JP3724302B2 - Preparation of ultra-thin films of sparingly soluble molecules - Google Patents

Preparation of ultra-thin films of sparingly soluble molecules Download PDF

Info

Publication number
JP3724302B2
JP3724302B2 JP35096599A JP35096599A JP3724302B2 JP 3724302 B2 JP3724302 B2 JP 3724302B2 JP 35096599 A JP35096599 A JP 35096599A JP 35096599 A JP35096599 A JP 35096599A JP 3724302 B2 JP3724302 B2 JP 3724302B2
Authority
JP
Japan
Prior art keywords
thin film
film
substrate
present
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35096599A
Other languages
Japanese (ja)
Other versions
JP2001163611A (en
Inventor
雅司 國武
忍 上村
眞砂代 坂田
忠一 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP35096599A priority Critical patent/JP3724302B2/en
Publication of JP2001163611A publication Critical patent/JP2001163611A/en
Application granted granted Critical
Publication of JP3724302B2 publication Critical patent/JP3724302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜作製の技術分野に属し、特に、フラーレンのような難溶性分子の超薄膜を作製するための新規な方法に関する。
【0002】
【従来の技術】
厚さが単分子のレベルからμmレベルの薄膜(超薄膜)は、学問的には表面構造や物性の解明あるいは反応メカニズムを探究したりする研究ツールとして多用されるとともに、実用的にも光学部品や電子素子など各種の機能性素子として広範囲の分野で応用される点からも重要である。例えば、フラーレンのエピタキシャル薄膜は、そのユニークで理想的な分子膜構造から基礎と応用の両面から精力的な研究が行われている。
【0003】
従来より薄膜を作製するのに最も一般的に用いられているのは真空蒸着法である。しかしながら、真空蒸着法は、真空手段や加熱手段を含む複雑でコストのかかる装置を用いて行わなければならないのが難点である。さらに、真空蒸着法で薄膜を作製することのできる対象は、真空(減圧)且つ加熱下で安定なものに限られる。
【0004】
真空蒸着法のようなドライ・プロセス(乾式法)の他に、装置上も簡単なウェット・プロセス(湿式法)として、溶液中で金属単結晶のような基板に有機分子を電気化学的に吸着させることに基づく薄膜作製法もある。しかし、このようなウェット・プロセスの弱点は、溶液からの吸着であるため溶液に溶けない系の薄膜作製ができないことと、現在のところ溶媒自身の吸着などの問題から溶媒が水系に限られていることである。
【0005】
【発明が解決しようとする課題】
本発明の目的は、ウェット・プロセスにより難溶性の各種の分子(化合物)から簡便にその薄膜(超薄膜)を作成することができる新しい技術を提供することにある。
【0006】
【課題を解決するための手段】
本発明者は、ウェット・プロセスで薄膜を作製する方法として、気液界面で予め作製した薄膜を、特定の物質で修飾された金属基板に移し取るようにすることにより上記の目的を達成し得ることを見出し本発明を導き出したものである。
【0007】
かくして、本発明に従えば、気液界面上に該気液界面を構成している液体に難溶性の分子を展開して該難溶性分子の薄膜を形成する工程、前記難溶性分子の薄膜を、電気化学的に脱離性の物質で修飾された金属基板上に移し取る工程、および、薄膜を移し取った前記修飾金属基板に溶液中で電位を印加することにより、該基板から前記修飾物質を電気化学的に脱離させる工程を含むことを特徴とする難溶性分子の薄膜作製法が提供される。
【0008】
本発明の薄膜作製法は、一般に気液界面を構成する液体が水である場合に好適に実施される。本発明の薄膜作製法の好ましい態様に従えば、電気化学的に脱離性の物質はハロゲンまたはイオウである。
【0009】
本発明の薄膜作製法が適用される好ましい例は、難溶性分子がフラーレンであり、電気化学的に脱離性の物質がヨウ素であり、さらに、金属基板が金である場合である。
【0010】
【発明の実施の形態】
本発明は、難溶性の各種の分子(化合物)の薄膜をウェット・プロセスで作製する方法として、気液界面に作製されたラングミュア(Langumuir)膜またはラングミュア−ブロジェット(Langumuir-Blodgett)膜(以下、LB膜と称する)を金属単結晶表面に移し取る方法を考案したことに基づくものである。以下、本発明の薄膜作製法を構成する各工程に沿って本発明の実施の形態を説明する。
【0011】
気液界面上での薄膜形成工程
本発明の方法を実施するには、先ず、気液界面上に、該気液界面を構成する液体に難溶性の分子を展開して該難溶性分子の薄膜を形成する。この工程は、当該分野で周知のLB膜作製法に準じて行われる。
【0012】
すなわち、薄膜を形成しようとする難溶性分子を適当な溶媒(展開溶媒:難溶性分子を溶解し且つ気液界面を構成している液体と非相溶性の溶媒)に溶かした適当な濃度の溶液を気液界面上に滴下して難溶性分子を展開させる。展開後、一定時間放置して展開溶媒を完全に蒸発させた後、分子が展開した気液界面の面積をせばめてゆき(膜の圧縮)、所定の圧力に達したらそのまま暫く保持して膜を安定させることによって目的の薄膜(LB膜)が得られる。
【0013】
気液界面を構成する液体は、一般的には、水であり、したがって、難溶性(難水溶性)の分子を展開溶媒としてヘキサン、クロロホルムのような有機溶媒に溶解して、水(超純水)面上に滴下、展開させる。しかし、本発明の方法は、気液界面を構成する液体として非水溶媒(有機溶媒)を用い、それらの溶媒に難溶性の分子からLB膜作製法により薄膜を形成する場合にも同様に適用できる。
【0014】
また、以上のような操作により形成される薄膜は、一般的には、単分子膜であるが、必ずしも単分子膜に限られず、単分子層以上が形成された場合には、後に適当な溶媒で洗い流したり、あるいは、目的の応じて多分子層を形成させてもよい。したがって、本発明に関して用いる「薄膜」または「超薄膜」という語は、単分子層のレベルから数μmの多分子層のレベルの厚さを有する膜を指称する。
【0015】
基板上への移し取り工程
本発明の薄膜作製法においては、上述の工程により得られた薄膜(LB膜)を次に、金属基板上に移し取る。この操作は、一般に、当該分野でよく知られた水平付着法または垂直浸漬法によって行われる。
【0016】
すなわち、気液界面とほぼ平行に設置した金属基板を静かに薄膜(LB膜)に接触、付着させて引き上げる〔水平付着法:図1の(A)参照〕か、または、界面に薄膜(LB膜)の形成した液中に金属基板を浸漬させた後、垂直方向に動かしてLB膜を付着させる(垂直浸漬法)。ここで、本発明の薄膜作製法の特徴は、電気化学的に脱離性の物質で修飾された金属基板の表面にLB膜を接触させ該基板に移し取ることにある。
【0017】
電気化学的に脱離性の物質とは、金属基板に吸着して該金属を修飾するとともに、溶液中で特定の値の電圧を印加すると金属基板から脱離させることが可能な物質である。電気化学的に脱離性の物質の好ましい例としては、ハロゲンまたはイオウが挙げられ、その他、チオール化合物なども使用することができる。
【0018】
なお、基板と成る金属は特に限定されるものではなく、薄膜を作製しようとする難溶性分子および電気化学的に脱離性の物質との組合せに応じて、それらが吸着し得る金属から選ばれる。例えば、薄膜と成る難溶性分子がフラーレンの場合、電気化学的に脱離性の物質としてヨウ素、金属基板として金が好ましい。
【0019】
本発明の方法に従えば、このように電気化学的に脱離性の物質を介して、難溶性の分子の薄膜を金属基板に移し取ることにより、後述のように、金属表面に直接移し取る場合に比べて、均一性の著しく向上した薄膜を作製することができる。
【0020】
電気化学的脱離工程
薄膜を移し取った修飾金属基板は、次に、溶液中で電圧を印加されることにより、該基板からハロゲン等の修飾物質が電気化学的に脱離させられて目的の薄膜(超薄膜)が得られる。
【0021】
この工程は、具体的には、薄膜(LB膜)を移し取った金属基板を電気化学セルに入れて実施される。すなわち、該基板を一方の電極とするとともに、対極と参照電気を設置し、必要に応じて適当な電解質が加えられた電解液中で電圧(電位)を印加、制御しながら、電流−電位特性を測定することにより、基板から修飾物質の脱離を確認する。
【0022】
なお、この工程は、STM(走査型トンネル顕微鏡)観察が可能な電気化学STM用セル中で行うことが好ましく、これによって、得られる薄膜の分子配列構造(欠陥構造を含む)を直接観察し、併せて、分子間相互作用に関する多くの知見を得ることもできる。
【0023】
以上に述べた各工程から成る本発明の方法によれば、従来のウェット・プロセスでは困難であった各種の難溶性分子(化合物)から薄膜(超薄膜)を作製することができる。本発明の方法により超薄膜の作製が可能な分子としては、フラーレン、アダマンタン、各種芳香族化合物(ペリレン、フタロシアニン、ポリフィリン、アントラキノンなど)などの有機分子、あるいは、金属クラスター、サイクラムなどの金属錯体などを例示することができるが、これらに限定されるものではない。さらに、真空蒸着法では薄膜を作製することができなかった難溶性で不安定な化合物(例えば、タンパク質、各種ポリマー類など)の薄膜を作製することもできる。
【0024】
さらに、本発明の超薄膜作製法に従えば、電気化学的に脱離性の物質を介して難溶性分子の薄膜を吸着させた金属基板に特定の電圧を付与することにより、金属基板に難溶性分子の薄膜を直接移し取り吸着させる場合に比べて、きわめて均一性の向上した薄膜を得ることができる。これは、基板の表面をハロゲン等で修飾することにより、難溶性分子と基板との相互作用が弱くなるため該分子が基板表面を動き回り〔図1の(B)参照〕、所定電位に設定後は、基板上で基板修飾物質が難溶性分子とゆっくり置換され、基板によってエピタキシャルに制御された均一性の高い分子膜を形成する〔図1の(C)参照〕ためと考えられる。このように、本発明の方法においては、電位操作により難溶性分子の吸着速度を制御しながら所望の薄膜を得ることができる。
【0025】
本発明の方法によれば、気液界面に形成した難溶性分子の薄膜(LB膜)を固液界面に移送した後、電位操作により修飾物質と難溶性分子の吸脱着を制御することにより、気液界面の構造ではなく固体(基板)によりエピタキシャルに制御された超薄膜が作製される。
【0026】
さらに、本発明の薄膜作製法に従えば、難溶性分子であってもLB膜にして固液界面に移し取り、電気化学的に制御することにより、エピタキシャル膜のみならず、分子間相互作用に因る二次元的自己組織化に基づく膜形成も生じるものと考えられる。このことは、例えば、単一相でエピタキシャルな配列が生じにくいと言われているC70の薄膜が本発明の方法によって作製できることからも推測される。このように本発明の方法は従来の知見では薄膜形成が不可能または困難と考えられていた分子(化合物)の薄膜作製も可能とする。
【0027】
【実施例】
以下、本発明に従いフラーレンの薄膜を作製する場合を実施例として記すが、この実施例は単に例示のためのものであり本発明を限定するものではない。
フラーレン薄膜の作製
フラーレンとしてC60、C70、およびC60/C70混合物を用いた。フラーレン−ベンゼン溶液をLBトラフ(超純水)上に展開し、気/液界面にフラーレン分子膜を形成した。表面圧−面積曲線の結果から単分子膜が形成していると考えられる表面圧(10〜20mNm−1)に保ち、清浄化した基板に、水平付着法によりLB膜を移し取った。基板としては、未修飾単結晶Au(111)面、またはヨウ素を修飾した単結晶Au(111)面〔以下、I/Au(111)のように記すことがある〕を用いた。LB膜を移し取ったAu(111)またはI/Au(111)を電気化学STM用セルにセットし、0.1M HClO水溶液中にて電流−電圧特性を測定しながらSTM観察を行った。STM観察において、探針は電解研磨したタングステンチップを用い、定電流モードで測定した。
【0028】
電流−電圧特性およびSTM観察
図2は、I/Au(111)面から成る基板に移し取られたC60薄膜の電流−電位特性(サイクリックボルタモグラム)を示すものである。横軸は参照電極(SCE)に対する電圧(V)、縦軸は電流値(μA/cm)を表す。
【0029】
図2の実線に示されるように最初の走査において電位を約−0.05(V)に保持すると基板(Au)を修飾しているヨウ素がゆっくり脱離してC60分子と置換し、C60エピタキシャル薄膜が形成され、図の破線に示されるように過塩素酸中では+0.75〜−0.25(V)という広い電位領域で安定に存在することが確認された。
【0030】
図3は、本発明に従いC60のLB膜を基板〔I/Au(111)〕上に移し取って作製したC60薄膜のSTM写真である。観察されるフラーレン膜は、ヘキサゴナルに高配列した分子膜であり、Au原子格子に沿って配列した構造(in phase配列)と30度ずれて配列した構造(2√3×2√3R30度配列)の二つの構造から成る。この2つと同じ構造が、真空蒸着により作製されたエピタキシャル膜においても確認されており、気液界面における構造ではなく基板によりエピタキシャルに制御されることが分かる。
【0031】
図4は、比較のために、直接移し取り法、すなわち、ヨウ素による修飾の無いAu(111)基板に直接吸着させて作製されたC60薄膜のSTM写真であるが、大きな欠陥構造を含む分子の配列の乱れが多数認められる。
【0032】
さらに、C60/C70混合物についても、LB膜をI/Au(111)基板に移し取り、同様に薄膜を作製した。これもC60の薄膜と同様にヘキサゴナルに充填されたエピタキシャル分子膜であった。この混合膜のSTM観察では図3と比較すると、明確に明るさ(高さ)の異なる二つの点がランダムに混在し、明るい(高い)点は暗い(低い)点に比べ約0.1nm高いことが確認された。そのため、高いほうが長軸を起こした状態(standing-up配列)のC70分子、低いほうがC60分子であると考察される。同様な混在イメージは真空蒸着で作製されたエピタキシャル膜でもみられている。
【0033】
これに対し、C70についても同様にLB膜をI/Au(111)基板に移し取りヨウ素を電気化学的脱離させて作製したC70薄膜では二次元表面の配列性が低く、部分的にエピタキシャル成長しているところが確認されたが、多くの欠領域や不連続構造も観察された。このことは、C70気液界面で安定な単分子膜を形成しないことと一致していた。
【0034】
【発明の効果】
本発明に従えば、真空蒸着法よりも簡便であり、したがって、低コストの方法で、難溶性分子を含む広範囲の分子(化合物)から均一性のきわめて高い超薄膜を作製することができる。
【図面の簡単な説明】
【図1】本発明の超薄膜作製法における難溶性分子等の様子を示す模式図である。
【図2】本発明に従いC60膜を移し取ったヨウ素修飾Au基板のサイクリックボルタモグラムを示す。
【図3】本発明に従いヨウ素修飾Au基板上で電気化学的置換を行うことにより作製したC60薄膜の走査型トンネル顕微鏡写真である。
【図4】Au基板に直接移し取って作製したC60薄膜の走査型トンネル顕微鏡写真である。
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of thin film production, and particularly relates to a novel method for producing an ultrathin film of a hardly soluble molecule such as fullerene.
[0002]
[Prior art]
A thin film (ultra-thin film) with a thickness of from a single molecule to a micrometer level is used extensively as a research tool for studying the surface structure and physical properties or exploring the reaction mechanism, and is practically an optical component. It is also important because it is applied in a wide range of fields as various functional elements such as electronic devices. For example, fullerene epitaxial thin films have been energetically studied from both the fundamental and application aspects because of their unique and ideal molecular film structure.
[0003]
Conventionally, the most commonly used method for producing a thin film is a vacuum deposition method. However, it is difficult to perform the vacuum deposition method using a complicated and expensive apparatus including a vacuum means and a heating means. Furthermore, the object which can produce a thin film by a vacuum evaporation method is restricted to what is stable under a vacuum (reduced pressure) and heating.
[0004]
In addition to a dry process such as vacuum deposition, a simple wet process (wet process) on the device also allows organic molecules to be adsorbed electrochemically onto a substrate such as a metal single crystal in solution. There is also a thin film manufacturing method based on the above. However, the weak point of such a wet process is adsorption from a solution, so that it is impossible to produce a thin film that does not dissolve in the solution, and at present, the solvent is limited to an aqueous system due to problems such as adsorption of the solvent itself. It is that you are.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a new technique capable of easily forming a thin film (ultra-thin film) from various hardly soluble molecules (compounds) by a wet process.
[0006]
[Means for Solving the Problems]
As a method for producing a thin film by a wet process, the present inventor can achieve the above object by transferring a thin film previously produced at a gas-liquid interface to a metal substrate modified with a specific substance. The present invention has been found out and the present invention has been derived.
[0007]
Thus, according to the present invention, a step of developing a poorly soluble molecule thin film by developing a poorly soluble molecule in the liquid constituting the gas-liquid interface on the gas-liquid interface, A step of transferring onto a metal substrate modified with an electrochemically detachable substance, and applying a potential in solution to the modified metal substrate onto which a thin film has been transferred, so that the modifying substance is removed from the substrate. There is provided a method for producing a thin film of a sparingly soluble molecule, characterized by comprising a step of electrochemically desorbing.
[0008]
The thin film production method of the present invention is preferably carried out when the liquid constituting the gas-liquid interface is generally water. According to a preferred embodiment of the thin film preparation method of the present invention, the electrochemically detachable substance is halogen or sulfur.
[0009]
A preferred example to which the thin film preparation method of the present invention is applied is a case where the hardly soluble molecule is fullerene, the electrochemically detachable substance is iodine, and the metal substrate is gold.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a method for producing a thin film of various insoluble molecules (compounds) by a wet process as a Langumuir film or a Langumuir-Blodgett film (hereinafter referred to as “Langumuir-Blodgett” film) produced at a gas-liquid interface. , Referred to as LB film) on the surface of the metal single crystal. Hereinafter, embodiments of the present invention will be described along the respective steps constituting the thin film manufacturing method of the present invention.
[0011]
Step of forming a thin film on the gas-liquid interface In order to carry out the method of the present invention, first, a molecule that is sparingly soluble in the liquid constituting the gas-liquid interface is developed on the gas-liquid interface. A thin film of soluble molecules is formed. This step is performed according to a LB film manufacturing method well known in the art.
[0012]
That is, a solution having an appropriate concentration in which a hardly soluble molecule to be formed into a thin film is dissolved in an appropriate solvent (developing solvent: a solvent that dissolves the hardly soluble molecule and is incompatible with the liquid constituting the gas-liquid interface). Is dripped onto the gas-liquid interface to develop the hardly soluble molecule. After deployment, the solution is left to stand for a certain period of time to completely evaporate the development solvent, and then the area of the gas-liquid interface where the molecules are developed is reduced (compression of the membrane). A target thin film (LB film) can be obtained by stabilization.
[0013]
The liquid that constitutes the gas-liquid interface is generally water. Therefore, water (ultra-pure) is dissolved in an organic solvent such as hexane or chloroform using a poorly soluble (water-insoluble) molecule as a developing solvent. Dripping and spreading on the water surface. However, the method of the present invention is similarly applied to the case where a non-aqueous solvent (organic solvent) is used as a liquid constituting the gas-liquid interface, and a thin film is formed by a LB film preparation method from molecules that are hardly soluble in these solvents. it can.
[0014]
In addition, the thin film formed by the above operation is generally a monomolecular film, but is not necessarily limited to a monomolecular film. When a monomolecular layer or more is formed, an appropriate solvent is used later. May be washed away, or a multi-layer may be formed depending on the purpose. Thus, the term “thin film” or “ultra-thin film” as used in connection with the present invention refers to a film having a thickness of a monomolecular layer to a multi-molecular layer level of several μm.
[0015]
Transfer process onto substrate In the thin film manufacturing method of the present invention, the thin film (LB film) obtained by the above-described process is then transferred onto a metal substrate. This operation is generally performed by a horizontal deposition method or a vertical dipping method well known in the art.
[0016]
That is, a metal substrate placed almost parallel to the gas-liquid interface is gently brought into contact with, attached to, and attached to the thin film (LB film) (horizontal adhesion method: see FIG. 1A), or a thin film (LB) at the interface. After the metal substrate is immersed in the liquid in which the film is formed, the LB film is attached by moving in the vertical direction (vertical immersion method). Here, the thin film manufacturing method of the present invention is characterized in that an LB film is brought into contact with the surface of a metal substrate modified with an electrochemically detachable substance and transferred to the substrate.
[0017]
An electrochemically detachable substance is a substance that adsorbs to a metal substrate to modify the metal and can be detached from the metal substrate when a voltage of a specific value is applied in the solution. Preferable examples of the electrochemically detachable substance include halogen or sulfur. In addition, a thiol compound or the like can also be used.
[0018]
The metal used as the substrate is not particularly limited, and is selected from metals that can be adsorbed depending on the combination of the poorly soluble molecule to be prepared for the thin film and the electrochemically detachable substance. . For example, when the poorly soluble molecule forming the thin film is fullerene, iodine is preferable as the electrochemically detachable substance, and gold is preferable as the metal substrate.
[0019]
In accordance with the method of the present invention, a thin film of poorly soluble molecules is transferred directly to the metal surface as described later by transferring the hardly soluble molecule thin film to the metal substrate through the electrochemically detachable substance. Compared to the case, a thin film with significantly improved uniformity can be manufactured.
[0020]
Electrochemical desorption step The modified metal substrate from which the thin film has been transferred is then desorbed of a modifying substance such as halogen from the substrate by applying a voltage in a solution. The desired thin film (ultra thin film) is obtained.
[0021]
Specifically, this step is performed by placing the metal substrate from which the thin film (LB film) has been transferred into an electrochemical cell. That is, while using the substrate as one electrode, a counter electrode and a reference electricity are installed, and a voltage (potential) is applied and controlled in an electrolyte solution to which an appropriate electrolyte is added as required, and current-potential characteristics Is measured to confirm the desorption of the modifying substance from the substrate.
[0022]
This step is preferably performed in an electrochemical STM cell capable of STM (scanning tunneling microscope) observation, thereby directly observing the molecular arrangement structure (including defect structure) of the resulting thin film, In addition, a lot of knowledge about intermolecular interactions can be obtained.
[0023]
According to the method of the present invention comprising the steps described above, a thin film (ultra-thin film) can be produced from various hardly soluble molecules (compounds) that have been difficult in the conventional wet process. Examples of molecules that can be prepared by the method of the present invention include organic molecules such as fullerene, adamantane, and various aromatic compounds (perylene, phthalocyanine, porphyrin, anthraquinone, etc.), or metal complexes such as metal clusters and cyclams. However, the present invention is not limited to these examples. Furthermore, it is also possible to produce thin films of poorly soluble and unstable compounds (for example, proteins and various polymers) that could not be produced by vacuum deposition.
[0024]
Furthermore, according to the method for preparing an ultrathin film of the present invention, it is difficult to apply a specific voltage to a metal substrate on which a thin film of poorly soluble molecules is adsorbed via an electrochemically detachable substance. Compared to the case where a thin film of soluble molecules is directly transferred and adsorbed, a thin film with extremely improved uniformity can be obtained. This is because by modifying the surface of the substrate with halogen or the like, the interaction between the sparingly soluble molecule and the substrate becomes weak, so that the molecule moves around the substrate surface (see FIG. 1B) and is set to a predetermined potential. This is probably because the substrate-modifying substance is slowly replaced with a hardly soluble molecule on the substrate to form a highly uniform molecular film that is epitaxially controlled by the substrate (see FIG. 1C). As described above, in the method of the present invention, a desired thin film can be obtained while controlling the adsorption rate of the hardly soluble molecule by potential operation.
[0025]
According to the method of the present invention, after transferring the poorly soluble molecule thin film (LB film) formed at the gas-liquid interface to the solid-liquid interface, by controlling the adsorption / desorption of the modifying substance and the hardly soluble molecule by potential operation, An ultra-thin film is produced that is epitaxially controlled by a solid (substrate) rather than a gas-liquid interface structure.
[0026]
Furthermore, according to the thin film preparation method of the present invention, even a poorly soluble molecule can be converted into an LB film and transferred to a solid-liquid interface, and electrochemically controlled, thereby allowing not only an epitaxial film but also an intermolecular interaction. Therefore, it is considered that film formation based on two-dimensional self-organization also occurs. This is also inferred from the fact that a C 70 thin film, which is said to be less likely to form an epitaxial arrangement in a single phase, can be produced by the method of the present invention. As described above, the method of the present invention makes it possible to produce a thin film of a molecule (compound), which was considered impossible or difficult to form a thin film according to conventional knowledge.
[0027]
【Example】
In the following, the case of producing a fullerene thin film according to the present invention will be described as an example. However, this example is merely illustrative and does not limit the present invention.
C 60, C 70 as prepared <br/> fullerenes of the fullerene thin film, and using a C 60 / C 70 mixture. The fullerene-benzene solution was developed on an LB trough (ultra pure water) to form a fullerene molecular film at the gas / liquid interface. From the result of the surface pressure-area curve, the surface pressure (10-20 mNm −1 ) considered to be a monomolecular film was formed, and the LB film was transferred to the cleaned substrate by the horizontal adhesion method. As the substrate, an unmodified single crystal Au (111) surface or a single crystal Au (111) surface modified with iodine (hereinafter sometimes referred to as I / Au (111)) was used. Au (111) or I / Au (111) from which the LB film was transferred was set in an electrochemical STM cell, and STM observation was performed while measuring current-voltage characteristics in a 0.1 M HClO 4 aqueous solution. In the STM observation, the probe was measured in a constant current mode using an electropolished tungsten tip.
[0028]
Current - voltage characteristics and STM observation <br/> Figure 2, I / Au (111) was transferred to a substrate made of a plane taken the C 60 thin film of current - shows the potential characteristics (cyclic voltammogram). The horizontal axis represents voltage (V) with respect to the reference electrode (SCE), and the vertical axis represents current value (μA / cm 2 ).
[0029]
To the separated is removed slowly iodine that modified the substrate (Au) and held for approximately -0.05 (V) the potential at the first scan, as shown in solid lines in FIG. 2 is replaced with C 60 molecules, C 60 An epitaxial thin film was formed, and as shown by the broken line in the figure, it was confirmed that it was stably present in perchloric acid in a wide potential region of +0.75 to −0.25 (V).
[0030]
Figure 3 is a STM photograph of C 60 thin film prepared by taking transferred LB film of C 60 on the substrate [I / Au (111)] in accordance with the present invention. The observed fullerene film is a molecular film highly arranged in hexagonal, and the structure arranged along the Au atomic lattice (in phase arrangement) and the arrangement arranged 30 degrees apart (2√3 × 2√3R30 degree arrangement) It consists of two structures. The same structure as these two has been confirmed even in an epitaxial film fabricated by vacuum deposition, and it can be seen that the structure is controlled epitaxially by the substrate, not by the structure at the gas-liquid interface.
[0031]
Figure 4 shows, for comparison, transferred directly up method, i.e., is a STM photograph of C 60 films made adsorbed directly without Au (111) substrate having modification with iodine molecule comprising a large defect structure There are many disordered arrangements.
[0032]
Further, for the C 60 / C 70 mixture, the LB film was transferred to an I / Au (111) substrate, and a thin film was similarly produced. This was also an epitaxial molecular film filled in hexagonal like the C 60 thin film. In the STM observation of this mixed film, two points with clearly different brightness (height) are mixed at random compared to FIG. 3, and the bright (high) point is about 0.1 nm higher than the dark (low) point. It was confirmed. Therefore, C 70 molecules in a state where the higher has caused a major axis (standing-Stay up-sequence), low more is considered to be a C 60 molecule. A similar mixed image is also observed for epitaxial films fabricated by vacuum deposition.
[0033]
In contrast, similarly the LB film I / Au (111) low sequence of two-dimensional surface is transferred up iodine to the substrate at C 70 thin film fabricated by electrochemical desorption also C 70, partially Although epitaxial growth was confirmed, many missing regions and discontinuous structures were also observed. This was consistent with the fact that a stable monomolecular film was not formed at the C70 gas-liquid interface.
[0034]
【The invention's effect】
According to the present invention, it is simpler than the vacuum deposition method, and therefore, an ultra-thin film having a very high uniformity can be produced from a wide range of molecules (compounds) including a hardly soluble molecule by a low cost method.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a state of hardly soluble molecules and the like in an ultrathin film production method of the present invention.
Figure 2 shows a cyclic voltammogram of iodine modified Au substrate took transferred C 60 film in accordance with the present invention.
FIG. 3 is a scanning tunneling micrograph of a C 60 thin film prepared by performing electrochemical substitution on an iodine modified Au substrate according to the present invention.
FIG. 4 is a scanning tunneling micrograph of a C 60 thin film prepared by transferring directly to an Au substrate.

Claims (4)

気液界面上に該気液界面を構成している液体に難溶性の分子を展開して該難溶性分子の薄膜を形成する工程、前記難溶性分子の薄膜を、電気化学的に脱離性の物質で修飾された金属基板上に移し取る工程、および、薄膜を移し取った前記修飾金属基板に溶液中で電圧を印加することにより、該基板から前記修飾物質を電気化学的に脱離させる工程を含むことを特徴とする難溶性分子の薄膜作製法。A step of developing a poorly soluble molecule thin film by developing a poorly soluble molecule in a liquid constituting the gas-liquid interface on the gas-liquid interface; A step of transferring onto the metal substrate modified with the substance, and applying a voltage in solution to the modified metal substrate onto which the thin film has been transferred, thereby electrochemically desorbing the modifying substance from the substrate A method for producing a thin film of a sparingly soluble molecule comprising a step. 気液界面を構成する液体が水であることを特徴とする請求項1の薄膜作製法。2. The method for producing a thin film according to claim 1, wherein the liquid constituting the gas-liquid interface is water. 電気化学的に脱離性の物質がハロゲンまたはイオウであることを特徴とする請求項2の薄膜作製法。3. The method for producing a thin film according to claim 2, wherein the electrochemically detachable substance is halogen or sulfur. 難溶性分子がフラーレンであり、電気化学的に脱離性の物質がヨウ素であり、さらに、金属基板が金であることを特徴とする請求項3の薄膜作製法。4. The thin film production method according to claim 3, wherein the hardly soluble molecule is fullerene, the electrochemically detachable substance is iodine, and the metal substrate is gold.
JP35096599A 1999-12-10 1999-12-10 Preparation of ultra-thin films of sparingly soluble molecules Expired - Fee Related JP3724302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35096599A JP3724302B2 (en) 1999-12-10 1999-12-10 Preparation of ultra-thin films of sparingly soluble molecules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35096599A JP3724302B2 (en) 1999-12-10 1999-12-10 Preparation of ultra-thin films of sparingly soluble molecules

Publications (2)

Publication Number Publication Date
JP2001163611A JP2001163611A (en) 2001-06-19
JP3724302B2 true JP3724302B2 (en) 2005-12-07

Family

ID=18414128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35096599A Expired - Fee Related JP3724302B2 (en) 1999-12-10 1999-12-10 Preparation of ultra-thin films of sparingly soluble molecules

Country Status (1)

Country Link
JP (1) JP3724302B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068188A (en) * 2006-09-13 2008-03-27 Univ Of Tokushima Masking method
CN113540353B (en) * 2021-06-21 2022-10-11 复旦大学 Oriented gas-liquid interface polymer semiconductor film and construction method and application thereof

Also Published As

Publication number Publication date
JP2001163611A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
Hoeppener et al. Metal nanoparticles, nanowires, and contact electrodes self‐assembled on patterned monolayer templates—a bottom‐up chemical approach
Wu et al. Noble metal nanoparticles/carbon nanotubes nanohybrids: synthesis and applications
Pan et al. An atomic force microscopy study of self-assembled octadecyl mercaptan monolayer adsorbed on gold (111) under potential control
Balasubramanian et al. Electrochemically functionalized carbon nanotubes for device applications
JP5322012B2 (en) Method for producing conductive nanowire
US20050271648A1 (en) Carbon nanotube structure and production method thereof
Domanski et al. Kelvin probe force microscopy in nonpolar liquids
Wong et al. Discerning the redox-dependent electronic and interfacial structures in electroactive self-assembled monolayers
JPH05296763A (en) Probe of scanning tunnel microscope and manufacture thereof
Suto et al. Electrochemical control of the structure of two-dimensional supramolecular organization consisting of phthalocyanine and porphyrin on a gold single-crystal surface
Orikasa et al. Template synthesis of water-dispersible carbon nano “test tubes” without any post-treatment
Zeira et al. Contact electrochemical replication of hydrophilic− hydrophobic monolayer patterns
Li et al. Molecular electronics: creating and bridging molecular junctions and promoting its commercialization
Lihter et al. Electrochemical functionalization of selectively addressed MoS2 nanoribbons for sensor device fabrication
Yoshimoto et al. The structure of a coronene adlayer formed in a benzene solution: studies by in situ STM and ex situ LEED
JP3724302B2 (en) Preparation of ultra-thin films of sparingly soluble molecules
Escorihuela et al. Building large-scale unimolecular scaffolding for electronic devices
Raj et al. Electrochemical studies of 6-mercaptonicotinic acid monolayer on Au electrode
Dretschkow et al. Structural transitions in organic adlayers—a molecular view
Ueda et al. Dependence of the electrochemical redox properties of fullerenes on ionic liquids
Gisbert-González et al. Charge effects on the behavior of CTAB adsorbed on Au (111) electrodes in aqueous solutions
Pawlicki et al. Studies of the structure and phase transitions of nano-confined pentanedithiol and its application in directing hierarchical molecular assemblies on Au (1 1 1)
Fang et al. Electrochemistry at gold nanoparticles deposited on dendrimers assemblies adsorbed onto gold and platinum surfaces
Tian et al. Homogenized redox behavior of electroactive self-assembled monolayers on gold in the organic phase
Amin et al. Redox-active hierarchical assemblies of hybrid polyoxometalate nanostructures at carbon surfaces

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees