JP3723116B2 - Solid polymer membrane water electrolyzer - Google Patents

Solid polymer membrane water electrolyzer Download PDF

Info

Publication number
JP3723116B2
JP3723116B2 JP2001337566A JP2001337566A JP3723116B2 JP 3723116 B2 JP3723116 B2 JP 3723116B2 JP 2001337566 A JP2001337566 A JP 2001337566A JP 2001337566 A JP2001337566 A JP 2001337566A JP 3723116 B2 JP3723116 B2 JP 3723116B2
Authority
JP
Japan
Prior art keywords
flange
tightening
tightening screw
thick
solid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001337566A
Other languages
Japanese (ja)
Other versions
JP2003147562A (en
Inventor
博子 半田
克明 井上
満文 後藤
雅幸 深川
克雄 橋▲崎▼
克俊 清水
司 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001337566A priority Critical patent/JP3723116B2/en
Publication of JP2003147562A publication Critical patent/JP2003147562A/en
Application granted granted Critical
Publication of JP3723116B2 publication Critical patent/JP3723116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は固体高分子膜水電解(Solid Polymer Water Electrolysis:SPWE)装置における締付力管理構造に係り、特に陽極と陰極の一対の給電体の間に固体高分子膜を挟持させた電解セルをセパレータを介して積層させて多層スタック構造にした積層体を、上下若しくは左右両側よりフランジにて挟持せしめ、該フランジ間を複数の締付ネジ軸にて締付けてなる固体高分子膜水電解装置に関する。
【0002】
【従来の技術】
従来より、例えば固体電解質燃料電池の燃料としての水素の生成にあたって、固体高分子膜水電解装置が用いられることは良く知られている。この固体高分子膜水電解装置に用いられる固体高分子膜水電解スタックの基本構造を図5に示す。
【0003】
図5に示すように、水素イオン透過性の固体高分子膜からなる固体高分子膜1がチタン(Ti)繊維焼結体等からなる陽極側給電体2とステンレス鋼(SUS)繊維焼結体等からなる陰極側給電体3とに挾持されて電解セルを構成し、これら給電体2、3の外側に電解する純水が通るための多数の溝4を有した金属製のセパレータ5が配されて固体高分子膜水電解装置のスタック6が形成される。
【0004】
上記セパレータ5は、電解セルが上下両側に位置するときは溝4が上下両面側に形成され、上下両端に位置するセパレータ5のみが、電解セルに対面する側に溝4を設けている。そして電解のためにセパレータ5に設けた不図示の供給孔より水を供給し、対向する位置に設けられた不図示の排出孔から発生した水素又は酸素を伴って排出されている。
【0005】
そして、前記溝4に水(純水)を流し、両給電体2、3間に直流電流を印加すると、陽極側に酸素ガス、陰極側に水素ガスがそれぞれ発生するのである。これらガスを含んだ水は図示しない循環水タンク及びドレンタンクを流れる途中で気水分離され、酸素ガス及び水素ガスは系外にそれぞれ取り出されると共に水は再び電解に供される。
尚、給電体2、3は気液を通すために、ポーラスで且つ給電性能が高い多孔質メタル等の材料を用い、又セパレータ5は気液の流路である溝4を有する電気良導電体、例えばチタン製材料で形成されている。
【0006】
ところで、前記のように構成された装置に用いるスタックは、約0.1〜0.2mmの薄膜の電解質膜1にメッキ法にて電極8、9を坦持(接合)させて、陽極と陰極の一対の給電体2、3に挟持させたもの(電解セル)をセパレータ5を介して水中で順次多層状に積層した多層スタックからなる固体高分子膜水電解装置が形成される訳であるが、電解セルをセパレータ5を介して積層させて多層スタック構造にした積層体を、所定の圧力で押圧して接触性を高め、接触抵抗を低く抑える必要があることから上下両側よりフランジにて挟持せしめ、該フランジ間を複数の締付ネジ軸にて締付けて固体高分子膜水電解装置を構成する。
【0007】
図1は本発明に適用される固体高分子膜水電解装置の組立図を示し、(A)は平面図、(B)は正面図である。図1(B)において、21、22は広形の方形厚フランジと、方形外フランジで、その間に前記スタック積層体より相似形に僅かに大きい方形内フランジ23が配設されており、スタック積層体60を挟持する内フランジ23と厚フランジ21間に、ほぼ締付圧が均等になるように、ネジ軸間隔を調整して多数の締め付けネジ30とナット31にて締付ける。
【0008】
更にスタック積層体60の中央域、電極形成位置に均一の圧力がかかるように、内部にスプリング32を収納させ、伸縮自在に嵌合させた複数の円筒押圧具33を前記外フランジ22と内フランジ23との間に介装させて、外フランジ22側より螺入させた押圧ネジ34により所定の均圧付勢力をスタック積層体60の中央域に付勢する。又前記押圧ネジ34を支持するために外フランジ22を設け、内フランジ23外方の外フランジ22と厚フランジ21間の外周囲に間隔保持ボルト35を螺設させている。尚、図中25は電解水供給筒、26は電解水排出筒である。
【0009】
【発明が解決しようとする課題】
このように前記装置においては、スタック積層体60全域に付勢される圧力が均圧になるような工夫をしているが、前記したように前記固体高分子膜1の両側では電極8、9より酸素と水素が発生し、これにより酸素または水素を含有した水である気液水により前記積層体が膨張する。また、電解効率を上げるために電解水を加圧する場合がある。この際内フランジ23と厚フランジ21間に螺合させた夫々締付ネジ軸30による締付力が不均一の場合、その締付力の弱い部分より水漏れ(リーク)等の問題が生じてしまう。
【0010】
このため前記技術においては締付ネジ軸のネジ軸配設間隔の調整とともに、ネジ軸締付位置中央近傍の締付トルクを一定にして、その時点の積層体変位に合わせて、他のネジ軸を締め付けている。
しかしながら前記の方法では、各ネジ軸の締付力は一定ではなく、又締付力も不明であるためにスタック積層体全域に付勢される圧力が均圧になるような工夫が完全ではなく、このため電解水がリーク(漏洩)してしまう恐れを解消し得なかった。
【0011】
本発明はかかる課題に鑑み、スタック積層体をフランジを介して締め付ける各ボルトの締付力が一定になり結果としてスタック積層体全域に付勢される圧力が均圧になるような工夫をもたせた固体高分子膜水電解装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明はかかる課題を解決するために、陽極と陰極の一対の給電体の間に固体高分子膜を挟持させた電解セルをセパレータを介して積層させて多層スタック構造にした積層体を、積層体上側に位置する内フランジと厚フランジにて挟持せしめるとともに、前記内フランジとその上側に位置する上フランジ間にスプリングを利用した均圧付勢体を介装せしめるとともに前記上フランジと厚フランジ間を前記内フランジの外側に位置する外側締め付けねじにて締め付けた状態で、前記内フランジと厚フランジ間を前記外側締め付けねじの内側に位置する複数の内側締付ネジ軸にて締付けて所定の均圧付勢力をスタック積層体に付勢してなる固体高分子膜水電解装置において、
前記均圧付勢力をスタック積層体に付勢する内フランジと厚フランジ間に挟まれる内側締付ネジ軸夫々に締付力管理手段を設けことを要旨とし、第1の発明では前記締付力管理手段が、前記内フランジと厚フランジに挟まれる内側締付ネジ軸部を分断してその分断部分に支持板を固着してその支持板間にロードセルを介装し、該ロードセルよりの荷重信号により、前記内側締付ネジ軸の締付荷重が一定になるように夫々の内側締付ネジ軸のナットを螺合調整して前記スタック積層体に付勢される圧力が均圧になるように制御される構造を具えていることを特徴としている。
第2発明は、前記締付力管理手段が、前記内フランジと厚フランジに挟まれる内側締付ネジ軸部に歪ゲージを貼着し、該歪ゲージよりの全ての内側締付ネジ軸の歪検知信号に基づいて、該全ての内側締付ネジ軸の締付歪が一定になるように夫々の内側締付ネジ軸のナットを螺合調整してスタック積層体に付勢される圧力が均圧になるように制御される構造を具えていることを特徴とする
【0013】
かかる発明によれば、スタック積層体をフランジを介して締め付ける各ボルトの締付力が一定になり且つスタック積層体全域に付勢される圧力が均圧になるような工夫をもたせたために、ボルト間の締付け力のバラツキに起因する電解水がリーク(漏洩)してしまう恐れを解消し得る。
【0014】
第3の発明では、前記締付力管理手段が、前記夫々の内フランジと厚フランジ間に、半割状の半円筒スリーブを環設させフランジ間距離を調整可能な構造を具えていることを特徴とする。
第4の発明は、前記締付力管理手段が、前記フランジ間距離を規定するストッパを前記内フランジと厚フランジの間に位置する内側締付ネジ軸部に設け、前記ストッパにフランジ面があたるまでナットで前記内側締付ネジ軸を締め付けて全ての内側締め付けねじ軸のフランジ間距離が所定長さに規定出来るようにした構造を具えていることを特徴とする。
【0015】
かかる発明によれば、スタック積層体をフランジを介して締め付ける各ボルトのフランジ間隔が一定になるために、積層体が膨出したり内圧が負荷されても各ボルトのセパレータ間の間隔が一定になり且つスタック積層体全域に付勢される圧力が均圧に維持でき、セパレータ間隔のバラツキに起因するリークの発生を防止出来る。
【0018】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
【0019】
図2乃至図4は本発明の夫々の実施形態にかかる固体高分子膜水電解装置におけるスタック構造の要部構成図で、図1に示すように、スタック積層体60を挟持する内フランジ23と厚フランジ21間に、ほぼ締付圧が前記スタック積層体に均圧になるように、ボルト間隔を調整して多数の締付ネジ軸30にて締付ける点はいずれも同様である。
【0020】
図2は、上下両側のフランジ21、23に挟まれる夫々の締付ネジ軸30の途中位置に締付力管理手段としてロードセル40(荷重検知センサ)若しくは歪ゲージ41を設けている。
即ち、図2(A)においてはフランジに挟まれる締付ネジ軸30の途中位置を分断してその分断部分に円盤状の支持板301を固着してその支持板301間にロードセル40を介装している。
そしてロードセル40よりの荷重信号は、全ての締付ネジ軸の締付荷重を検知する荷重計400に集められ、ここで全ての締付ネジ軸30の締付荷重が一定になるように締付ネジ軸30のナット31を螺合調整してスタック積層体60全域に付勢される圧力が均圧になるように制御される。これにより締め付けネジによる圧力のバラツキに起因する電解水がリーク(漏洩)してしまう恐れを解消し得る。
【0021】
図2(B)は歪ゲージ41を用いたもので、締付ネジ軸30の途中位置歪ゲージ41を貼着している。
そして歪ゲージ41よりの歪検知信号は、全ての締付ネジ軸30の歪を検知する歪計410に集められ、ここで全ての締付ネジ軸30の締付歪が一定になるように締付ネジ軸30のナット31を螺合調整してスタック積層体60全域に付勢される圧力が均圧になるように制御される。これによっても締め付けネジによる圧力のバラツキに起因する電解水がリーク(漏洩)してしまう恐れを解消し得る。
【0022】
図3(A)、(B)及び図4(A)は、前記締付力管理手段が、上下両側のフランジ21、23に挟まれた夫々の締付ネジ軸30距離を規制する円筒スリーブ42や半円筒スリーブ43若しくはボルト軸間距離を規制するストッパ44等の間隔規制部材である。
即ち、図3(A)は内フランジ23と厚フランジ21の間に位置する締付ネジ軸30の軸部に所定長さに設定した円筒スリーブ42を環設させて全ての締付ネジ軸30のフランジ間距離が円筒スリーブ42長さに規定させて、所定長さになるように構成される。
【0023】
かかる実施例によれば、スタック積層体60をフランジ21、23を介して締め付ける各ネジ軸30のフランジ間隔が円筒スリーブ42長さにより一定になるために、各締め付けネジ30によるフランジ間の間隔が一定になり且つスタック積層体60全域に付勢される圧力が均圧に維持できる。
しかしながら係る構成によれば、円筒スリーブ42をフランジ21、23の間に環設した後は、フランジ21、23を取り外さなければ、フランジ間距離を調整できないという不便さが有り、汎用的でない。
【0024】
そこで図3(B)に示すように、内フランジ23と厚フランジ21の間に介装させるスリーブを円筒スリーブ42ではなく、半割状の半円筒スリーブ43を環設させれば、フランジを分解しなくてもスリーブ43が取り外し自在になり、フランジ間距離を任意に調整でき、汎用的である。
【0025】
尚、図4(A)に示すように円筒スリーブ42を用いずに、締付ネジ軸30のフランジ間距離を規定する円盤状のストッパ44を軸部に上下に設けて、フランジ間距離を規定しても良い。
かかる実施例によれば、ストッパ44にフランジ21、23下面があたるまでナット31でネジ軸30を締め付ければ全ての締め付けネジ軸30のフランジ間距離21−23が所定長さに規定出来る。
【0026】
かかる実施例によれば、スタック積層体60をフランジ21、23を介して締め付ける際にストッパ44や円筒スリーブ42、43に当接するまで締め付けるだけで、各ネジ軸30のフランジ間隔が一定になるために、締め付けネジによるフランジ間隔のバラツキに起因するリークの発生を防止出来る。
【0027】
図4(B)は参考技術で前記締付力管理手段が、上下両側の内フランジ23上面及び厚フランジ21下面より突設する夫々の締付ネジ軸30の軸端ネジ部を螺合するナット31との間にバネ部材45を介在させて構成している。
バネ部材45にはコイルバネや板バネを用いることが出来る。
【0029】
【発明の効果】
以上記載のごとく第1発明によれば前記締付力管理手段を、上下若しくは左右両側のフランジに挟まれる夫々の締付ネジ軸の途中位置に設けた荷重若しくは歪検知手段で構成することにより、スタック積層体をフランジを介して締め付ける各ボルトの締付力が一定になり且つスタック積層体全域に付勢される圧力が均圧になるような工夫もたせたために、ボルト間の圧力のバラツキに起因する電解水がリーク(漏洩)してしまう恐れを解消し得る。
【0030】
又他の発明は、前記締付力管理手段が、上下若しくは左右両側のフランジに挟まれた夫々の締付ネジ軸距離を規制する円筒スリーブや半円筒スリーブ若しくはフランジ間距離を規制するストッパ等の間隔規制部材で構成することにより、スタック積層体をフランジを介して締め付ける各ボルトのフランジ間隔が一定になるために、積層体が膨出しても各ボルト間の間隔が一定になり且つスタック積層体全域に付勢される圧力が均圧に維持でき、ボルト間隔のバラツキに起因するリークの発生を防止出来る。
【0031】
更に前記締付力管理手段が、上下若しくは左右両側のフランジ上面と、該上面より突設する夫々の締付ネジ軸のボルト頭若しくは該ボルト軸を螺合するナットとの間に介在するバネ部材であり、該バネ部材の弾性力、好ましくはボルト締付によるバネ圧縮距離を利用した管理手段で構成することにより、スタック積層体をフランジを介して締め付ける各ボルトの締付力が一定になるために、スタック積層体全域に付勢される圧力が均圧に維持でき、ボルト締付力のバラツキに起因するリークの発生を防止出来る。
【図面の簡単な説明】
【図1】 本発明に適用される固体高分子膜水電解装置の全体構成図で(A)は平面図、(B)は正面図である。
【図2】 本発明の第1実施形態にかかる固体高分子膜水電解装置におけるスタック構造の要部構成図で、締付ネジ軸の途中位置に締付力管理手段としてロードセル(A)若しくは歪ゲージ(B)を設けた構成である。
【図3】 本発明の第2実施形態にかかる固体高分子膜水電解装置におけるスタック構造の要部構成図で締付力管理手段として円筒スリーブ(A)若しくは半円筒スリーブ(B)を設けた構成である。
【図4】 図3に使用される固体高分子膜の平面図である。
【図5】 従来技術にかかる固体高分子膜水電解装置におけるスタック構造の概略構成図である。
【符号の説明】
1 固体高分子膜
2、3 給電体
5 セパレータ
6 スタック
8、9 電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tightening force management structure in a solid polymer water electrolysis (SPWE) apparatus, and more particularly, to an electrolytic cell in which a solid polymer film is sandwiched between a pair of feeders of an anode and a cathode. The present invention relates to a solid polymer membrane water electrolysis apparatus in which a laminate having a multilayer stack structure laminated via a separator is sandwiched by flanges from above and below or from both left and right sides, and the flanges are fastened by a plurality of fastening screw shafts. .
[0002]
[Prior art]
2. Description of the Related Art Conventionally, it is well known that a solid polymer membrane water electrolysis apparatus is used for generating hydrogen as a fuel for a solid electrolyte fuel cell, for example. FIG. 5 shows a basic structure of a solid polymer membrane water electrolysis stack used in this solid polymer membrane water electrolysis apparatus.
[0003]
As shown in FIG. 5, the solid polymer film 1 made of a hydrogen ion permeable solid polymer film is composed of an anode-side power feeder 2 made of a titanium (Ti) fiber sintered body or the like, and a stainless steel (SUS) fiber sintered body. A metal separator 5 having a large number of grooves 4 through which pure water to be electrolyzed passes through the outside of the power supply bodies 2 and 3 is disposed on the cathode side power supply body 3 composed of the like. Thus, the stack 6 of the solid polymer membrane water electrolysis apparatus is formed.
[0004]
In the separator 5, when the electrolysis cell is located on both upper and lower sides, the grooves 4 are formed on both upper and lower surfaces, and only the separator 5 located on both upper and lower ends has the grooves 4 on the side facing the electrolysis cell. Then, water is supplied from a supply hole (not shown) provided in the separator 5 for electrolysis, and discharged along with hydrogen or oxygen generated from a discharge hole (not shown) provided at an opposing position.
[0005]
When water (pure water) is allowed to flow through the groove 4 and a direct current is applied between the power feeding bodies 2 and 3, oxygen gas is generated on the anode side and hydrogen gas is generated on the cathode side. Water containing these gases is separated into air and water while flowing through a circulating water tank and a drain tank (not shown), and oxygen gas and hydrogen gas are respectively taken out of the system and water is again subjected to electrolysis.
The power feeding bodies 2 and 3 are made of a porous material such as porous metal that has high power feeding performance in order to allow gas and liquid to pass therethrough, and the separator 5 has an electric good conductor having a groove 4 that is a gas-liquid flow path. For example, it is made of a titanium material.
[0006]
By the way, the stack used in the apparatus configured as described above has electrodes 8 and 9 supported (joined) by a plating method on a thin electrolyte membrane 1 having a thickness of about 0.1 to 0.2 mm, and an anode and a cathode. A solid polymer membrane water electrolysis apparatus comprising a multi-layer stack in which a pair of power feeding bodies 2 and 3 (electrolytic cell) sandwiched sequentially in water via a separator 5 is formed. The laminated body in which the electrolytic cells are laminated via the separator 5 to form a multilayer stack structure is pressed by a predetermined pressure to increase the contact property and keep the contact resistance low. The solid polymer membrane water electrolysis apparatus is constructed by tightening the flanges with a plurality of tightening screw shafts.
[0007]
FIG. 1 shows an assembly drawing of a solid polymer membrane water electrolysis apparatus applied to the present invention, wherein (A) is a plan view and (B) is a front view. In FIG. 1 (B), reference numerals 21 and 22 denote a wide rectangular thickness flange and a rectangular outer flange, and a rectangular inner flange 23 slightly larger than the stack laminate is disposed between them. A plurality of tightening screws 30 and nuts 31 are tightened by adjusting the screw shaft interval so that the tightening pressure is substantially uniform between the inner flange 23 and the thick flange 21 sandwiching the body 60.
[0008]
Further, a plurality of cylindrical pressing members 33, in which springs 32 are housed and fitted so as to expand and contract, are arranged so that a uniform pressure is applied to the central region of the stack stack 60 and the electrode formation position. A predetermined pressure equalizing urging force is urged to the central region of the stack stack 60 by a pressing screw 34 that is interposed between the outer flank 22 and the outer flange 22. Further, an outer flange 22 is provided to support the pressing screw 34, and a spacing holding bolt 35 is screwed around the outer periphery between the outer flange 22 and the thick flange 21 outside the inner flange 23. In the figure, 25 is an electrolyzed water supply tube, and 26 is an electrolyzed water discharge tube.
[0009]
[Problems to be solved by the invention]
As described above, the device is devised so that the pressure applied to the entire stack stack 60 is equalized. However, as described above, the electrodes 8 and 9 are provided on both sides of the solid polymer film 1. Oxygen and hydrogen are further generated, and thereby the laminate is expanded by gas-liquid water which is water containing oxygen or hydrogen. Moreover, in order to raise electrolysis efficiency, electrolyzed water may be pressurized. At this time, if the tightening force by the respective tightening screw shafts 30 screwed between the inner flange 23 and the thick flange 21 is not uniform, a problem such as water leakage (leakage) occurs from a portion where the tightening force is weak. End up.
[0010]
For this reason, in the above technique, the screw shaft arrangement interval of the tightening screw shaft is adjusted, the tightening torque near the center of the screw shaft tightening position is made constant, and the other screw shafts are adjusted in accordance with the stack displacement at that time. Is tightened.
However, in the above method, the tightening force of each screw shaft is not constant, and since the tightening force is also unknown, the device for equalizing the pressure biased over the entire stack stack is not complete, For this reason, the possibility that electrolyzed water may leak (leak) could not be solved.
[0011]
In view of such a problem, the present invention has been devised so that the tightening force of each bolt for fastening the stack laminated body via the flange becomes constant, and as a result, the pressure applied to the entire stack laminated body is equalized. An object of the present invention is to provide a solid polymer membrane water electrolysis apparatus.
[0012]
[Means for Solving the Problems]
In order to solve this problem, the present invention provides a multilayer structure in which an electrolytic cell in which a solid polymer film is sandwiched between a pair of power supply bodies of an anode and a cathode is stacked via a separator to form a multilayer stack structure. It can be clamped between the inner flange and the thick flange located on the upper side of the body, and a pressure equalizing urging body using a spring is interposed between the inner flange and the upper flange located on the upper side, and between the upper flange and the thick flange. Are tightened by a plurality of inner tightening screw shafts positioned inside the outer tightening screw, and tightened between the inner flange and the thick flange with a predetermined level. In the solid polymer membrane water electrolysis apparatus formed by urging the pressure urging force to the stack laminate ,
The gist of the invention is to provide a tightening force management means for each of the inner tightening screw shafts sandwiched between the inner flange and the thick flange for biasing the pressure equalizing biasing force to the stack laminate. The management means divides the inner tightening screw shaft portion sandwiched between the inner flange and the thick flange, attaches a support plate to the divided portion, and installs a load cell between the support plates, and a load signal from the load cell. Thus, the nuts of the respective inner tightening screw shafts are screwed and adjusted so that the tightening load of the inner tightening screw shafts is constant, so that the pressure urged to the stack laminate becomes equalized. It is characterized by having a controlled structure .
According to a second aspect of the present invention, the tightening force management means attaches a strain gauge to an inner tightening screw shaft portion sandwiched between the inner flange and the thick flange , and strains of all inner tightening screw shafts from the strain gauge. Based on the detection signal, the nuts of the respective inner tightening screw shafts are screwed and adjusted so that the tightening strain of all the inner tightening screw shafts is constant, and the pressure applied to the stack laminate is equalized. It is characterized by having a structure that is controlled to become pressure .
[0013]
According to this invention, since the tightening force of each bolt for tightening the stack laminated body via the flange is constant and the pressure applied to the entire stack laminated body is equalized, the bolt is provided. It is possible to eliminate the risk that the electrolyzed water leaks due to variations in the tightening force.
[0014]
According to a third aspect of the present invention, the tightening force management means has a structure capable of adjusting the distance between the flanges by providing a half-shaped semi-cylindrical sleeve between the inner flange and the thick flange. It is characterized by.
According to a fourth aspect of the present invention, the tightening force management means provides a stopper that defines the distance between the flanges on an inner tightening screw shaft portion positioned between the inner flange and the thick flange, and the stopper has a flange surface. The inner tightening screw shaft is tightened with a nut until the distance between the flanges of all the inner tightening screw shafts can be defined to a predetermined length .
[0015]
According to this invention, since the flange interval of each bolt for fastening the stack laminate through the flange becomes constant, the interval between the separators of each bolt becomes constant even when the laminate is expanded or internal pressure is applied. In addition, the pressure applied to the entire stack stack can be maintained at a uniform pressure, and the occurrence of leaks due to variations in separator spacing can be prevented.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, unless otherwise specified, the dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention.
[0019]
2 to 4 are main part configuration diagrams of the stack structure in the solid polymer membrane water electrolysis apparatus according to the respective embodiments of the present invention. As shown in FIG. 1, the inner flange 23 sandwiching the stack laminate 60 and The points that are tightened by a number of tightening screw shafts 30 by adjusting the bolt interval so that the tightening pressure is almost equalized to the stack laminate between the thick flanges 21 are the same.
[0020]
In FIG. 2, a load cell 40 (load detection sensor) or a strain gauge 41 is provided as a tightening force management means at a midway position between the tightening screw shafts 30 sandwiched between the upper and lower flanges 21 and 23.
That is, in FIG. 2A, a midway position of the fastening screw shaft 30 sandwiched between the flanges is divided, and a disk-like support plate 301 is fixed to the divided portion, and the load cell 40 is interposed between the support plates 301. are doing.
The load signal from the load cell 40 is collected in a load meter 400 that detects the tightening load of all the tightening screw shafts, and tightening is performed so that the tightening loads of all the tightening screw shafts 30 are constant. The nut 31 of the screw shaft 30 is screwed and adjusted so that the pressure applied to the entire stack stack 60 is equalized. As a result, it is possible to eliminate the possibility that the electrolyzed water leaks due to pressure variation caused by the tightening screw.
[0021]
FIG. 2 (B) uses a strain gauge 41, and a strain gauge 41 in the middle of the tightening screw shaft 30 is attached.
The strain detection signals from the strain gauges 41 are collected in a strain gauge 410 that detects the strain of all the tightening screw shafts 30, and tightening is performed so that the tightening strains of all the tightening screw shafts 30 are constant. The nut 31 of the attached screw shaft 30 is screwed and adjusted so that the pressure applied to the entire stack stack 60 is equalized. This also eliminates the possibility that the electrolyzed water leaks due to the pressure variation caused by the tightening screw.
[0022]
3 (A), 3 (B) and 4 (A) show a cylindrical sleeve 42 in which the tightening force management means regulates the distance between the respective tightening screw shafts 30 sandwiched between the upper and lower flanges 21 and 23. And a space regulating member such as a semi-cylindrical sleeve 43 or a stopper 44 for regulating the distance between the bolt shafts.
That is, in FIG. 3A, a cylindrical sleeve 42 set to a predetermined length is provided around the shaft portion of the tightening screw shaft 30 located between the inner flange 23 and the thick flange 21, and all the tightening screw shafts 30 are provided. The distance between the flanges is defined by the length of the cylindrical sleeve 42 so as to be a predetermined length.
[0023]
According to this embodiment, since the flange interval of each screw shaft 30 that clamps the stack stack 60 via the flanges 21 and 23 becomes constant according to the length of the cylindrical sleeve 42, the interval between the flanges by each clamp screw 30 is reduced. The pressure that is constant and is urged over the entire stack stack 60 can be maintained at a uniform pressure.
However, according to such a configuration, after the cylindrical sleeve 42 is provided between the flanges 21 and 23, there is an inconvenience that the distance between the flanges cannot be adjusted unless the flanges 21 and 23 are removed.
[0024]
Therefore, as shown in FIG. 3B, if the sleeve interposed between the inner flange 23 and the thick flange 21 is not a cylindrical sleeve 42 but a half-shaped semi-cylindrical sleeve 43 is provided in an annular manner, the flange is disassembled. Even if not, the sleeve 43 becomes removable, the distance between the flanges can be arbitrarily adjusted, and it is general purpose.
[0025]
As shown in FIG. 4A, without using the cylindrical sleeve 42, disc-shaped stoppers 44 for defining the distance between the flanges of the tightening screw shaft 30 are provided vertically on the shaft portion to define the distance between the flanges. You may do it.
According to this embodiment, when the screw shaft 30 is tightened with the nut 31 until the stoppers 44 come into contact with the lower surfaces of the flanges 21 and 23, the flange distances 21-23 of all the tightening screw shafts 30 can be defined to a predetermined length.
[0026]
According to this embodiment, when the stack stack 60 is tightened through the flanges 21 and 23, the flange interval between the screw shafts 30 is constant only by tightening until the stoppers 44 and the cylindrical sleeves 42 and 43 come into contact. In addition, it is possible to prevent the occurrence of leakage due to the variation in the flange interval due to the tightening screw.
[0027]
FIG. 4 (B) is a reference technique in which the tightening force management means screws the shaft end screw portions of the respective tightening screw shafts 30 protruding from the upper surface of the inner flange 23 and the lower surface of the thick flange 21 on both upper and lower sides. A spring member 45 is interposed between the first and second members 31.
A coil spring or a leaf spring can be used for the spring member 45.
[0029]
【The invention's effect】
As described above, according to the first invention, the tightening force management means is constituted by a load or strain detection means provided at an intermediate position of each tightening screw shaft sandwiched between upper and lower or left and right flanges. Due to the pressure variation between the bolts because the tightening force of each bolt that tightens the stack stack via the flange is constant and the pressure applied to the entire stack stack is equalized. The risk that the electrolyzed water that leaks leaks out.
[0030]
In another invention, the tightening force management means may be a cylindrical sleeve, a semi-cylindrical sleeve, or a stopper that regulates the distance between the flanges, which regulates the distance between the fastening screw shafts sandwiched between the upper and lower or left and right flanges. By configuring with the interval regulating member, the flange interval of each bolt for fastening the stack laminate via the flange becomes constant, so that even if the laminate swells, the interval between the bolts becomes constant and the stack laminate The pressure applied to the entire area can be maintained at a uniform pressure, and the occurrence of leakage due to variations in the bolt interval can be prevented.
[0031]
Further, the tightening force management means is a spring member interposed between the upper surface of the upper and lower or left and right flanges and the bolt head of each tightening screw shaft projecting from the upper surface or the nut screwing the bolt shaft. Since the elastic force of the spring member, preferably the control means using the spring compression distance by bolt tightening, the tightening force of each bolt for tightening the stack laminated body via the flange becomes constant. In addition, the pressure applied to the entire stack stack can be maintained at a uniform pressure, and the occurrence of leakage due to variations in bolt tightening force can be prevented.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a solid polymer membrane water electrolysis apparatus applied to the present invention, wherein (A) is a plan view and (B) is a front view.
FIG. 2 is a configuration diagram of a main part of a stack structure in the solid polymer membrane water electrolysis apparatus according to the first embodiment of the present invention, and a load cell (A) or strain as a tightening force management means at a midway position of a tightening screw shaft; The gauge (B) is provided.
FIG. 3 is a configuration diagram of a main part of a stack structure in a solid polymer membrane water electrolysis apparatus according to a second embodiment of the present invention, in which a cylindrical sleeve (A) or a semi-cylindrical sleeve (B) is provided as a tightening force management means. It is a configuration.
4 is a plan view of the solid polymer film used in FIG. 3. FIG.
FIG. 5 is a schematic configuration diagram of a stack structure in a solid polymer membrane water electrolysis apparatus according to a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Solid polymer film 2, 3 Feed body 5 Separator 6 Stack 8, 9 Electrode

Claims (4)

陽極と陰極の一対の給電体の間に固体高分子膜を挟持させた電解セルをセパレータを介して積層させて多層スタック構造にした積層体を、積層体上側に位置する内フランジと厚フランジにて挟持せしめるとともに、前記内フランジとその上側に位置する上フランジ間にスプリングを利用した均圧付勢体を介装せしめるとともに前記上フランジと厚フランジ間を前記内フランジの外側に位置する外側締め付けねじにて締め付けた状態で、前記内フランジと厚フランジ間を前記外側締め付けねじの内側に位置する複数の内側締付ネジ軸にて締付けて所定の均圧付勢力をスタック積層体の中央域に付勢してなる固体高分子膜水電解装置において、
前記均圧付勢力がスタック積層体に付勢する内フランジと厚フランジ間に挟まれる内側締付ネジ軸夫々に締付力管理手段を設け
前記締付力管理手段が、前記内フランジと厚フランジに挟まれる内側締付ネジ軸部を分断してその分断部分に支持板を固着してその支持板間にロードセルを介装し、該ロードセルよりの荷重信号により、前記内側締付ネジ軸の締付荷重が一定になるように夫々の内側締付ネジ軸のナットを螺合調整して前記スタック積層体に付勢される圧力が均圧になるように制御される構造を具えていることを特徴とする固体高分子膜水電解装置。
A laminated body in which an electrolytic cell in which a solid polymer film is sandwiched between a pair of power supply bodies of an anode and a cathode is laminated via a separator to form a multilayer stack structure is formed into an inner flange and a thick flange located above the laminated body. And a pressure equalizing urging body using a spring is interposed between the inner flange and the upper flange located on the upper side, and the outer flange is positioned between the upper flange and the thick flange outside the inner flange. While tightened with screws, the inner flange and the thick flange are tightened with a plurality of inner tightening screw shafts located inside the outer tightening screw, and a predetermined equalizing biasing force is applied to the central region of the stack laminate. In the energized solid polymer membrane water electrolysis device,
A tightening force management means is provided for each of the inner tightening screw shafts sandwiched between the inner flange and the thick flange for biasing the pressure equalizing biasing force to the stack laminate ,
The tightening force management means divides the inner tightening screw shaft portion sandwiched between the inner flange and the thick flange, fixes a support plate to the divided portion, and inserts a load cell between the support plates, the load cell By adjusting the screw of each inner tightening screw shaft so that the tightening load of the inner tightening screw shaft becomes constant according to the load signal from the load signal, the pressure applied to the stack laminate is equalized. A solid polymer membrane water electrolysis apparatus comprising a structure controlled to become
陽極と陰極の一対の給電体の間に固体高分子膜を挟持させた電解セルをセパレータを介して積層させて多層スタック構造にした積層体を、積層体上側に位置する内フランジと厚フランジにて挟持せしめるとともに、前記内フランジとその上側に位置する上フランジ間にスプリングを利用した均圧付勢体を介装せしめるとともに前記上フランジと厚フランジ間を前記内フランジの外側に位置する外側締め付けねじにて締め付けた状態で、前記内フランジと厚フランジ間を前記外側締め付けねじの内側に位置する複数の内側締付ネジ軸にて締付けて所定の均圧付勢力をスタック積層体の中央域に付勢してなる固体高分子膜水電解装置において、
前記均圧付勢力をスタック積層体に付勢する内フランジと厚フランジ間に挟まれる内側締付ネジ軸夫々に締付力管理手段を設け
前記締付力管理手段が、前記内フランジと厚フランジに挟まれる内側締付ネジ軸部に歪ゲージを貼着し、該歪ゲージよりの全ての内側締付ネジ軸の歪検知信号に基づいて、該全ての内側締付ネジ軸の締付歪が一定になるように夫々の内側締付ネジ軸のナットを螺合調整してスタック積層体に付勢される圧力が均圧になるように制御される構造を具えていることを特徴とする固体高分子膜水電解装置。
A laminated body in which an electrolytic cell in which a solid polymer film is sandwiched between a pair of power supply bodies of an anode and a cathode is laminated via a separator to form a multilayer stack structure is formed into an inner flange and a thick flange located above the laminated body. And a pressure equalizing urging body using a spring is interposed between the inner flange and the upper flange located on the upper side, and the outer flange is positioned between the upper flange and the thick flange outside the inner flange. While tightened with screws, the inner flange and the thick flange are tightened with a plurality of inner tightening screw shafts located inside the outer tightening screw, and a predetermined equalizing biasing force is applied to the central region of the stack laminate. In the energized solid polymer membrane water electrolysis device,
A tightening force management means is provided for each of the inner tightening screw shafts sandwiched between the inner flange and the thick flange for biasing the pressure equalizing biasing force to the stack laminate ,
The tightening force management means attaches a strain gauge to the inner tightening screw shaft portion sandwiched between the inner flange and the thick flange , and based on strain detection signals of all inner tightening screw shafts from the strain gauge. , So that the tightening distortion of all the inner tightening screw shafts is constant, and the nuts of the respective inner tightening screw shafts are screwed and adjusted so that the pressure applied to the stack laminate becomes equal A solid polymer membrane water electrolysis apparatus characterized by having a controlled structure .
陽極と陰極の一対の給電体の間に固体高分子膜を挟持させた電解セルをセパレータを介して積層させて多層スタック構造にした積層体を、積層体上側に位置する内フランジと厚フランジにて挟持せしめるとともに、前記内フランジとその上側に位置する上フランジ間にスプリングを利用した均圧付勢体を介装せしめるとともに前記上フランジと厚フランジ間を前記内フランジの外側に位置する外側締め付けねじにて締め付けた状態で、前記内フランジと厚フランジ間を前記外側締め付けねじの内側に位置する複数の内側締付ネジ軸にて締付けて所定の均圧付勢力をスタック積層体の中央域に付勢してなる固体高分子膜水電解装置において、
前記均圧付勢力をスタック積層体に付勢する内フランジと厚フランジ間に挟まれる内側締付ネジ軸夫々に締付力管理手段を設け、
前記締付力管理手段が、前記夫々の内フランジと厚フランジ間に、半割状の半円筒スリーブを環設させフランジ間距離を調整可能な構造を具えていることを特徴とする固体高分子膜水電解装置。
A laminated body in which an electrolytic cell in which a solid polymer film is sandwiched between a pair of power supply bodies of an anode and a cathode is laminated via a separator to form a multilayer stack structure is formed into an inner flange and a thick flange located above the laminated body. And a pressure equalizing urging body using a spring is interposed between the inner flange and the upper flange located on the upper side, and the outer flange is positioned between the upper flange and the thick flange outside the inner flange. While tightened with screws, the inner flange and the thick flange are tightened with a plurality of inner tightening screw shafts located inside the outer tightening screw, and a predetermined equalizing biasing force is applied to the central region of the stack laminate. In the energized solid polymer membrane water electrolysis device,
A tightening force management means is provided for each of the inner tightening screw shafts sandwiched between the inner flange and the thick flange for biasing the pressure equalizing biasing force to the stack laminate,
The solid polymer characterized in that the tightening force management means has a structure in which a half-cylindrical sleeve is provided between the inner flange and the thick flange so that the distance between the flanges can be adjusted. Membrane water electrolysis device.
陽極と陰極の一対の給電体の間に固体高分子膜を挟持させた電解セルをセパレータを介して積層させて多層スタック構造にした積層体を、積層体上側に位置する内フランジと厚フランジにて挟持せしめるとともに、前記内フランジとその上側に位置する上フランジ間にスプリングを利用した均圧付勢体を介装せしめるとともに前記上フランジと厚フランジ間を前記内フランジの外側に位置する外側締め付けねじにて締め付けた状態で、前記内フランジと厚フランジ間を前記外側締め付けねじの内側に位置する複数の 内側締付ネジ軸にて締付けて所定の均圧付勢力をスタック積層体の中央域に付勢してなる固体高分子膜水電解装置において、
前記均圧付勢力をスタック積層体に付勢する内フランジと厚フランジ間に挟まれる内側締付ネジ軸夫々に締付力管理手段を設け、
前記締付力管理手段が、前記フランジ間距離を規定するストッパを前記内フランジと厚フランジの間に位置する内側締付ネジ軸部に設け、前記ストッパにフランジ面があたるまでナットで前記内側締付ネジ軸を締め付けて全ての締め付けネジ軸のフランジ間距離が所定長さに規定出来るようにした構造を具えていることを特徴とする固体高分子膜水電解装置。
A laminated body in which an electrolytic cell in which a solid polymer film is sandwiched between a pair of power supply bodies of an anode and a cathode is laminated via a separator to form a multilayer stack structure is formed into an inner flange and a thick flange located above the laminated body. And a pressure equalizing urging body using a spring is interposed between the inner flange and the upper flange located on the upper side, and the outer flange is positioned between the upper flange and the thick flange outside the inner flange. While tightened with screws, the inner flange and the thick flange are tightened with a plurality of inner tightening screw shafts located inside the outer tightening screw, and a predetermined equalizing biasing force is applied to the central region of the stack laminate. In the energized solid polymer membrane water electrolysis device,
A tightening force management means is provided for each of the inner tightening screw shafts sandwiched between the inner flange and the thick flange for biasing the pressure equalizing biasing force to the stack laminate,
The tightening force management means is provided with a stopper that defines the distance between the flanges on an inner tightening screw shaft located between the inner flange and the thick flange, and the inner tightening with a nut until the flange surface comes into contact with the stopper. A solid polymer membrane water electrolysis apparatus comprising a structure in which a distance between flanges of all tightening screw shafts can be regulated to a predetermined length by tightening the attached screw shafts .
JP2001337566A 2001-11-02 2001-11-02 Solid polymer membrane water electrolyzer Expired - Fee Related JP3723116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001337566A JP3723116B2 (en) 2001-11-02 2001-11-02 Solid polymer membrane water electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001337566A JP3723116B2 (en) 2001-11-02 2001-11-02 Solid polymer membrane water electrolyzer

Publications (2)

Publication Number Publication Date
JP2003147562A JP2003147562A (en) 2003-05-21
JP3723116B2 true JP3723116B2 (en) 2005-12-07

Family

ID=19152180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001337566A Expired - Fee Related JP3723116B2 (en) 2001-11-02 2001-11-02 Solid polymer membrane water electrolyzer

Country Status (1)

Country Link
JP (1) JP3723116B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631525B2 (en) * 2005-04-27 2011-02-16 日立造船株式会社 Dimensional fluctuation absorber for container-type water electrolyzer
JP4623307B2 (en) * 2006-03-29 2011-02-02 栗田工業株式会社 Electrolytic cell and sulfuric acid recycle type cleaning system using the electrolytic cell
JP2023137535A (en) 2022-03-18 2023-09-29 トヨタ自動車株式会社 Load control method of water electrolysis stack, hydrogen production method, and water electrolysis apparatus
JP2023146516A (en) 2022-03-29 2023-10-12 トヨタ自動車株式会社 Water electrolysis cell, water electrolysis stack
KR102564532B1 (en) * 2022-11-25 2023-08-09 (주)넥슨스타 Power vertically oriented monopolar water electrolysis stack

Also Published As

Publication number Publication date
JP2003147562A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
US9017869B2 (en) Cell stack for redox flow battery
US8343683B2 (en) Fuel cell stack
US20070082251A1 (en) Fuel cell stack structure
JP5111833B2 (en) High pressure hydrogen production equipment
US8802325B2 (en) Fuel cell stack having tightening members
US20240063418A1 (en) Systems and methods of fuel cell stack compression
JP2013020740A (en) Fuel cell stack
JP2016062852A (en) Assembling method of fuel cell stack
JP3723116B2 (en) Solid polymer membrane water electrolyzer
US20180366760A1 (en) Manufacturing method and apparatus for fuel cell stack
JP2001131787A (en) Pressure compensation structure of electrolysis cell
JP5281342B2 (en) Solid polymer water electrolyzer and its assembly method
JPH0995791A (en) Solid polyelectrolyte water electrolyzer and its electrode structure
US7323089B2 (en) Bonded membrane-electrode assembly for electrolysis of water and water electrolyzer using the same
JP5372860B2 (en) Fuel cell stack
JP4595318B2 (en) Fuel cell stack and tightening method thereof
JPH117975A (en) Fastening control device for fuel cell
JP2003132902A (en) Solid polymer film water electrolysis device
JP2017208178A (en) Cell stack and redox flow battery
JP5203162B2 (en) Stacking load adjustment device for fuel cell stack
JP3169049B2 (en) Hydrogen / oxygen generator
JP3487696B2 (en) Hydrogen / oxygen generator
JP2005251667A (en) Fuel cell
JPH06306666A (en) Water electrolysis cell
JPH07263004A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050914

LAPS Cancellation because of no payment of annual fees