JP3724200B2 - Recycling method of waste polystyrene resin - Google Patents

Recycling method of waste polystyrene resin Download PDF

Info

Publication number
JP3724200B2
JP3724200B2 JP17185898A JP17185898A JP3724200B2 JP 3724200 B2 JP3724200 B2 JP 3724200B2 JP 17185898 A JP17185898 A JP 17185898A JP 17185898 A JP17185898 A JP 17185898A JP 3724200 B2 JP3724200 B2 JP 3724200B2
Authority
JP
Japan
Prior art keywords
solution
organic solvent
polystyrene resin
recycling
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17185898A
Other languages
Japanese (ja)
Other versions
JP2000007821A (en
Inventor
勉 野口
真由美 宮下
靖史 稲垣
春夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP17185898A priority Critical patent/JP3724200B2/en
Priority to CA 2274397 priority patent/CA2274397A1/en
Priority to US09/332,039 priority patent/US6169121B1/en
Priority to DE1999127757 priority patent/DE19927757A1/en
Publication of JP2000007821A publication Critical patent/JP2000007821A/en
Application granted granted Critical
Publication of JP3724200B2 publication Critical patent/JP3724200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スチロール樹脂廃材(発泡スチロール、スチロールキャビネット等)から高品質な再生スチロール樹脂をリサイクルする方法に関する。
【0002】
【従来の技術】
スチロール樹脂は、各種電気機器のキャビネット材料等として広く使用されており、さらには、その発泡体(発泡スチロール)も、各種梱包材料として多量に使用されている。
【0003】
近年、環境保全や経済性等の観点から、これらの廃材を回収し、再利用することが検討されており、例えば発泡スチロールやスチロールキャビネット等を有機溶媒に溶解減容化して、その溶液をリサイクルプラントへ輸送し、真空加熱脱揮して有機溶剤を除去回収すると共に、再生スチロールとしてリサイクルするスチロールのリサイクルシステムが提案されている。
【0004】
【発明が解決しようとする課題】
ところで、上記リサイクルシステムにおいては、発泡スチロールやスチロールキャビネットを溶解した溶液中に含まれる数百ミクロンサイズ以下の不溶解成分(水分やスラッジ等)が大きな問題となる。これらの不溶解成分は、再生スチロールの品質を大きく低下させる原因になるからである。
【0005】
高分子材料を含む溶液中の異物除去方法としては、一般的に金属メッシュフィルター、ポリオレフィン、ポリエステル繊維系等のバックフィルター、濾布が使用されるが、これらのフィルターでは溶液中の固形異物はある程度除去できるが、水分、動物性オイルを含むスラッジ、カーボンブラック等の無機顔料等の異物は除去しきれないのが現状である。フィルター径を細かくすれば、スラッジ、着色材などの固形異物除去率は向上するが、溶液が高粘度の場合、濾過スピードの低下、フィルターの目詰まりがひどく、フィルターの交換頻度が多くなり実用的とは言えない。
【0006】
本発明は、このような従来の実情に鑑みて提案されたものであり、スチロール樹脂廃材を溶解した溶液中に含まれる不溶解成分を効果的、且つ速やかに除去し得る処理方法を提供し、これにより、高品質な再生スチロールをリサイクルすることが可能なリサイクル方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上述の目的を達成するために、本発明は、スチロール樹脂廃材を有機溶剤に溶解した溶液を脱水剤により処理し、不溶解成分を除去した後、清浄化された溶液を真空加熱脱揮して有機溶剤を除去し、再生スチロール樹脂としてリサイクルすることを特徴とするものである。
【0008】
本発明では、上記脱水剤により、スチロール廃材を溶解した高粘度溶液中の水分、スラッジ、着色材等の異物が効率的に除去され、高品質な再生スチロールをリサイクルすることが可能となる。
【0009】
【発明の実施の形態】
以下、本発明を適用したリサイクル方法について、図面を参照しながら詳細に説明する。
【0010】
本発明は、発泡スチロールやスチロールキャビネット等のスチロール(ポリスチレン)樹脂廃材を有機溶媒に溶解減容化して、溶液をリサイクルプラントへ輸送し、真空加熱脱揮して有機溶剤を除去回収すると共に、再生スチロールとしてリサイクルするスチロールのリサイクルシステムにおいて、溶液中に含まれる不溶解成分(水分、埃、魚油等の動物性油、カーボンブラック等の無機粉末、顔料、色素等の着色剤、その他不溶成分)を溶液から除去し、高品質な再生スチロールをリサイクルするというものである。
【0011】
処理対象は、スチロール樹脂廃材全般であり、発泡スチロール包装材、発泡スチロール魚箱、各種スチロールキャビネット等、その形態や性状は問わない。
【0012】
これらスチロール樹脂廃材を、先ず、有機溶剤により溶解するが、使用する有機溶剤としては、芳香族系有機溶媒、ケトン系有機溶媒、モノテルペン系有機溶媒等が挙げられる。具体的には、リモネン、酢酸イソアミル、プロピオン酸ベンジル、酪酸エステル等を挙げることができ、なかでも、d−リモネンはこの用途に好適な有機溶剤である。d−リモネンは、柑橘類の皮から抽出される植物性油であり、食品添加物にも使用されており、安全性、発泡スチロールの溶解性が高く、本発明に用いられる溶剤としては最適である。
