JP3723403B2 - Method and apparatus for sealing molten metal flow - Google Patents

Method and apparatus for sealing molten metal flow Download PDF

Info

Publication number
JP3723403B2
JP3723403B2 JP2000075731A JP2000075731A JP3723403B2 JP 3723403 B2 JP3723403 B2 JP 3723403B2 JP 2000075731 A JP2000075731 A JP 2000075731A JP 2000075731 A JP2000075731 A JP 2000075731A JP 3723403 B2 JP3723403 B2 JP 3723403B2
Authority
JP
Japan
Prior art keywords
molten metal
inert gas
injection nozzle
sealing
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000075731A
Other languages
Japanese (ja)
Other versions
JP2001259804A (en
Inventor
圭一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000075731A priority Critical patent/JP3723403B2/en
Publication of JP2001259804A publication Critical patent/JP2001259804A/en
Application granted granted Critical
Publication of JP3723403B2 publication Critical patent/JP3723403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶融金属を収容する容器の底部に配置された注入ノズルからその注入ノズルの下方に配置された溶融金属を受湯する容器に溶融金属を注入する際の注入溶湯流のシール方法及び装置に関するものである。
【0002】
【従来の技術】
従来、溶融金属を、注入ノズルを介して容器から容器(例えば取鍋から取鍋、取鍋からタンディッシュ等)へと注入する場合、溶融金属と外気が接触し、その際、溶融金属の酸化や大気中の水分、窒素といった成分の取り込みにより溶融金属成分の変動を引き起こし、所定の金属成分の溶融金属を製造できなくなることがある。
【0003】
上記の問題点を改善するための方法として、例えば特開昭63−235053号公報、特開昭62−81253号公報に提案された方法がある。
【0004】
特開昭63−235053号公報には、取鍋からタンディッシュに注入される溶湯の酸化を抑制するため、取鍋内の溶湯を、溶湯注入ノズルを介してタンディッシュ内に注入する溶湯の注入方法において、タンディッシュ内の溶湯湯面の溶湯注入部を含む領域に筒状部材を浸漬させ、湯面上部の筒状部材に囲まれた領域に溶湯と反応しないガスを供給すると共に、このガス供給領域に前記溶湯注入ノズルの溶湯流出部を位置させて取鍋内の溶湯を注入する、溶湯の注入方法が提案されている。
【0005】
また、特開昭62−81253号公報には、レードル(取鍋)からタンディッシュに注入される溶鋼の周囲雰囲気からの吸窒をより効果的に防止するため、レードルからタンディッシュに注入される溶鋼の周囲雰囲気からの吸窒を防止するシール方法であって、レードル底部のノズル先端から注入される溶鋼流を外部雰囲気から区画するとともにタンディッシュ内溶鋼の表面近傍において該溶鋼流に不活性ガスを吹き付ける、注入溶鋼流のシール方法が提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、特開昭63−235053号公報に提案の具体例では、筒状部材の上端が開放され、その上端より筒状部材内にガス供給パイプが装入され先端より不活性ガスであるアルゴンガスが溶湯湯面に向けて吹き込まれている。このため、上端開口より大気の混入が懸念され、必ずしも十分な大気の遮断がなされず溶湯の酸化が懸念される。一方、上端開口を閉塞しても、湯面を一定に維持するためにタンディッシュ内に注入されてくる溶湯に巻き込まれて行くガスにより筒状部材内の上部が負圧になり、隙間などからの大気の侵入があり溶湯の酸化が懸念される。而して、この提案のシール方法では、確実に所望の清浄度を有する溶融金属を製造することができない。
【0007】
また、特開昭62−81253号公報に提案の方法では、図4に示すように、レードル底部21のノズル先端22から注入される溶鋼流23を、蓋部(陣笠)24、シールハット(中間筒体)25、注入管(シールパイプ)26、不活性ガス案内管27より構成されるシール装置28により外部雰囲気から区画し、その区画内のタンディッシュ内溶鋼の表面近傍において溶鋼流23に不活性ガスを吹き付けるようにしている。しかしながら、この方法では、湯面を一定に維持するためにタンディッシュ内に注入されてくる溶湯に巻き込まれて行く不活性ガスの気泡29によりシール装置28内の上部が負圧になり、特に蓋部(陣笠)24、シールハット(中間筒体)25、注入管(シールパイプ)26の接合隙間から、同図4に併せて示すように、破線矢印Bで示すような大気の侵入があり溶湯の酸化が懸念される。而して、この提案のシール方法でも、確実に所望の清浄度を有する溶融金属を製造することができない。なお、30は不活性ガス噴出口である。
【0008】
一方、特開平6−344098号公報には、上記特開昭62−81253号公報の問題点を解消する方法として、下ノズルの外周に設置した不活性ガス吹き込み口から不活性ガスを注入溶鋼流を取り巻く旋回流として吹き込み、吹き込んだ不活性ガスを注入溶鋼流にらせん状に巻き付ける、注入溶鋼流のシール方法が提案されている。
【0009】
しかしながら、上記特開平6−344098号公報に提案の方法では、吹き込んだ不活性ガスを注入溶鋼流にらせん状に巻き付ける点で、ノズルからの注入溶鋼流に対する清浄性は期待できるものの、不活性ガスの吹き込みが下方に向けて行われるため、この方法でも、湯面を一定に維持するためにタンディッシュ内に注入されてくる溶湯に巻き込まれて行く不活性ガスの気泡によりシール装置内の上部が負圧になり、隙間などからの大気の侵入があり溶湯の酸化が懸念される。
【0010】
本発明は、上記の問題点を解消するためになしたものであって、その目的は、シール装置内への大気の侵入を極力防止し、確実に所望の清浄度を有する溶融金属を製造し得る注入溶湯流のシール方法及び装置を提供するものである。
【0011】
【課題を解決するための手段】
上記の目的を達成するため、本発明に係る注入溶湯流のシール方法は、溶融金属を収容する容器の底部に配置された注入ノズルからその注入ノズルの下方に配置された溶融金属を受湯する容器に溶融金属を注入する際の注入溶湯流のシール方法であって、前記注入ノズルの外周に蓋部を取り付け、その蓋部に注入溶湯流の外周を囲撓するように筒状部材を設けるとともに、その筒状部材の上部側壁にリング状に不活性ガス噴出口を設け、その不活性ガス噴出口からの不活性ガスを筒状部材内の蓋部天井に向けて噴出させるものである。
【0012】
上記の構成では、注入溶湯流の外周を囲撓するように筒状部材を設けるとともに、その筒状部材の上部側壁にリング状に不活性ガス噴出口を設け、その不活性ガス噴出口からの不活性ガスを筒状部材内の蓋部天井に向けて噴出させているので、蓋部天井に衝突した不活性ガス流の一部は筒状部材内面に沿って流れ、これにより、筒状部材内への大気の侵入が防止でき、確実に所望の清浄度を有する溶融金属を製造することができる。
【0013】
また、本発明に係る注入溶湯流のシール装置は、溶融金属を収容する容器の底部に配置された注入ノズルからその注入ノズルの下方に配置された溶融金属を受湯する容器に溶融金属を注入する際の注入溶湯流のシール装置であって、前記注入ノズルに取り付けられた蓋部と、受湯容器の受湯開口に設けられたシールパイプと、シールパイプの上に設けられ、且つ不活性ガス噴出口を上方に向けて有するリング状の不活性ガス噴出部と、蓋部と不活性ガス噴出部の間に設けられた中間筒体とを備えてなるものである。この場合、リング状の不活性ガス噴出部は一体のリングで形成されてあってもよいが、製作の容易さを考慮した場合、複数個の直線又は円弧状のノズルをリング状に構成したものであってもよい。
【0014】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明に係る注入溶湯流のシール装置の説明図であって、aは全体断面図、bは不活性ガス噴出部の拡大断面図である。
【0015】
シール装置1は、注湯容器(取鍋)2の底部と受湯容器(タンディッシュ)3との間に、注入ノズル4からの注湯流5を囲むようにして設けられている。また、その装置1の構造は、注入ノズル4に取り付けられた蓋部6と、受湯容器3の受湯開口7に設けられたシールパイプ8と、そのシールパイプ8の上に密着して設けられ、且つ不活性ガス噴出口9を上方に向けて有するリング状の不活性ガス噴出部10と、蓋部6と不活性ガス噴出部10との間に設けられた中間筒体11と、を備えて構成されている。
【0016】
上記の如く構成されたシール装置1においては、不活性ガス噴出部10の不活性ガス噴出口9が上方に向けて形成されているので、この不活性ガス噴出口9より噴出された不活性ガス流(図1に矢印Aで示す)は、まず蓋部6天井に衝突し、その後、一部は蓋部6天井から中間筒体11内面に沿って流れ、他は蓋部6天井から中心部の注入ノズル4方向へと流れる。そして更に、前記他の流れは、注湯容器2内の溶湯を受湯容器3へと注入ノズル4を介して注入している際には、注入ノズル4及び注湯流5の外周に沿って流れることになる。
【0017】
上記注入溶湯流のシール装置1では、不活性ガス噴出部10からの不活性ガスを上方に向けて噴出させて蓋部6天井に衝突させ、その不活性ガス流Aの一部を蓋部6天井から中間筒体11内面に沿って流れるようにしているので、中間筒体11の内側近傍が負圧になりにくく、これにより、シール装置1内への大気の侵入が防止でき、確実に所望の清浄度を有する溶融金属を製造することができる。
【0018】
【実施例】
[実施例1]
上記の注入溶湯流のシール装置1を、取鍋とタンディッシュとの間に装備して低炭素鋼溶鋼の連続鋳造を行った。また比較のため、不活性ガス噴出部10に換えて不活性ガス吹き込み管を、噴出口をタンディッシュの溶鋼面に向けて装備し同様の低炭素鋼溶鋼の連続鋳造を行った。この鋳造において、不活性ガスとしてアルゴンガスを用い、シールパイプ8内の溶鋼面近傍での窒素ガス濃度を測定し、本発明法と比較法のシール性を調査した。その調査結果を図2に示す。図2より明らかなように、本発明に係る注入溶湯流のシール方法の方が、比較法に比べて、いずれの不活性ガス流量においてもシールパイプ8内の溶鋼面近傍での窒素ガス濃度を著しく低減することができ、大気侵入を防止するのに有用であることが分かる。
【0019】
また、上記の連続鋳造の際、注湯容器内の溶鋼中[N]濃度と鋳造末期における受湯容器内の溶鋼中[N]濃度のそれぞれを測定した。その測定結果を図3に示す。図3より明らかなように、本発明に係る注入溶湯流のシール方法の方が、比較法に比べて、いずれの注湯容器内の溶鋼中[N]濃度に対しても受湯時における溶鋼中[N]濃度の上昇がなく、大気侵入を防止するのに有用であること、及び溶鋼の清浄化方法として優れていることが分かる。
【0020】
【発明の効果】
以上説明したように、本発明に係る注入溶湯流のシール方法及び装置によれば、シール装置内への大気の侵入が防止でき、確実に所望の清浄度を有する溶融金属を製造することができる。
【図面の簡単な説明】
【図1】本発明に係る注入溶湯流のシール装置の説明図であって、aは全体断面図、bは不活性ガス噴出部の拡大断面図である。
【図2】実施例におけるシールパイプ内部の窒素ガス濃度と不活性ガス流量の関係を示すグラフ図である。
【図3】実施例における注湯容器内の溶鋼中[N]濃度と受湯容器内の溶鋼中[N]濃度との関係を示すグラフ図である。
【図4】従来の注入溶湯流のシール装置の断面図である。
【符号の説明】
1:シール装置 2:注湯容器 3:受湯容器
4:注入ノズル 5:注湯流 6:蓋部
7:受湯開口 8:シールパイプ 9:不活性ガス噴出口
10:不活性ガス噴出部 11:中間筒体 A:不活性ガス流
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for sealing an injected molten metal flow when injecting molten metal from an injection nozzle arranged at the bottom of a container containing molten metal into a container for receiving molten metal arranged below the injection nozzle, and It relates to the device.
[0002]
[Prior art]
Conventionally, when molten metal is injected from a container to a container (for example, a ladle to a ladle, a ladle to a tundish, etc.) via an injection nozzle, the molten metal comes into contact with the outside air, and the molten metal is oxidized at that time. Incorporation of components such as moisture and nitrogen in the atmosphere may cause fluctuations in the molten metal component, making it impossible to produce a molten metal having a predetermined metal component.
[0003]
As methods for improving the above problems, there are methods proposed in, for example, Japanese Patent Laid-Open Nos. 63-235053 and 62-81253.
[0004]
In Japanese Patent Laid-Open No. 63-235053, in order to suppress the oxidation of the molten metal injected from the ladle into the tundish, the molten metal injected into the tundish through the molten metal injection nozzle is injected into the tundish. In the method, the cylindrical member is immersed in a region including the molten metal injection portion of the molten metal surface in the tundish, and a gas that does not react with the molten metal is supplied to a region surrounded by the cylindrical member at the upper surface of the molten metal, and this gas There has been proposed a molten metal injection method in which a molten metal outflow portion of the molten metal injection nozzle is positioned in a supply region to inject molten metal in a ladle.
[0005]
Further, Japanese Patent Laid-Open No. 62-81253 discloses that the ladles are poured into the tundish in order to more effectively prevent the sorption of nitrogen from the ambient atmosphere of the molten steel poured into the tundish. A sealing method for preventing nitrogen absorption from the ambient atmosphere of molten steel, in which a molten steel flow injected from the nozzle tip at the bottom of the ladle is partitioned from the external atmosphere, and an inert gas is present in the molten steel flow near the surface of the molten steel in the tundish There has been proposed a method of sealing the molten molten steel flow.
[0006]
[Problems to be solved by the invention]
However, in the specific example proposed in Japanese Patent Laid-Open No. 63-235053, the upper end of the cylindrical member is opened, and a gas supply pipe is inserted into the cylindrical member from the upper end, and an argon gas which is an inert gas from the distal end. Is blown toward the molten metal surface. For this reason, there is a concern about air contamination from the upper end opening, and there is a concern that oxidation of the molten metal is not necessarily performed because the air is not sufficiently blocked. On the other hand, even if the upper end opening is closed, the upper part in the cylindrical member becomes negative pressure due to the gas entrained in the molten metal injected into the tundish in order to keep the molten metal level constant, and from the gap etc. There is concern about the oxidation of the molten metal. Thus, the proposed sealing method cannot reliably produce a molten metal having a desired cleanliness.
[0007]
In the method proposed in Japanese Patent Laid-Open No. 62-81253, as shown in FIG. 4, a molten steel flow 23 injected from the nozzle tip 22 of the ladle bottom 21 is divided into a lid (Jinkasa) 24, a seal hat (intermediate). (Cylinder) 25, an injection pipe (seal pipe) 26, and an inert gas guide pipe 27, which is partitioned from the external atmosphere by a sealing device 28, and in the vicinity of the surface of the molten steel in the tundish in the partition, An active gas is sprayed. However, in this method, the upper part in the sealing device 28 becomes a negative pressure due to the bubbles 29 of the inert gas entrained in the molten metal injected into the tundish in order to keep the molten metal level constant. As shown in FIG. 4 together, there is an intrusion of the atmosphere from the joint gap between the portion (Jinkasa) 24, the seal hat (intermediate cylinder) 25, and the injection pipe (seal pipe) 26, as indicated by the broken arrow B. There is concern about the oxidation of Thus, even with this proposed sealing method, it is impossible to reliably produce a molten metal having a desired cleanliness. Reference numeral 30 denotes an inert gas outlet.
[0008]
On the other hand, in Japanese Patent Laid-Open No. 6-344098, as a method for solving the problem of the above-mentioned Japanese Patent Laid-Open No. 62-81253, an inert gas is injected from an inert gas blowing port installed on the outer periphery of the lower nozzle. There has been proposed a method of sealing an injected molten steel flow in which the blown inert gas is blown as a swirling flow and spirally wound around the injected molten steel flow.
[0009]
However, in the method proposed in Japanese Patent Laid-Open No. 6-344098, the inert gas that has been blown is spirally wound around the molten molten steel flow, and although the cleanliness of the molten molten steel flow from the nozzle can be expected, the inert gas In this method, the upper part of the sealing device is blocked by bubbles of inert gas entrained in the molten metal injected into the tundish in order to keep the molten metal surface constant. There is concern about oxidation of the molten metal due to the negative pressure and the intrusion of air through gaps.
[0010]
The present invention has been made to solve the above-mentioned problems, and its purpose is to prevent the intrusion of air into the sealing device as much as possible, and to manufacture a molten metal having a desired cleanliness assuredly. The present invention provides a method and an apparatus for sealing an obtained molten metal flow.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a method for sealing a molten metal flow according to the present invention receives molten metal disposed below an injection nozzle from an injection nozzle disposed at the bottom of a container containing molten metal. A method for sealing a molten metal flow when pouring molten metal into a container, wherein a lid is attached to the outer periphery of the injection nozzle, and a cylindrical member is provided on the lid so as to surround the outer periphery of the molten melt flow At the same time, an inert gas outlet is provided in a ring shape on the upper side wall of the cylindrical member, and the inert gas from the inert gas outlet is ejected toward the lid ceiling in the cylindrical member.
[0012]
In said structure, while providing a cylindrical member so that the outer periphery of an injection | melting molten metal flow may be bent, an inert gas jet nozzle is provided in the ring shape at the upper side wall of the cylindrical member, and it is from the inert gas jet nozzle. Since the inert gas is jetted toward the lid ceiling in the cylindrical member, a part of the inert gas flow that collided with the lid ceiling flows along the inner surface of the cylindrical member, thereby the cylindrical member. Intrusion of air into the interior can be prevented, and a molten metal having a desired cleanliness can be produced reliably.
[0013]
The injection molten metal flow sealing device according to the present invention injects molten metal from an injection nozzle arranged at the bottom of a container containing molten metal into a container for receiving molten metal arranged below the injection nozzle. An injection molten metal flow sealing device for performing an injection, comprising: a lid portion attached to the injection nozzle; a seal pipe provided in a hot water receiving opening of a hot water receiving container; provided on the seal pipe and inactive A ring-shaped inert gas ejection portion having a gas ejection port facing upward, and an intermediate cylinder provided between the lid portion and the inert gas ejection portion. In this case, the ring-shaped inert gas ejection portion may be formed as an integral ring. However, in consideration of ease of production, a plurality of linear or arc-shaped nozzles are configured in a ring shape. It may be.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of an injection melt flow sealing device according to the present invention, in which a is an overall sectional view and b is an enlarged sectional view of an inert gas ejection portion.
[0015]
The sealing device 1 is provided between the bottom of the pouring vessel (ladder) 2 and the hot water receiving vessel (tundish) 3 so as to surround the pouring flow 5 from the injection nozzle 4. The structure of the apparatus 1 is provided in close contact with the lid 6 attached to the injection nozzle 4, the seal pipe 8 provided in the hot water receiving opening 7 of the hot water receiving container 3, and the seal pipe 8. A ring-shaped inert gas ejection portion 10 having an inert gas ejection port 9 facing upward, and an intermediate cylinder 11 provided between the lid portion 6 and the inert gas ejection portion 10. It is prepared for.
[0016]
In the sealing device 1 configured as described above, the inert gas ejection port 9 of the inert gas ejection part 10 is formed upward, so that the inert gas ejected from the inert gas ejection port 9 is formed. flow (indicated by arrow a in FIG. 1), the lid portion 6 collides with the ceiling first, then, part flows along the intermediate tubular member 11 the inner surface of the lid portion 6 ceiling, others from central lid portion 6 ceiling Flow toward the injection nozzle 4. Further, when the molten metal in the pouring vessel 2 is poured into the hot water receiving vessel 3 through the pouring nozzle 4, the other flow is along the outer periphery of the pouring nozzle 4 and the pouring flow 5. Will flow.
[0017]
In the seal device 1 of the injection melt flow, the inert gas from the inert gas nozzle 10 is ejected toward the upper collide with the lid portion 6 ceiling, lid part of the inert gas stream A 6 Since it flows along the inner surface of the intermediate cylinder 11 from the ceiling, the vicinity of the inner side of the intermediate cylinder 11 is unlikely to become negative pressure, thereby preventing air from entering the seal device 1 and ensuring that it is desired. It is possible to produce a molten metal having a cleanliness of
[0018]
【Example】
[Example 1]
The above injection molten metal flow sealing device 1 was installed between a ladle and a tundish to perform continuous casting of molten low carbon steel. For comparison, an inert gas blowing pipe was provided instead of the inert gas jetting part 10 and the jet outlet was directed toward the molten steel surface of the tundish, and the same low carbon steel molten steel was continuously cast. In this casting, argon gas was used as an inert gas, the nitrogen gas concentration in the vicinity of the molten steel surface in the seal pipe 8 was measured, and the sealing properties of the method of the present invention and the comparative method were investigated. The survey results are shown in FIG. As is clear from FIG. 2, the method for sealing the molten metal flow according to the present invention has a nitrogen gas concentration in the vicinity of the molten steel surface in the seal pipe 8 at any inert gas flow rate as compared with the comparative method. It can be significantly reduced and is found to be useful for preventing air intrusion.
[0019]
In addition, during the above-described continuous casting, each of the [N] concentration in the molten steel in the pouring vessel and the [N] concentration in the molten steel in the receiving vessel at the end of casting were measured. The measurement results are shown in FIG. As is clear from FIG. 3, the molten metal flow sealing method according to the present invention is more molten steel at the time of receiving hot water than [N] concentration in the molten steel in any pouring vessel compared to the comparative method. It can be seen that there is no increase in the medium [N] concentration, which is useful for preventing air intrusion and is excellent as a method for cleaning molten steel.
[0020]
【The invention's effect】
As described above, according to the injection molten metal flow sealing method and apparatus according to the present invention, the intrusion of air into the sealing apparatus can be prevented, and a molten metal having a desired cleanliness can be manufactured reliably. .
[Brief description of the drawings]
FIG. 1 is an explanatory view of an injection molten metal flow sealing device according to the present invention, in which a is an overall cross-sectional view and b is an enlarged cross-sectional view of an inert gas ejection portion.
FIG. 2 is a graph showing the relationship between the nitrogen gas concentration inside the seal pipe and the inert gas flow rate in the example.
FIG. 3 is a graph showing the relationship between the [N] concentration in the molten steel in the pouring vessel and the [N] concentration in the molten steel in the receiving vessel in the example.
FIG. 4 is a cross-sectional view of a conventional sealing device for molten metal flow.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1: Sealing device 2: Pouring container 3: Hot water receiving container 4: Injection nozzle 5: Pouring flow 6: Lid part 7: Hot water opening 8: Seal pipe 9: Inert gas outlet 10: Inert gas ejection part 11: Intermediate cylinder A: Inert gas flow

Claims (3)

溶融金属を収容する容器の底部に配置された注入ノズルからその注入ノズルの下方に配置された溶融金属を受湯する容器に溶融金属を注入する際の注入溶湯流のシール方法であって、前記注入ノズルの外周に蓋部を取り付け、その蓋部に注入溶湯流の外周を囲撓するように筒状部材を設けるとともに、その筒状部材の上部側壁にリング状に不活性ガス噴出口を設け、その不活性ガス噴出口からの不活性ガスを筒状部材内の蓋部天井に向けて噴出させることを特徴とする注入溶湯流のシール方法。A method for sealing an injected molten metal flow when injecting molten metal from an injection nozzle disposed at the bottom of a container containing molten metal into a container for receiving molten metal disposed below the injection nozzle, A lid is attached to the outer periphery of the injection nozzle, and a cylindrical member is provided on the lid so as to surround the outer periphery of the molten metal flow, and an inert gas outlet is provided in a ring shape on the upper side wall of the cylindrical member. A method for sealing an injected molten metal flow, characterized in that an inert gas from the inert gas outlet is ejected toward the ceiling of the lid in the cylindrical member. 溶融金属を収容する容器の底部に配置された注入ノズルからその注入ノズルの下方に配置された溶融金属を受湯する容器に溶融金属を注入する際の注入溶湯流のシール装置であって、前記注入ノズルに取り付けられた蓋部と、受湯容器の受湯開口に設けられたシールパイプと、シールパイプの上に設けられ、且つ不活性ガス噴出口を上方に向けて有するリング状の不活性ガス噴出部と、蓋部と不活性ガス噴出部の間に設けられた中間筒体とを備えてなることを特徴とする注入溶湯流のシール装置。An injection molten metal flow sealing device for injecting molten metal from an injection nozzle disposed at the bottom of a container containing molten metal into a container for receiving molten metal disposed below the injection nozzle, Ring-shaped inert gas provided with a lid attached to the injection nozzle, a seal pipe provided in the hot water receiving opening of the hot water receiving container, and provided on the seal pipe with an inert gas outlet facing upward An injection molten metal flow sealing device comprising: a gas ejection portion; and an intermediate cylinder provided between the lid portion and the inert gas ejection portion. リング状の不活性ガス噴出部が、複数個の直線又は円弧状のノズルから構成されてなる請求項2に記載の注入溶湯流のシール装置。  The apparatus for sealing an injected molten metal flow according to claim 2, wherein the ring-shaped inert gas ejection portion is constituted by a plurality of linear or arc-shaped nozzles.
JP2000075731A 2000-03-17 2000-03-17 Method and apparatus for sealing molten metal flow Expired - Fee Related JP3723403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000075731A JP3723403B2 (en) 2000-03-17 2000-03-17 Method and apparatus for sealing molten metal flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000075731A JP3723403B2 (en) 2000-03-17 2000-03-17 Method and apparatus for sealing molten metal flow

Publications (2)

Publication Number Publication Date
JP2001259804A JP2001259804A (en) 2001-09-25
JP3723403B2 true JP3723403B2 (en) 2005-12-07

Family

ID=18593575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000075731A Expired - Fee Related JP3723403B2 (en) 2000-03-17 2000-03-17 Method and apparatus for sealing molten metal flow

Country Status (1)

Country Link
JP (1) JP3723403B2 (en)

Also Published As

Publication number Publication date
JP2001259804A (en) 2001-09-25

Similar Documents

Publication Publication Date Title
CN111136256A (en) Molten steel continuous casting equipment and continuous casting method
JPH11291026A (en) Immersion nozzle for introducing molten steel into mold
JP3723403B2 (en) Method and apparatus for sealing molten metal flow
TWI617377B (en) Continuous casting method
JP5965186B2 (en) Continuous casting method
JP6323973B2 (en) Continuous casting method
KR102084729B1 (en) Continuous casting method
JPS59225862A (en) Immersion nozzle for continuous casting device
JPH05293614A (en) Pouring tube in tundish
JP3579568B2 (en) Stopper rod for continuous casting
KR20130034323A (en) Molten metal pouring apparatus made non-oxidation atmosphere in tundish
KR100436400B1 (en) Ladle for clean cast
JPH10296407A (en) Nozzle for continuous casting
JPH11104794A (en) Continuous casting of beam blank
JPS6027580Y2 (en) Seal tube for continuous casting tundish
JPH09300050A (en) Method for cleaning molten steel in tundish
JP2000084647A (en) Method for blowing gas into upper nozzle in tundish
JPS62279059A (en) Submerged nozzle
KR101669546B1 (en) Apparatus for backdraft prevention and method for operating the same
JPH04127943A (en) Method for preventing clogging of submerged nozzle for continuous casting
JP2001293542A (en) Method for shutting off air for continuous casting and device therefor
JP2856959B2 (en) Continuous casting method of steel slab using traveling magnetic field and static magnetic field
JPH0230122Y2 (en)
JPH0338017B2 (en)
JPH09253807A (en) Method for continuously casting aluminum killed steel cast billet having small cross section

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees