側の夫々に対応させた弁箱を水道メータの二次側に配管される水道器具の内部に収容したことを特徴とする請求項1又は2記載の水道用定比減圧弁。The valve box which made the inflow port and the outflow port correspond to each of a primary side and a secondary side was accommodated in the inside of the water appliance piped by the secondary side of a water meter, The Claim 1 or 2 characterized by the above-mentioned. Constant pressure reducing valve for water supply.
JP2002225587A 2002-08-02 2002-08-02 Constant pressure reducing valve for water supply Expired - Lifetime JP3725501B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002225587A JP3725501B2 (en) 2002-08-02 2002-08-02 Constant pressure reducing valve for water supply
SG200207819A SG102065A1 (en) 2002-08-02 2002-12-26 Proportional pressure reducing valve for use in waterworks
CNB031017231A CN100334378C (en) 2002-08-02 2003-01-21 Proportional pressure reducing valve in watersupply system
HK04105680A HK1062843A1 (en) 2002-08-02 2004-08-03 Proportional pressure reducing valve for use in waterworks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002225587A JP3725501B2 (en) 2002-08-02 2002-08-02 Constant pressure reducing valve for water supply

Publications (2)

Publication Number Publication Date
JP2004070465A JP2004070465A (en) 2004-03-04
JP3725501B2 true JP3725501B2 (en) 2005-12-14

Family

ID=30437710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002225587A Expired - Lifetime JP3725501B2 (en) 2002-08-02 2002-08-02 Constant pressure reducing valve for water supply

Country Status (4)

Country Link
JP (1) JP3725501B2 (en)
CN (1) CN100334378C (en)
HK (1) HK1062843A1 (en)
SG (1) SG102065A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160114503A (en) 2015-03-24 2016-10-05 가네 고교 가부시키가이샤 Proportioning pressure reducing valve for city water

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102345765B (en) * 2010-07-23 2015-02-25 王景熙 Automatic water pressure control device
CN102392908A (en) * 2011-11-02 2012-03-28 浙江盾安阀门有限公司 Non-return pressure reducing valve
CN102966774A (en) * 2012-11-14 2013-03-13 金祖贻 Pressure reducing valve
CN103423493B (en) * 2013-08-31 2015-12-16 王景熙 Proprutioning pressure reducing valve
CN105422932A (en) * 2015-11-23 2016-03-23 浙江大学 Designing method for pressure reducing structure of high-parameter multi-stage pressure reducing valve with pore plates
CN105387252A (en) * 2015-12-19 2016-03-09 王景熙 Adjustable fixed-ratio pressure reducing valve

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2080604U (en) * 1990-09-29 1991-07-10 李立夫 Static pressure reducing valve
JP2595218Y2 (en) * 1991-05-29 1999-05-24 株式会社 光合金製作所 Water pressure reducing valve
JP2767550B2 (en) * 1994-05-06 1998-06-18 エヌテーシー工業株式会社 Pressure reducing valve for tap water
JP2739150B2 (en) * 1994-08-19 1998-04-08 エヌテーシー工業株式会社 Telescopic stopcock
CN2275666Y (en) * 1996-09-28 1998-03-04 北京融洋技术研究所 Proportional relief pressure valve
CN2315389Y (en) * 1997-08-25 1999-04-21 沧州市兴水阀门厂 Proportional pressure reducing valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160114503A (en) 2015-03-24 2016-10-05 가네 고교 가부시키가이샤 Proportioning pressure reducing valve for city water

Also Published As

Publication number Publication date
JP2004070465A (en) 2004-03-04
SG102065A1 (en) 2004-02-27
HK1062843A1 (en) 2004-11-26
CN1472460A (en) 2004-02-04
CN100334378C (en) 2007-08-29

Similar Documents

Publication Publication Date Title
US5743291A (en) Sanitary safety device
US7819134B2 (en) Valve fitting with integral stops
US5425394A (en) Integral check, pressure balanced, control valve
AU777491B2 (en) Reverse flow prevention apparatus
US6484953B2 (en) Water spout with removable laminar flow cartridge
JP3725501B2 (en) Constant pressure reducing valve for water supply
AU619621B2 (en) Pipe interrupter
US20230106648A1 (en) Sanitary fitting and method for assembling such a sanitary fitting
KR101534212B1 (en) Screw connector for valve
US5518019A (en) Diverter and volume control valve
JP6196130B2 (en) Body for single lever faucet and single lever faucet
US4284102A (en) Combination stop and pressure reducing valve
WO1998021419A1 (en) Flow regulator
CA2509809A1 (en) Diverter assembly for roman tub
KR890000473B1 (en) Zero internal pressure cartridge
US3779278A (en) Faucet
KR101319244B1 (en) Plumbing fitting
TWI756285B (en) Water pressure boosting device
KR100351313B1 (en) Stop valve to be used mainly water meter
US1281335A (en) Lavatory-fitting.
KR102363334B1 (en) Flow control valve and water supply distributor having the same
KR200374392Y1 (en) Pressure reducing valve with noise reduction function
AU2019261680B2 (en) Mixer Test Cartridge
US10082235B1 (en) Floor trap primer valve
US5427148A (en) Three way faucet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050921

R150 Certificate of patent or registration of utility model

Ref document number: 3725501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term