【0013】
上記スチロール樹脂廃材を有機溶剤に溶解した溶液は、用途により、水分や、埃、魚油等の動物性油、カーボンブラック等の無機粉末、顔料、色素等の着色剤等の不溶解成分を含んでいる。
【0014】
そこで、本発明では、上記不溶解成分の除去方法として、脱水剤による除去方法を用いる。
【0015】
すなわち、例えば、スチロール樹脂廃材を有機溶剤に溶解した後、予め溶剤に不溶な脱水剤を添加、或いは脱水剤を充填した層を通し、溶液中の水分等の不溶解成分を除去した後、溶液を真空加熱脱揮して溶剤を除去回収すると共に、再生スチロールとしてリサイクルする。
【0016】
有機溶剤の化学的脱水剤としては、五酸化燐、水酸化カリウム、濃硫酸、無水硫酸カルシウム、酸化マグネシウム、水酸化ナトリウム、酸化カルシウム、無水塩化カルシウム、無水硫酸銅が知られている。この中でも、脱水効果が高く、取り扱いやすい脱水剤として、モレキュラーシーブ、無水硫酸カルシウム、無水塩化カルシウムが一般的によく使われている。
【0017】
したがって、これらの脱水剤を使用することも可能であるが、これらの脱水剤は、有機溶剤に対する脱水効果は高いことが知られているが、スチロール等の樹脂を溶解した高粘度溶液中の脱水、スラッジ、着色材除去の効果については、不十分であることがわかった。
【0018】
そこで、本発明者等は、脱水効果とスラッジ等の除去効果を共に有する材料を探索した結果、特定の吸水性樹脂及び、酸化カルシウムを含む酸化物粉末が上記スチロール樹脂廃材を有機溶剤に溶解した溶液の脱水剤として優れていることを確認した。
【0019】
ここで吸水性樹脂について説明すると、パルプ、脱脂綿、布、ポリビニルアルコール等に代わる吸収性材料として、デンプン系、ポリアクリル酸系などの高吸水性樹脂が開発され、吸湿剤、結露防止剤、乾燥剤、紙おむつ、生理用品等に使用されている。例えば1gの粉末が、1リットルもの水を吸収してゲル化する高吸水性樹脂が開発されている。この粉末は、イオン性をもった、本来水溶性の樹脂の適度に橋かけした三次元構造の樹脂である。吸水の原理図を図1に示す。水のないときは樹脂の長い鎖が絡み合い、ところどころ鎖同士が結合(三次元化)している。それぞれの鎖は、多くの親水基(−COO- )を有しているため、水中では水に溶けようとして広がる。このまま広がると溶解状態になるが、高吸水性樹脂は三次元構造を有しているため、水が閉じこめられ吸水力が生じる。吸水能力は、樹脂の構造(親水基、架橋度等)によってコントロールでき、吸水性樹脂1g当たり50〜1000gの水を吸収できる。
【0020】
上記吸水性樹脂としては、脱イオン水の吸収倍率が50以上のセルロース系、架橋ポリアクリル酸塩系、或いはデンプン/アクリル酸塩グラフト共重合体架橋物等が良好な不溶解成分除去効果を発揮し、特に、吸水倍率400以上の架橋ポリアクリル酸塩系、或いはデンプン/アクリル酸塩グラフト共重合体架橋物が優れた効果を発揮する。これら吸水性樹脂の形態は、粉末あるいは繊維等が好適であり、これらを用いて溶液を40℃以上に加熱処理し、水分やスラッジ等を除去する。
【0021】
このとき、吸水性樹脂の添加量は、溶液に対して0.01重量%以上、3重量%以下とすることが好ましい。
【0022】
脱水剤としては、酸化カルシウム及び酸化カルシウムと水和反応する無機酸化物を含む混合粉末を用いることもできる。例えば、酸化カルシウムを5〜30重量%含み残りが酸化ケイ素、酸化アルミニウム、スルホン酸塩からなる混合粉末を90重量%以上含有する無機脱水凝集剤が使用可能であり、具体的には、脱水剤として、酸化珪素として20〜40重量%、酸化アルミニウムとして1〜10重量%、酸化カルシウムとして10〜30重量%、スルホン酸塩として10〜40重量%含む混合粉末を用い、これら4成分を90重量%以上含む吸水性粉末を30℃以上、好ましくは60℃以上に加温した溶液に0.01〜3重量%添加処理し、不溶解成分を除去後、真空加熱脱揮して溶剤を除去回収すると共に、再生スチロールとしてリサイクルする。
【0023】
図2は、スチロール樹脂廃材のリサイクルシステムにおける処理フロー図である。
【0024】
このリサイクルシステムにおいては、先ず、スチロール樹脂廃材を有機溶剤に溶解した溶液は、溶解コンテナ1から溶解液調整槽2に送り込まれ、均一な組成となる。
【0025】
この均一になった溶液は、ギアポンプ4の駆動によって粗いフィルタの機能を有するストレーナ3を通り、ヒータ5で温められて粘度が低下する。
【0026】
次いで、脱水剤が充填された脱水装置6に送られ、水分やスラッジ等の不溶解成分が除去される。
【0027】
以上により清浄化された溶液は、濾過器7に送り込まれて濾過され、分離機8にてポリスチレンと溶媒に分離される。この分離機8は、例えばボイラー9の熱媒体により約240℃に加熱される。
【0028】
この分離されたポリスチレンは、ギアポンプ10の駆動により、冷却器11を通って冷却され、ペレタイザ12によってペレットになり、再生ペレット13となって成形工場に搬送され、各種ポリスチレン成形品やポリスチレン容器として再利用される。
【0029】
一方、上記分離機8で分離された溶媒の蒸気は、コンデンサ14で液化され、再生リモネンタンク15に再生溶媒(再生リモネン)として回収される。
【0030】
【実施例】
以下、本発明の具体的な実施例について、実験結果を基に説明する。
【0031】
なお、以下の実施例においては、スチロール廃材として、スーパマーケットで使用済みの発泡スチロール魚箱を用いた。発泡スチロールを溶解する有機溶剤としては、純度約95%のd−リモネン(ヤスハラケミカル社製)を用いた。
【0032】
実施例1
上記発泡スチロール廃材をd−リモネンに30重量%溶解した。溶解液中には、水分が1.6重量%、スラッジ分が3重量%含まれていた。
【0033】
この溶液を60℃に加温し、吸水性樹脂(商品名:サンフレッシュ ST−100、三洋化成製、吸水倍率:約1000)を0.05〜1重量%添加し、1時間スターラーで攪拌した。
【0034】
その結果、溶液は透明になり、大部分のスラッジは除去できた。溶液中の水分量と吸水性樹脂添加量の関係を図3に示す。0.2重量%の添加量で水分は1/5以下に低減できた。表1に結果をまとめた。
【0035】
水分量の測定は、NMR(核磁気共鳴法、重ジメチルスルホキシド溶媒)で、スラッジ量の測定は、吸水性樹脂処理後の上澄み溶液を10000rpmで10分間遠心分離後、遠心分離容器底部に推積した固形物量から求めた。
【0036】
【表1】

Figure 0003724200
【0037】
3重量%以上添加すると、スラッジ除去はできるが、脱水効果がなくなるため、効果的ではない。従って、吸水性樹脂の添加量は、好ましくは、0.05〜3重量%となる。
【0038】
また、溶液の温度を20℃で行うと、脱水効果はあるが、表1と同様な効果がでるまで、約6時間撹拌が必要であり、効率的とはいえない。
【0039】
吸水倍率約400倍の吸水性樹脂粉末(商品名:ST−500、三洋化成製)及び吸水倍率約50倍のセルロース繊維について、60℃、一時間撹拌し、同様な実験を行った結果、脱水効果、スラッジ除去効果は確認できたが、その効果は吸水倍率約1000の吸水性樹脂(ST100)に比べて1/2〜1/3であった。従って、なるべく高吸水倍率の樹脂、この好ましくは400倍以上の吸水性能を有する高吸収性樹脂の使用が好ましい。
【0040】
なお、吸水倍率は、次のようにして求めた。
【0041】
先ず、吸水性樹脂0.2gを不織布製のティーバッグ式袋(40mm×150mm)に均一に入れ、脱イオン水(電気抵抗1017Ω以上)に浸漬した。
【0042】
30分後にティーバッグ式袋を引き上げ、一定時間水切りを行った後、ティーバック式袋の重量を測定し、下記の数1により吸水倍率を算出した。
【0043】
【数1】
Figure 0003724200
【0044】
吸水性樹脂(商品名ST−100)とセルロース系吸水繊維を50%づつブレンドし、直径15cm、長さ50cmの円筒カラムに500g充填し、毎分1リットルの流量(対流時間8分)で60℃に加温した溶液を流し、10回循環させた。溶液の水分量、スラッジ除去効果とも、吸水性樹脂を0.2重量%添加した場合と同等であった。
【0045】
実施例2
スチロールを溶解する有機溶剤、例えばトルエン等の芳香族系、メチルエチルケトン等のケトン系、テトラヒドロフラン等のエーテル系、ピネン、ジペンテン等のテルペン系溶剤、またはこれらの溶剤のブレンド系いずれも使用可能である。トルエン、メチルエチルケトン、テトラヒドロフラン、ピネン溶解液に、吸水性樹脂(商品名ST−100)を0.5重量%添加し、同様な実験を行った結果、実施例1とほぼ同様な脱水、スラッジ除去効果が確認された。
【0046】
実施例3
実施例1の方法で処理された発泡スチロール溶解液(30%濃度)を真空加熱脱揮(商品名:ハイビスカスエバポレータ、三井造船社製)を有するリサイクルプラントで脱揮(245℃、真空度:30Torr)処理し、再生スチロールペレットを作製した。
【0047】
その結果、未処理に比べて、再生スチロールペレット中の黒色系異物は大幅に低減し、再生ペレットを溶解した溶液の光透過率(10%リモネン溶液、測定セル厚1cm、波長500nm)は70%から85%に向上した。またペレットの耐熱性(ガラス転移温度Tg比較)は100℃から105℃に向上し、スラッジ除去により高品質再生スチロールがリサイクルできることが確認された。
【0048】
実施例4
上記発泡スチロール廃材をd−リモネンに30重量%溶解した。溶解液中には、水分が1.6重量%、スラッジ分が3重量%含まれていた。
【0049】
この溶液を60℃に加温し、酸化カルシウム8.5重量%及び酸化カルシウムと水和反応する無機酸化物(酸化珪素57重量%、酸化アルミニウム10重量%、硫酸カリウム15重量%)含む無機脱水凝集剤粉末(商品名:コルゲライト、三洋理化社製)を0.2重量%〜5重量%添加し、1時間攪拌した後、3時間溶液を静置した。
【0050】
溶液中に分散していたスラッジは、無機脱水凝集剤とともに沈降し、上澄み液は殆ど透明になり、スラッジ除去効果が確認された。上澄み液中に分散している異物の粒径分布を測定した(測定は、コールターカウンターマルチサイザーを用いて行い、測定溶媒は、メチルエチルケトン−電解質系とした。)。測定結果を図4に示す。
【0051】
未処理の魚箱溶解液中には、最大60μm程度の粒子(スラッジ)が含まれている。無機脱水凝集剤で処理することにより、20μm以上のスラッジは除去できることが確認できた。分散している粒子体積は、未処理の場合で7.1x106 μm3 から処理後7.5x105μm3と約1/10に低減できることが確認できた。また、上澄み液の水分量を測定した結果を図5に示す。2重量%添加することで、水分量は1/3以下に低減できた。従って、上記無機脱水凝集剤をリモネン溶液中に添加することで、水分及びスラッジを効果的に低減できることが確認された。
【0052】
実施例5
実施例4と同様に酸化カルシウムを30重量%含み、残りは酸化珪素、酸化アルミニウム、硫酸カリウム混合粉末の組成の無機脱水凝集剤を添加し評価した。
【0053】
酸化カルシウムを30重量%に増量したところ、脱水効果は10%向上したが、スラッジ除去効果は変化なかった。酸化カルシウムを30重量%以上に増量すると、塩基性が強くなり、また脱水、スラッジ除去効果も向上しないことから、酸化カルシウムの含有量は、5〜30重量%が適当である。
【0054】
酸化カルシウム以外の成分比率は、スラッジの沈降特性からほぼ決まり、酸化珪素は25〜60重量%、酸化アルミニウムは5〜20重量%、残りは硫酸カルシウム或いはカリウムであり、4成分で90重量%以上を示すのが好ましい。これらの組成範囲は、セメント原料が流用できる範囲であり、材料コスト的にも好ましい。
【0055】
また、無機脱水凝集剤で処理するときの溶液温度は、加温した方が短時間で効果が出る。20℃では、処理時間は、約6時間、30℃で約3時間、40℃で約2時間必要であった。従って、処理温度は好ましくは40℃以上がよい。
【0056】
実施例6
TV等のキャビネットに用いられるカーボンブラック等で着色されたハイインパクトポリスチレンをd−リモネンに20重量%溶解し、60℃で加温しながら無機脱水凝集剤を添加した。上澄み液中に分散していた着色剤であるカーボンブラックは、無機脱水凝集剤(商品名コルゲライト)で処理することにより、約1時間で凝集沈降し、溶液の光透過率(1cmセル、波長:500nm)は10%から80%に向上し、ほぼ透明になった。従って、キャビネット等の着色剤を含む溶解液に清浄化にも効果があることが確認できた。
【0057】
参考例1
上記発泡スチロール廃材をd−リモネンに30重量%溶解した。溶解液中には、水分が1.6重量%、スラッジ分が3重量%含まれていた。この溶解を60℃に加温し、無水硫酸カルシウムを0.1〜1重量%溶液に添加、実施例4と同じ条件で処理し、上澄みの水分量を測定した。結果を図6に示す。
【0058】
加温したが、脱水効果、スラッジ除去効果はほとんど見られない。また、無水塩化カルシウム、モレキュラーシーブ(5A,13A,和光純薬製)を検討したが、共に効果は見られなかった。酸化カルシウム単体も検討したが、塩基性が強く溶液が褐色になり、また脱水、スラッジ除去効果は見られなかった。
【0059】
【発明の効果】
以上の説明からも明らかなように、本発明によれば、スチロール樹脂廃材を溶解した溶液中に含まれる水分やスラッジ等の不溶解成分を効果的、且つ速やかに除去することが可能であり、これにより、高品質な再生スチロールをリサイクルすることが可能である。
【0060】
したがって、再生スチロール樹脂の付加価値、用途を拡大することができ、廃棄物低減、省資源、省エネルギー等、環境保全への効果は多大である。
【図面の簡単な説明】
【図1】吸水性樹脂の吸水原理を説明する模式図である。
【図2】本発明を適用したリサイクルシステムにおける処理フローの一例を示す模式図である。
【図3】吸水性樹脂の添加量とリモネン溶液中の水分量の関係を示す特性図である。
【図4】無機脱水凝集剤処理の有無による残存スラッジの相違を示す特性図である。
【図5】無機脱水凝集剤の添加量とリモネン溶液中の水分量の関係を示す特性図である。
【図6】無水硫酸カルシウムの添加量とリモネン溶液中の水分量の関係を示す特性図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recycling high-quality recycled polystyrene resin from polystyrene resin waste (foamed polystyrene, polystyrene cabinet, etc.).
[0002]
[Prior art]
The styrene resin is widely used as a cabinet material for various electric devices, and further, the foamed material (foamed polystyrene) is also used in a large amount as various packing materials.
[0003]
In recent years, it has been studied to collect and reuse these waste materials from the viewpoints of environmental protection and economic efficiency. For example, the volume of foamed polystyrene or polystyrene cabinet is dissolved and reduced in an organic solvent, and the solution is recycled into a recycling plant. A styrene recycling system has been proposed in which the organic solvent is removed and recovered by vacuum heating and devolatilization and recycled as recycled polystyrene.
[0004]
[Problems to be solved by the invention]
By the way, in the above recycling system, insoluble components (moisture, sludge, etc.) having a size of several hundred microns or less contained in the solution in which the expanded polystyrene or the polystyrene cabinet is dissolved becomes a big problem. This is because these insoluble components cause the quality of the regenerated styrene to be greatly reduced.
[0005]
As a method for removing foreign substances in a solution containing a polymer material, a metal mesh filter, a back filter such as a polyolefin or a polyester fiber, and a filter cloth are generally used. However, these filters have some solid foreign substances in the solution. Although it can be removed, foreign matter such as moisture, sludge containing animal oil, and inorganic pigments such as carbon black cannot be removed. If the filter diameter is made finer, the removal rate of solid foreign matters such as sludge and coloring materials will improve, but if the solution is highly viscous, the filtration speed will decrease, the filter will become clogged, and the filter will need to be replaced more frequently. It can not be said.
[0006]
The present invention has been proposed in view of such conventional circumstances, and provides a treatment method capable of effectively and quickly removing insoluble components contained in a solution in which styrene resin waste is dissolved, Accordingly, an object is to provide a recycling method capable of recycling high-quality recycled polystyrene.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention treats a solution in which a styrene resin waste material is dissolved in an organic solvent with a dehydrating agent, removes insoluble components, and then vacuum-heats and devolatilizes the cleaned solution. The organic solvent is removed and recycled as a recycled styrene resin.
[0008]
In the present invention, the dehydrating agent efficiently removes foreign matters such as moisture, sludge, and coloring material in the high-viscosity solution in which the styrene waste material is dissolved, and it becomes possible to recycle high-quality recycled styrene.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a recycling method to which the present invention is applied will be described in detail with reference to the drawings.
[0010]
The present invention dissolves and reduces volume of styrene (polystyrene) resin such as polystyrene foam and polystyrene cabinet in an organic solvent, transports the solution to a recycling plant, removes and recovers the organic solvent by vacuum heating and devolatilization, and recycles polystyrene. Solution of insoluble components (water, dust, animal oil such as fish oil, inorganic powders such as carbon black, colorants such as pigments and dyes, and other insoluble components) contained in the solution in the recycling system of styrene And recycled high-quality recycled polystyrene.
[0011]
The processing object is general waste of styrene resin, and its form and properties are not limited, such as expanded polystyrene packaging material, expanded polystyrene fish box, various polystyrene cabinets.
[0012]
These styrene resin waste materials are first dissolved with an organic solvent. Examples of the organic solvent to be used include aromatic organic solvents, ketone organic solvents, and monoterpene organic solvents. Specific examples include limonene, isoamyl acetate, benzyl propionate, butyrate ester, etc. Among them, d-limonene is an organic solvent suitable for this application. d-Limonene is a vegetable oil extracted from citrus peel, is also used in food additives, has high safety and high solubility of styrene foam, and is optimal as a solvent used in the present invention.
[0013]
The solution in which the above styrene resin waste material is dissolved in an organic solvent contains insoluble components such as moisture, animal oil such as dust and fish oil, inorganic powder such as carbon black, colorant such as pigment and pigment, depending on applications. Yes.
[0014]
Therefore, in the present invention, a removal method using a dehydrating agent is used as a method for removing the insoluble component.
[0015]
That is, for example, after dissolving a styrene resin waste material in an organic solvent, a dehydrating agent insoluble in the solvent is added in advance, or a layer filled with the dehydrating agent is passed through to remove insoluble components such as moisture in the solution, and then the solution The solvent is removed by vacuum heating and devolatilized, and recycled as recycled polystyrene.
[0016]
As chemical dehydrating agents for organic solvents, phosphorus pentoxide, potassium hydroxide, concentrated sulfuric acid, anhydrous calcium sulfate, magnesium oxide, sodium hydroxide, calcium oxide, anhydrous calcium chloride, and anhydrous copper sulfate are known. Of these, molecular sieves, anhydrous calcium sulfate, and anhydrous calcium chloride are commonly used as dehydrating agents that have a high dehydrating effect and are easy to handle.
[0017]
Therefore, it is possible to use these dehydrating agents, but these dehydrating agents are known to have a high dehydrating effect on organic solvents. However, dehydrating in a high viscosity solution in which a resin such as styrene is dissolved is used. It was found that the effect of removing sludge and coloring material was insufficient.
[0018]
Therefore, as a result of searching for materials having both a dehydrating effect and a removing effect such as sludge, the present inventors have dissolved the above styrene resin waste material in an organic solvent by a specific water-absorbing resin and an oxide powder containing calcium oxide. It was confirmed that the solution was excellent as a dehydrating agent.
[0019]
Here, the water-absorbing resin will be explained. As an absorbent material to replace pulp, absorbent cotton, cloth, polyvinyl alcohol, and the like, a high water-absorbing resin such as starch and polyacrylic acid has been developed. Used in preparations, disposable diapers, sanitary products, etc. For example, a highly water-absorbing resin has been developed in which 1 g of powder absorbs 1 liter of water and gels. This powder is a resin having a three-dimensional structure that has an ionic nature and is appropriately crosslinked with an originally water-soluble resin. The principle of water absorption is shown in FIG. When there is no water, long chains of resin are entangled, and in some places, the chains are linked (three-dimensional). Since each chain has many hydrophilic groups (—COO ), it spreads in water in an attempt to dissolve in water. If it spreads as it is, it will be in a dissolved state, but since the highly water-absorbent resin has a three-dimensional structure, water is confined and water absorption is generated. The water absorption capacity can be controlled by the resin structure (hydrophilic group, degree of crosslinking, etc.) and can absorb 50 to 1000 g of water per 1 g of water absorbent resin.
[0020]
As the above water-absorbing resin, cellulose-based, cross-linked polyacrylate-based or dehydrated starch / acrylate graft copolymer having a deionized water absorption ratio of 50 or more exhibits a good insoluble component removal effect. In particular, a crosslinked polyacrylate system having a water absorption ratio of 400 or more, or a crosslinked starch / acrylate graft copolymer exhibits an excellent effect. The form of these water-absorbing resins is preferably powder or fiber, and the solution is heated to 40 ° C. or higher using these to remove moisture, sludge and the like.
[0021]
At this time, the addition amount of the water-absorbing resin is preferably 0.01% by weight or more and 3% by weight or less with respect to the solution.
[0022]
As the dehydrating agent, a mixed powder containing calcium oxide and an inorganic oxide that hydrates with calcium oxide can also be used. For example, an inorganic dehydrating flocculant containing 5 to 30% by weight of calcium oxide and 90% by weight or more of a mixed powder consisting of silicon oxide, aluminum oxide, and sulfonate can be used. As a mixed powder containing 20 to 40% by weight as silicon oxide, 1 to 10% by weight as aluminum oxide, 10 to 30% by weight as calcium oxide, and 10 to 40% by weight as sulfonate, 90 parts by weight of these four components are used. % Of water-absorbing powder containing 30% or more, preferably 0.01 to 3 wt% added to a solution heated to 30 ° C or more, preferably 60 ° C or more, and after removing insoluble components, removing the solvent by vacuum heating and devolatilization And recycled as recycled polystyrene.
[0023]
FIG. 2 is a process flow diagram in a recycling system for waste polystyrene resin.
[0024]
In this recycling system, first, a solution obtained by dissolving a styrene resin waste material in an organic solvent is sent from the dissolution container 1 to the solution adjustment tank 2 to have a uniform composition.
[0025]
The uniform solution passes through the strainer 3 having a rough filter function when the gear pump 4 is driven, and is warmed by the heater 5 to decrease the viscosity.
[0026]
Subsequently, it is sent to the dehydrating device 6 filled with the dehydrating agent, and insoluble components such as moisture and sludge are removed.
[0027]
The solution cleaned as described above is sent to the filter 7 and filtered, and is separated into polystyrene and a solvent by the separator 8. The separator 8 is heated to about 240 ° C. by the heating medium of the boiler 9, for example.
[0028]
The separated polystyrene is cooled through a cooler 11 by driving a gear pump 10, pelletized by a pelletizer 12, pelletized by a pelletizer 12, transported to a molding plant, and recycled as various polystyrene molded products and polystyrene containers. Used.
[0029]
On the other hand, the solvent vapor separated by the separator 8 is liquefied by the condenser 14 and collected in the regenerated limonene tank 15 as a regenerated solvent (regenerated limonene).
[0030]
【Example】
Hereinafter, specific examples of the present invention will be described based on experimental results.
[0031]
In the following examples, a polystyrene foam fish box used in the supermarket was used as the styrene waste material. As an organic solvent for dissolving the expanded polystyrene, d-limonene (manufactured by Yasuhara Chemical Co., Ltd.) having a purity of about 95% was used.
[0032]
Example 1
30% by weight of the above polystyrene foam waste was dissolved in d-limonene. The solution contained 1.6% by weight of water and 3% by weight of sludge.
[0033]
This solution was heated to 60 ° C., 0.05 to 1% by weight of a water absorbent resin (trade name: Sunfresh ST-100, manufactured by Sanyo Kasei Co., Ltd., water absorption ratio: about 1000) was added, and the mixture was stirred with a stirrer for 1 hour. .
[0034]
As a result, the solution became clear and most of the sludge could be removed. The relationship between the amount of water in the solution and the amount of water-absorbing resin added is shown in FIG. With the addition amount of 0.2% by weight, the water content could be reduced to 1/5 or less. Table 1 summarizes the results.
[0035]
The moisture content is measured by NMR (nuclear magnetic resonance method, heavy dimethyl sulfoxide solvent). The sludge amount is measured by centrifuging the supernatant solution after treatment with the water-absorbent resin at 10000 rpm for 10 minutes and then depositing it at the bottom of the centrifuge container. It was calculated from the amount of solid matter.
[0036]
[Table 1]
Figure 0003724200
[0037]
If 3% by weight or more is added, sludge can be removed, but the effect of dehydration is lost, which is not effective. Therefore, the amount of water-absorbing resin added is preferably 0.05 to 3% by weight.
[0038]
Further, when the temperature of the solution is 20 ° C., there is a dehydration effect, but stirring is required for about 6 hours until the same effect as in Table 1 is obtained, which is not efficient.
[0039]
Water absorption resin powder (trade name: ST-500, manufactured by Sanyo Chemical Co., Ltd.) having a water absorption ratio of about 400 times and cellulose fiber having a water absorption ratio of about 50 times were stirred at 60 ° C. for 1 hour, and the same experiment was performed. The effect and the sludge removal effect were confirmed, but the effect was 1/2 to 1/3 compared to the water absorbent resin (ST100) having a water absorption ratio of about 1000. Therefore, it is preferable to use a resin having a high water absorption ratio as much as possible, preferably a high absorbency resin having a water absorption performance of 400 times or more.
[0040]
In addition, the water absorption magnification was calculated | required as follows.
[0041]
First, 0.2 g of the water-absorbent resin was uniformly placed in a non-woven tea bag bag (40 mm × 150 mm) and immersed in deionized water (electric resistance of 10 17 Ω or more).
[0042]
After 30 minutes, the tea bag type bag was pulled up and drained for a certain period of time, and then the weight of the tea bag type bag was measured.
[0043]
[Expression 1]
Figure 0003724200
[0044]
A water-absorbing resin (trade name ST-100) and cellulosic water-absorbing fibers were blended in 50% increments, filled in a cylindrical column having a diameter of 15 cm and a length of 50 cm, and charged at a flow rate of 1 liter per minute (convection time 8 minutes). The solution warmed to 0 ° C. was poured and circulated 10 times. The water content of the solution and the sludge removal effect were the same as when 0.2 wt% of the water absorbent resin was added.
[0045]
Example 2
Any organic solvent that dissolves styrene, for example, an aromatic solvent such as toluene, a ketone solvent such as methyl ethyl ketone, an ether solvent such as tetrahydrofuran, a terpene solvent such as pinene or dipentene, or a blended solvent of these solvents can be used. As a result of adding 0.5% by weight of a water-absorbent resin (trade name ST-100) to toluene, methyl ethyl ketone, tetrahydrofuran and pinene solution, the same dehydration and sludge removal effect as in Example 1 was performed. Was confirmed.
[0046]
Example 3
The styrene foam solution (30% concentration) treated by the method of Example 1 was devolatilized (245 ° C., degree of vacuum: 30 Torr) in a recycling plant having vacuum devolatilization (trade name: Hibiscus evaporator, manufactured by Mitsui Engineering & Shipbuilding). Processed to produce recycled polystyrene pellets.
[0047]
As a result, the black foreign matter in the regenerated polystyrene pellets is significantly reduced compared to the untreated, and the light transmittance of the solution in which the regenerated pellets are dissolved (10% limonene solution, measurement cell thickness 1 cm, wavelength 500 nm) is 70%. To 85%. Further, the heat resistance of the pellets (comparison of glass transition temperature Tg) was improved from 100 ° C. to 105 ° C., and it was confirmed that high-quality recycled polystyrene can be recycled by removing sludge.
[0048]
Example 4
30% by weight of the above polystyrene foam waste was dissolved in d-limonene. The solution contained 1.6% by weight of water and 3% by weight of sludge.
[0049]
This solution is heated to 60 ° C. and inorganic dehydration containing 8.5% by weight of calcium oxide and an inorganic oxide that hydrates with calcium oxide (57% by weight of silicon oxide, 10% by weight of aluminum oxide, and 15% by weight of potassium sulfate). A flocculant powder (trade name: Korgelite, manufactured by Sanyo Rika Co., Ltd.) was added in an amount of 0.2 wt% to 5 wt%, stirred for 1 hour, and allowed to stand for 3 hours.
[0050]
The sludge dispersed in the solution settled together with the inorganic dehydrating flocculant, and the supernatant liquid became almost transparent, confirming the sludge removal effect. The particle size distribution of foreign matters dispersed in the supernatant was measured (measurement was performed using a Coulter Counter Multisizer, and the measurement solvent was a methyl ethyl ketone-electrolyte system). The measurement results are shown in FIG.
[0051]
The untreated fish box solution contains particles (sludge) of about 60 μm at maximum. It was confirmed that sludge having a size of 20 μm or more can be removed by treatment with an inorganic dehydrating flocculant. It was confirmed that the volume of the dispersed particles can be reduced to about 1/10 from 7.1 × 10 6 μm 3 to 7.5 × 10 5 μm 3 after the treatment when untreated. Moreover, the result of having measured the moisture content of the supernatant liquid is shown in FIG. By adding 2% by weight, the water content could be reduced to 1/3 or less. Therefore, it was confirmed that water and sludge can be effectively reduced by adding the inorganic dehydrating flocculant to the limonene solution.
[0052]
Example 5
In the same manner as in Example 4, 30% by weight of calcium oxide was contained, and the remainder was evaluated by adding an inorganic dehydrating flocculant having a composition of mixed powder of silicon oxide, aluminum oxide and potassium sulfate.
[0053]
When the amount of calcium oxide was increased to 30% by weight, the dehydration effect was improved by 10%, but the sludge removal effect was not changed. If the amount of calcium oxide is increased to 30% by weight or more, the basicity becomes strong and the effect of dehydration and sludge removal is not improved. Therefore, the content of calcium oxide is suitably 5 to 30% by weight.
[0054]
The ratio of ingredients other than calcium oxide is almost determined by the sedimentation characteristics of the sludge. Silicon oxide is 25 to 60% by weight, aluminum oxide is 5 to 20% by weight, and the remainder is calcium sulfate or potassium. Is preferable. These composition ranges are ranges in which the cement raw material can be diverted, and are preferable in terms of material cost.
[0055]
In addition, the solution temperature when treating with the inorganic dehydrating flocculant is more effective in a shorter time when heated. At 20 ° C, the treatment time required about 6 hours, about 3 hours at 30 ° C, and about 2 hours at 40 ° C. Therefore, the treatment temperature is preferably 40 ° C. or higher.
[0056]
Example 6
20% by weight of high impact polystyrene colored with carbon black or the like used in a cabinet such as a TV was dissolved in d-limonene, and an inorganic dehydrating flocculant was added while heating at 60 ° C. Carbon black, which is a colorant dispersed in the supernatant, is coagulated and settled in about 1 hour by treatment with an inorganic dehydrating flocculant (trade name: Corgelite), and the light transmittance of the solution (1 cm cell, wavelength: 500 nm) was improved from 10% to 80% and became almost transparent. Therefore, it was confirmed that the solution containing a colorant such as a cabinet is effective for cleaning.
[0057]
Reference example 1
30% by weight of the above polystyrene foam waste was dissolved in d-limonene. The solution contained 1.6% by weight of water and 3% by weight of sludge. This solution was heated to 60 ° C., anhydrous calcium sulfate was added to the 0.1 to 1 wt% solution, treated under the same conditions as in Example 4, and the water content of the supernatant was measured. The results are shown in FIG.
[0058]
Although heated, almost no dehydration effect or sludge removal effect is seen. Further, anhydrous calcium chloride and molecular sieve (5A, 13A, manufactured by Wako Pure Chemical Industries, Ltd.) were examined, but no effect was found. Calcium oxide alone was also examined, but the basicity was strong and the solution turned brown, and the effects of dehydration and sludge removal were not observed.
[0059]
【The invention's effect】
As is apparent from the above description, according to the present invention, it is possible to effectively and quickly remove insoluble components such as moisture and sludge contained in the solution in which the styrene resin waste material is dissolved, Thereby, it is possible to recycle high-quality recycled polystyrene.
[0060]
Therefore, the added value and application of the recycled styrene resin can be expanded, and the effects on environmental conservation such as waste reduction, resource saving, energy saving, etc. are great.
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining the water absorption principle of a water absorbent resin.
FIG. 2 is a schematic diagram showing an example of a processing flow in a recycling system to which the present invention is applied.
FIG. 3 is a characteristic diagram showing the relationship between the amount of water-absorbing resin added and the amount of water in the limonene solution.
FIG. 4 is a characteristic diagram showing the difference in residual sludge with and without inorganic dehydrating flocculant treatment.
FIG. 5 is a characteristic diagram showing the relationship between the amount of inorganic dehydrating flocculant added and the amount of water in the limonene solution.
FIG. 6 is a characteristic diagram showing the relationship between the amount of anhydrous calcium sulfate added and the amount of water in the limonene solution.

Claims (9)

スチロール樹脂廃材を有機溶剤に溶解した溶液を、架橋ポリアクリル酸塩、デンプン/アクリル酸グラフト共重合体架橋物の少なくとも1種からなる脱水剤により処理し、上記溶液中の不溶解成分を除去した後、清浄化された溶液を真空加熱脱揮して有機溶剤を除去し、再生スチロール樹脂としてリサイクルすることを特徴とするスチロール樹脂廃材のリサイクル方法。A solution obtained by dissolving a waste polystyrene resin in an organic solvent was treated with a dehydrating agent consisting of at least one of a crosslinked polyacrylate and a crosslinked starch / acrylic acid graft copolymer to remove insoluble components in the solution . Thereafter, the cleaned solution is vacuum-heated and devolatilized to remove the organic solvent, and recycled as a recycled polystyrene resin. 上記有機溶剤は、芳香族系有機溶媒、ケトン系有機溶媒、モノテルペン系有機溶媒から選ばれる少なくとも1種を含有することを特徴とする請求項1記載のスチロール樹脂廃材のリサイクル方法。  2. The method for recycling waste polystyrene resin according to claim 1, wherein the organic solvent contains at least one selected from an aromatic organic solvent, a ketone organic solvent, and a monoterpene organic solvent. 上記有機溶剤は、d−リモネンを95体積%以上含むことを特徴とする請求項1記載のスチロール樹脂廃材のリサイクル方法。  The method for recycling waste polystyrene resin according to claim 1, wherein the organic solvent contains 95% by volume or more of d-limonene. 上記スチロール樹脂廃材が、発泡スチロール廃材であることを特徴とする請求項1記載のスチロール樹脂廃材のリサイクル方法。  The method for recycling waste polystyrene resin according to claim 1, wherein the waste polystyrene resin is foamed polystyrene waste. 上記スチロール樹脂廃材を有機溶剤に溶解した溶液に、当該有機溶剤に不溶な脱水剤を添加することを特徴とする請求項1記載のスチロール樹脂廃材のリサイクル方法。  2. The method for recycling waste polystyrene resin according to claim 1, wherein a dehydrating agent insoluble in the organic solvent is added to a solution obtained by dissolving the waste polystyrene resin in an organic solvent. 上記スチロール樹脂廃材を有機溶剤に溶解した溶液を、当該有機溶剤に不溶な脱水剤を充填したカラムに通すことを特徴とする請求項1記載のスチロール樹脂廃材のリサイクル方法。  2. The method for recycling waste polystyrene resin according to claim 1, wherein a solution obtained by dissolving the waste polystyrene resin in an organic solvent is passed through a column filled with a dehydrating agent insoluble in the organic solvent. 40℃以上に加温した上記溶液に上記脱水剤を0.01〜3重量%添加し、上記溶液中の不溶解成分を除去することを特徴とする請求項1記載のスチロール樹脂廃材のリサイクル方法。The recycling method for waste polystyrene resin according to claim 1 , wherein 0.01 to 3 wt% of the dehydrating agent is added to the solution heated to 40 ° C or higher to remove insoluble components in the solution. . スチロール樹脂廃材を有機溶剤に溶解した溶液を、酸化カルシウムを5〜30重量%含み残りが酸化ケイ素、酸化アルミニウム、スルホン酸塩からなる混合粉末を90重量%以上含有する脱水剤により処理し、上記溶液中の不溶解成分を除去した後、清浄化された溶液を真空加熱脱揮して有機溶剤を除去し、再生スチロール樹脂としてリサイクルすることを特徴とするスチロール樹脂廃材のリサイクル方法。 A solution obtained by dissolving a waste polystyrene resin material in an organic solvent is treated with a dehydrating agent containing 5 to 30% by weight of calcium oxide and 90% by weight or more of a mixed powder composed of silicon oxide, aluminum oxide, and sulfonate, and the above. A method for recycling a styrene resin waste material, comprising removing an insoluble component in a solution, removing the organic solvent by vacuum heating and devolatilizing the cleaned solution, and recycling the styrene resin as a recycled styrene resin. 30℃以上に加熱した上記溶液に上記脱水剤を0.01〜3重量%添加し、上記溶液中の不溶解成分を除去することを特徴とする請求項8記載のスチロール樹脂廃材のリサイクル方法。9. The recycling method of styrene resin waste material according to claim 8 , wherein 0.01 to 3% by weight of the dehydrating agent is added to the solution heated to 30 [deg.] C. or more to remove insoluble components in the solution .
JP17185898A 1998-06-18 1998-06-18 Recycling method of waste polystyrene resin Expired - Fee Related JP3724200B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP17185898A JP3724200B2 (en) 1998-06-18 1998-06-18 Recycling method of waste polystyrene resin
CA 2274397 CA2274397A1 (en) 1998-06-18 1999-06-11 Method and apparatus for recycling styrene resin
US09/332,039 US6169121B1 (en) 1998-06-18 1999-06-14 Method and apparatus for recycling styrene resin
DE1999127757 DE19927757A1 (en) 1998-06-18 1999-06-17 Styrene polymer recycling process giving high purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17185898A JP3724200B2 (en) 1998-06-18 1998-06-18 Recycling method of waste polystyrene resin

Publications (2)

Publication Number Publication Date
JP2000007821A JP2000007821A (en) 2000-01-11
JP3724200B2 true JP3724200B2 (en) 2005-12-07

Family

ID=15931097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17185898A Expired - Fee Related JP3724200B2 (en) 1998-06-18 1998-06-18 Recycling method of waste polystyrene resin

Country Status (1)

Country Link
JP (1) JP3724200B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101308153B1 (en) 2013-04-11 2013-09-12 이승환 Method of recylcing waste plastics containing natural fiber filler
TW202134328A (en) * 2019-12-27 2021-09-16 日商三菱瓦斯化學股份有限公司 Method for producing regenerated resin

Also Published As

Publication number Publication date
JP2000007821A (en) 2000-01-11

Similar Documents

Publication Publication Date Title
CA2091069C (en) Process and apparatus for regenerating used articles of polyolefin to reusable raw material
CN113557264B (en) Process for recycling polystyrene waste and/or polystyrene copolymer waste
US6169121B1 (en) Method and apparatus for recycling styrene resin
TWI236487B (en) Process for recycling a plastic
JP7221980B2 (en) Process for recycling polystyrene waste
DE60108513T2 (en) RECOVERY METHOD FOR POLYSTYRENE
JP7350157B2 (en) Degradation of superabsorbent polymers via oxidative degradation
JP3181940B2 (en) Method for recovering alkali or acid aqueous medium soluble polymers
CN105061784A (en) Polyethylene wax coated stable potassium ferrate and preparation method thereof
JP2022031256A (en) Solvent-based recycling with roll-to-roll processing step
JP3724200B2 (en) Recycling method of waste polystyrene resin
CN103113513A (en) Synthetic method for fiber-forming polymer
WO2017064292A1 (en) Method for decolorizing plastic polyolefin material
WO1994006854A1 (en) Method of and apparatus for regenerating waste polyvinyl chloride
US5674914A (en) Method and apparatus for reclamation of waste polyvinyl chloride
JP5480848B2 (en) Recycling method and equipment for market recovered foamed plastic containers
US7696255B2 (en) Process for the recycling of plastics
CN1045782C (en) Low-temp recovery technique for waste plastics of polyvinyl-chloride and polythene
JP3752845B2 (en) Recycling method of waste polystyrene resin
CN1065871A (en) Method for regenerating polyethylene powder from waste polyethylene film
JP2000327828A (en) Method for fractionating plastic mixture and solvent therefor
CN112279797B (en) Method for recovering N-methyl pyrrolidone from polyurethane adhesive cleaning waste liquid
JP2006274101A (en) Method for recovering vinyl chloride resin and recovery treatment equipment therefor
JP2000038470A (en) Recycling for polystyrene waste material and recycling system therefor and decoloring agent for polystyrene resin
TWI760260B (en) Method for regenerating superabsorbent polymer and regenerated superabsorbent polymer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees